100+ datasets found
  1. f

    Statistical Comparison of Two ROC Curves

    • figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaacov Petscher (2023). Statistical Comparison of Two ROC Curves [Dataset]. http://doi.org/10.6084/m9.figshare.860448.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    figshare
    Authors
    Yaacov Petscher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.

  2. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel Township, Minnesota
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  3. d

    Data from: Delta Neighborhood Physical Activity Study

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Delta Neighborhood Physical Activity Study [Dataset]. https://catalog.data.gov/dataset/delta-neighborhood-physical-activity-study-f82d7
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    The Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.

  4. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  5. m

    An Extensive Dataset for the Heart Disease Classification System

    • data.mendeley.com
    Updated Feb 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sozan S. Maghdid (2022). An Extensive Dataset for the Heart Disease Classification System [Dataset]. http://doi.org/10.17632/65gxgy2nmg.1
    Explore at:
    Dataset updated
    Feb 15, 2022
    Authors
    Sozan S. Maghdid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Finding a good data source is the first step toward creating a database. Cardiovascular illnesses (CVDs) are the major cause of death worldwide. CVDs include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other heart and blood vessel problems. According to the World Health Organization, 17.9 million people die each year. Heart attacks and strokes account for more than four out of every five CVD deaths, with one-third of these deaths occurring before the age of 70 A comprehensive database for factors that contribute to a heart attack has been constructed , The main purpose here is to collect characteristics of Heart Attack or factors that contribute to it. As a result, a form is created to accomplish this. Microsoft Excel was used to create this form. Figure 1 depicts the form which It has nine fields, where eight fields for input fields and one field for output field. Age, gender, heart rate, systolic BP, diastolic BP, blood sugar, CK-MB, and Test-Troponin are representing the input fields, while the output field pertains to the presence of heart attack, which is divided into two categories (negative and positive).negative refers to the absence of a heart attack, while positive refers to the presence of a heart attack.Table 1 show the detailed information and max and min of values attributes for 1319 cases in the whole database.To confirm the validity of this data, we looked at the patient files in the hospital archive and compared them with the data stored in the laboratories system. On the other hand, we interviewed the patients and specialized doctors. Table 2 is a sample for 1320 cases, which shows 44 cases and the factors that lead to a heart attack in the whole database,After collecting this data, we checked the data if it has null values (invalid values) or if there was an error during data collection. The value is null if it is unknown. Null values necessitate special treatment. This value is used to indicate that the target isn’t a valid data element. When trying to retrieve data that isn't present, you can come across the keyword null in Processing. If you try to do arithmetic operations on a numeric column with one or more null values, the outcome will be null. An example of a null values processing is shown in Figure 2.The data used in this investigation were scaled between 0 and 1 to guarantee that all inputs and outputs received equal attention and to eliminate their dimensionality. Prior to the use of AI models, data normalization has two major advantages. The first is to avoid overshadowing qualities in smaller numeric ranges by employing attributes in larger numeric ranges. The second goal is to avoid any numerical problems throughout the process.After completion of the normalization process, we split the data set into two parts - training and test sets. In the test, we have utilized1060 for train 259 for testing Using the input and output variables, modeling was implemented.

  6. N

    Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aa8c95e0-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.

    Key observations

    The largest age group in Excel, AL was for the group of age 45 to 49 years years with a population of 74 (15.64%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Excel is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Excel total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here

  7. Age-depth models for Pb-210 datasets (NERC Grant NE/V008269/1)

    • data-search.nerc.ac.uk
    • metadata.bgs.ac.uk
    • +2more
    html
    Updated Sep 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2022). Age-depth models for Pb-210 datasets (NERC Grant NE/V008269/1) [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/api/records/e79e0767-1051-2d82-e053-0937940ae4e8
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 18, 2022
    Dataset authored and provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Time period covered
    Dec 1, 2021 - Mar 30, 2022
    Description

    Age-depth models for Pb-210 datasets. The St Croix Watershed Research Station, of the Science Museum of Minnesota, kindly made available 210Pb datasets that have been measured in their lab over the past decades. The datasets come mostly from North American lakes. These datasets were used to produce both chronologies using the 'classical' CRS (Constant Rate of Supply) approach and also using a recently developed Bayesian alternative called 'Plum'. Both approaches were used in order to compare the two approaches. The 210Pb data will also be deposited in the neotomadb.org database. The dataset consists of 3 files; 1. Rcode_Pb210.R R code to process the data files, produce age-depth models and compare them. 2. StCroix_agemodel_output.zip Output of age-model runs of the St Croix datasets 3. StCroix_xlxs_files.zip Excel files of the St Croix Pb-210 datasets

  8. r

    Respiration_chambers/raw_log_files and combined datasets of biomass and...

    • researchdata.edu.au
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Ocean Data Network (2025). Respiration_chambers/raw_log_files and combined datasets of biomass and chamber data, and physical parameters [Dataset]. https://researchdata.edu.au/respirationchambersrawlogfiles-combined-datasets-physical-parameters/3718192
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset provided by
    data.gov.au
    Authors
    Australian Ocean Data Network
    Area covered
    Description

    General overview The following datasets are described by this metadata record, and are available for download from the provided URL.

    Raw log files, physical parameters raw log files Raw excel files, respiration/PAM chamber raw excel spreadsheets Processed and cleaned excel files, respiration chamber biomass data Raw rapid light curve excel files (this is duplicated from Raw log files), combined dataset pH, temperature, oxygen, salinity, velocity for experiment Associated R script file for pump cycles of respirations chambers

    Physical parameters raw log files Raw log files 1) DATE= 2) Time= UTC+11 3) PROG=Automated program to control sensors and collect data 4) BAT=Amount of battery remaining 5) STEP=check aquation manual 6) SPIES=check aquation manual 7) PAR=Photoactive radiation 8) Levels=check aquation manual 9) Pumps= program for pumps 10) WQM=check aquation manual

    Respiration/PAM chamber raw excel spreadsheets Abbreviations in headers of datasets Note: Two data sets are provided in different formats. Raw and cleaned (adj). These are the same data with the PAR column moved over to PAR.all for analysis. All headers are the same. The cleaned (adj) dataframe will work with the R syntax below, alternative add code to do cleaning in R.
    Date: ISO 1986 - Check Time:UTC+11 unless otherwise stated DATETIME: UTC+11 unless otherwