Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
#https://www.kaggle.com/c/facial-keypoints-detection/details/getting-started-with-r #################################
###Variables for downloaded files data.dir <- ' ' train.file <- paste0(data.dir, 'training.csv') test.file <- paste0(data.dir, 'test.csv') #################################
###Load csv -- creates a data.frame matrix where each column can have a different type. d.train <- read.csv(train.file, stringsAsFactors = F) d.test <- read.csv(test.file, stringsAsFactors = F)
###In training.csv, we have 7049 rows, each one with 31 columns. ###The first 30 columns are keypoint locations, which R correctly identified as numbers. ###The last one is a string representation of the image, identified as a string.
###To look at samples of the data, uncomment this line:
###Let's save the first column as another variable, and remove it from d.train: ###d.train is our dataframe, and we want the column called Image. ###Assigning NULL to a column removes it from the dataframe
im.train <- d.train$Image d.train$Image <- NULL #removes 'image' from the dataframe
im.test <- d.test$Image d.test$Image <- NULL #removes 'image' from the dataframe
################################# #The image is represented as a series of numbers, stored as a string #Convert these strings to integers by splitting them and converting the result to integer
#strsplit splits the string #unlist simplifies its output to a vector of strings #as.integer converts it to a vector of integers. as.integer(unlist(strsplit(im.train[1], " "))) as.integer(unlist(strsplit(im.test[1], " ")))
###Install and activate appropriate libraries ###The tutorial is meant for Linux and OSx, where they use a different library, so: ###Replace all instances of %dopar% with %do%.
library("foreach", lib.loc="~/R/win-library/3.3")
###implement parallelization im.train <- foreach(im = im.train, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } im.test <- foreach(im = im.test, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } #The foreach loop will evaluate the inner command for each row in im.train, and combine the results with rbind (combine by rows). #%do% instructs R to do all evaluations in parallel. #im.train is now a matrix with 7049 rows (one for each image) and 9216 columns (one for each pixel):
###Save all four variables in data.Rd file ###Can reload them at anytime with load('data.Rd')
#each image is a vector of 96*96 pixels (96*96 = 9216). #convert these 9216 integers into a 96x96 matrix: im <- matrix(data=rev(im.train[1,]), nrow=96, ncol=96)
#im.train[1,] returns the first row of im.train, which corresponds to the first training image. #rev reverse the resulting vector to match the interpretation of R's image function #(which expects the origin to be in the lower left corner).
#To visualize the image we use R's image function: image(1:96, 1:96, im, col=gray((0:255)/255))
#Let’s color the coordinates for the eyes and nose points(96-d.train$nose_tip_x[1], 96-d.train$nose_tip_y[1], col="red") points(96-d.train$left_eye_center_x[1], 96-d.train$left_eye_center_y[1], col="blue") points(96-d.train$right_eye_center_x[1], 96-d.train$right_eye_center_y[1], col="green")
#Another good check is to see how variable is our data. #For example, where are the centers of each nose in the 7049 images? (this takes a while to run): for(i in 1:nrow(d.train)) { points(96-d.train$nose_tip_x[i], 96-d.train$nose_tip_y[i], col="red") }
#there are quite a few outliers -- they could be labeling errors. Looking at one extreme example we get this: #In this case there's no labeling error, but this shows that not all faces are centralized idx <- which.max(d.train$nose_tip_x) im <- matrix(data=rev(im.train[idx,]), nrow=96, ncol=96) image(1:96, 1:96, im, col=gray((0:255)/255)) points(96-d.train$nose_tip_x[idx], 96-d.train$nose_tip_y[idx], col="red")
#One of the simplest things to try is to compute the mean of the coordinates of each keypoint in the training set and use that as a prediction for all images colMeans(d.train, na.rm=T)
#To build a submission file we need to apply these computed coordinates to the test instances: p <- matrix(data=colMeans(d.train, na.rm=T), nrow=nrow(d.test), ncol=ncol(d.train), byrow=T) colnames(p) <- names(d.train) predictions <- data.frame(ImageId = 1:nrow(d.test), p) head(predictions)
#The expected submission format has one one keypoint per row, but we can easily get that with the help of the reshape2 library:
library(...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
**Introduction ** This case study will be based on Cyclistic, a bike sharing company in Chicago. I will perform tasks of a junior data analyst to answer business questions. I will do this by following a process that includes the following phases: ask, prepare, process, analyze, share and act.
Background Cyclistic is a bike sharing company that operates 5828 bikes within 692 docking stations. The company has been around since 2016 and separates itself from the competition due to the fact that they offer a variety of bike services including assistive options. Lily Moreno is the director of the marketing team and will be the person to receive these insights from this analysis.
Case Study and business task Lily Morenos perspective on how to generate more income by marketing Cyclistics services correctly includes converting casual riders (one day passes and/or pay per ride customers) into annual riders with a membership. Annual riders are more profitable than casual riders according to the finance analysts. She would rather see a campaign targeting casual riders into annual riders, instead of launching campaigns targeting new costumers. So her strategy as the manager of the marketing team is simply to maximize the amount of annual riders by converting casual riders.
In order to make a data driven decision, Moreno needs the following insights: - A better understanding of how casual riders and annual riders differ - Why would a casual rider become an annual one - How digital media can affect the marketing tactics
Moreno has directed me to the first question - how do casual riders and annual riders differ?
Stakeholders Lily Moreno, manager of the marketing team Cyclistic Marketing team Executive team
Data sources and organization Data used in this report is made available and is licensed by Motivate International Inc. Personal data is hidden to protect personal information. Data used is from the past 12 months (01/04/2021 – 31/03/2022) of bike share dataset.
By merging all 12 monthly bike share data provided, an extensive amount of data with 5,400,000 rows were returned and included in this analysis.
Data security and limitations: Personal information is secured and hidden to prevent unlawful use. Original files are backed up in folders and subfolders.
Tools and documentation of cleaning process The tools used for data verification and data cleaning are Microsoft Excel and R programming. The original files made accessible by Motivate International Inc. are backed up in their original format and in separate files.
Microsoft Excel is used to generally look through the dataset and get a overview of the content. I performed simple checks of the data by filtering, sorting, formatting and standardizing the data to make it easily mergeable.. In Excel, I also changed data type to have the right format, removed unnecessary data if its incomplete or incorrect, created new columns to subtract and reformat existing columns and deleting empty cells. These tasks are easily done in spreadsheets and provides an initial cleaning process of the data.
R will be used to perform queries of bigger datasets such as this one. R will also be used to create visualizations to answer the question at hand.
Limitations Microsoft Excel has a limitation of 1,048,576 rows while the data of the 12 months combined are over 5,500,000 rows. When combining the 12 months of data into one table/sheet, Excel is no longer efficient and I switched over to R programming.
Facebook
TwitterThe segment counts by social group and species or species group for the Waterfowl Breeding Population and Habitat Survey and associated segment effort information. Three data files are included with their associated metadata (html and xml formats). Segment counts are summed counts of waterfowl per segment and are separated into two files, described below, along with the effort table needed to analyze recent segment count information. 1. wbphs_segment_counts_1955to1999_forDistribution.csv, which represents the period prior the collection of geolocated data. There is no associated effort file for these counts and segments with zero birds are included in the segment counts table, so effort can be inferred; there is no information to determine the proportion of each segment surveyed for this period and it must be presumed they were surveyed completely. Number of rows in table = 1,988,290. 2. wbphs_segment_counts_forDistribution.csv, which contains positive segment records only, by species or species group beginning with 2000. wbphs_segment_effort_forDistribution.csv file is important for this segment counts file and can be used to infer zero value segments, by species or species group. Number of rows in table = 365,863. 3. wbphs_segment_effort_forDistribution.csv. The segment survey effort and location from the Waterfowl Breeding Population and Habitat Survey beginning with 2000. If a segment was not flown, it is absent from the table for the corresponding year. Number of rows in table = 65,122. Also included here is a small R code file, createSingleSegmentCountTable.R, which can be run to format the 2000+ data to match the 1955-1999 format and combine the data over the two time periods. Please consult the metadata for an explanation of the fields and other information to understand the limitations of the data.
Facebook
TwitterVersion 5 release notes:
Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.
Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.
Version 4 release notes:
Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column names for the narcotic columns to indicate that they are only for synthetic narcotics.
Version 3 release notes:
Add data for 2016.Order rows by year (descending) and ORI.Version 2 release notes:
Fix bug where Philadelphia Police Department had incorrect FIPS county code.
The Arrests by Age, Sex, and Race data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains highly granular data on the number of people arrested for a variety of crimes (see below for a full list of included crimes). The data sets here combine data from the years 1980-2015 into a single file. These files are quite large and may take some time to load.
All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.
I did not make any changes to the data other than the following. When an arrest column has a value of "None/not reported", I change that value to zero. This makes the (possible incorrect) assumption that these values represent zero crimes reported. The original data does not have a value when the agency reports zero arrests other than "None/not reported." In other words, this data does not differentiate between real zeros and missing values. Some agencies also incorrectly report the following numbers of arrests which I change to NA: 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99999, 99998.
To reduce file size and make the data more manageable, all of the data is aggregated yearly. All of the data is in agency-year units such that every row indicates an agency in a given year. Columns are crime-arrest category units. For example, If you choose the data set that includes murder, you would have rows for each agency-year and columns with the number of people arrests for murder. The ASR data breaks down arrests by age and gender (e.g. Male aged 15, Male aged 18). They also provide the number of adults or juveniles arrested by race. Because most agencies and years do not report the arrestee's ethnicity (Hispanic or not Hispanic) or juvenile outcomes (e.g. referred to adult court, referred to welfare agency), I do not include these columns.
To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. Please note that some of the FIPS codes have leading zeros and if you open it in Excel it will automatically delete those leading zeros.
I created 9 arrest categories myself. The categories are:
Total Male JuvenileTotal Female JuvenileTotal Male AdultTotal Female AdultTotal MaleTotal FemaleTotal JuvenileTotal AdultTotal ArrestsAll of these categories are based on the sums of the sex-age categories (e.g. Male under 10, Female aged 22) rather than using the provided age-race categories (e.g. adult Black, juvenile Asian). As not all agencies report the race data, my method is more accurate. These categories also make up the data in the "simple" version of the data. The "simple" file only includes the above 9 columns as the arrest data (all other columns in the data are just agency identifier columns). Because this "simple" data set need fewer columns, I include all offenses.
As the arrest data is very granular, and each category of arrest is its own column, there are dozens of columns per crime. To keep the data somewhat manageable, there are nine different files, eight which contain different crimes and the "simple" file. Each file contains the data for all years. The eight categories each have crimes belonging to a major crime category and do not overlap in crimes other than with the index offenses. Please note that the crime names provided below are not the same as the column names in the data. Due to Stata limiting column names to 32 characters maximum, I have abbreviated the crime names in the data. The files and their included crimes are:
Index Crimes
MurderRapeRobberyAggravated AssaultBurglaryTheftMotor Vehicle TheftArsonAlcohol CrimesDUIDrunkenness
LiquorDrug CrimesTotal DrugTotal Drug SalesTotal Drug PossessionCannabis PossessionCannabis SalesHeroin or Cocaine PossessionHeroin or Cocaine SalesOther Drug PossessionOther Drug SalesSynthetic Narcotic PossessionSynthetic Narcotic SalesGrey Collar and Property CrimesForgeryFraudStolen PropertyFinancial CrimesEmbezzlementTotal GamblingOther GamblingBookmakingNumbers LotterySex or Family CrimesOffenses Against the Family and Children
Other Sex Offenses
ProstitutionRapeViolent CrimesAggravated AssaultMurderNegligent ManslaughterRobberyWeapon Offenses
Other CrimesCurfewDisorderly ConductOther Non-trafficSuspicion
VandalismVagrancy
Simple
This data set has every crime and only the arrest categories that I created (see above).
If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
I created these files and analysis as part of working on a case study for the Google Data Analyst certificate.
Question investigated: Do annual members and casual riders use Cyclistic bikes differently? Why do we want to know?: Knowing bike usage/behavior by rider type will allow the Marketing, Analytics, and Executive team stakeholders to design, assess, and approve appropriate strategies that drive profitability.
I used the script noted below to clean the files and then added some additional steps to create the visualizations to complete my analysis. The additional steps are noted in corresponding R Markdown file for this data set.
Files: most recent 1 year of data available, Divvy_Trips_2019_Q2.csv, Divvy_Trips_2019_Q3.csv, Divvy_Trips_2019_Q4.csv, Divvy_Trips_2020_Q1.csv Source: Downloaded from https://divvy-tripdata.s3.amazonaws.com/index.html
Data cleaning script: followed this script to clean and merge files https://docs.google.com/document/d/1gUs7-pu4iCHH3PTtkC1pMvHfmyQGu0hQBG5wvZOzZkA/copy
Note: Combined data set has 3,876,042 rows, so you will likely need to run R analysis on your computer (e.g., R Console) rather than in the cloud (e.g., RStudio Cloud)
This was my first attempt to conduct an analysis in R and create the R Markdown file. As you might guess, it was an eye-opening experience, with both exciting discoveries and aggravating moments.
One thing I have not yet been able to figure out is how to add a legend to the map. I was able to get a legend to appear on a separate (empty) map, but not on the map you will see here.
I am also interested to see what others did with this analysis - what were the findings and insights you found?
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
#https://www.kaggle.com/c/facial-keypoints-detection/details/getting-started-with-r #################################
###Variables for downloaded files data.dir <- ' ' train.file <- paste0(data.dir, 'training.csv') test.file <- paste0(data.dir, 'test.csv') #################################
###Load csv -- creates a data.frame matrix where each column can have a different type. d.train <- read.csv(train.file, stringsAsFactors = F) d.test <- read.csv(test.file, stringsAsFactors = F)
###In training.csv, we have 7049 rows, each one with 31 columns. ###The first 30 columns are keypoint locations, which R correctly identified as numbers. ###The last one is a string representation of the image, identified as a string.
###To look at samples of the data, uncomment this line:
###Let's save the first column as another variable, and remove it from d.train: ###d.train is our dataframe, and we want the column called Image. ###Assigning NULL to a column removes it from the dataframe
im.train <- d.train$Image d.train$Image <- NULL #removes 'image' from the dataframe
im.test <- d.test$Image d.test$Image <- NULL #removes 'image' from the dataframe
################################# #The image is represented as a series of numbers, stored as a string #Convert these strings to integers by splitting them and converting the result to integer
#strsplit splits the string #unlist simplifies its output to a vector of strings #as.integer converts it to a vector of integers. as.integer(unlist(strsplit(im.train[1], " "))) as.integer(unlist(strsplit(im.test[1], " ")))
###Install and activate appropriate libraries ###The tutorial is meant for Linux and OSx, where they use a different library, so: ###Replace all instances of %dopar% with %do%.
library("foreach", lib.loc="~/R/win-library/3.3")
###implement parallelization im.train <- foreach(im = im.train, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } im.test <- foreach(im = im.test, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } #The foreach loop will evaluate the inner command for each row in im.train, and combine the results with rbind (combine by rows). #%do% instructs R to do all evaluations in parallel. #im.train is now a matrix with 7049 rows (one for each image) and 9216 columns (one for each pixel):
###Save all four variables in data.Rd file ###Can reload them at anytime with load('data.Rd')
#each image is a vector of 96*96 pixels (96*96 = 9216). #convert these 9216 integers into a 96x96 matrix: im <- matrix(data=rev(im.train[1,]), nrow=96, ncol=96)
#im.train[1,] returns the first row of im.train, which corresponds to the first training image. #rev reverse the resulting vector to match the interpretation of R's image function #(which expects the origin to be in the lower left corner).
#To visualize the image we use R's image function: image(1:96, 1:96, im, col=gray((0:255)/255))
#Let’s color the coordinates for the eyes and nose points(96-d.train$nose_tip_x[1], 96-d.train$nose_tip_y[1], col="red") points(96-d.train$left_eye_center_x[1], 96-d.train$left_eye_center_y[1], col="blue") points(96-d.train$right_eye_center_x[1], 96-d.train$right_eye_center_y[1], col="green")
#Another good check is to see how variable is our data. #For example, where are the centers of each nose in the 7049 images? (this takes a while to run): for(i in 1:nrow(d.train)) { points(96-d.train$nose_tip_x[i], 96-d.train$nose_tip_y[i], col="red") }
#there are quite a few outliers -- they could be labeling errors. Looking at one extreme example we get this: #In this case there's no labeling error, but this shows that not all faces are centralized idx <- which.max(d.train$nose_tip_x) im <- matrix(data=rev(im.train[idx,]), nrow=96, ncol=96) image(1:96, 1:96, im, col=gray((0:255)/255)) points(96-d.train$nose_tip_x[idx], 96-d.train$nose_tip_y[idx], col="red")
#One of the simplest things to try is to compute the mean of the coordinates of each keypoint in the training set and use that as a prediction for all images colMeans(d.train, na.rm=T)
#To build a submission file we need to apply these computed coordinates to the test instances: p <- matrix(data=colMeans(d.train, na.rm=T), nrow=nrow(d.test), ncol=ncol(d.train), byrow=T) colnames(p) <- names(d.train) predictions <- data.frame(ImageId = 1:nrow(d.test), p) head(predictions)
#The expected submission format has one one keypoint per row, but we can easily get that with the help of the reshape2 library:
library(...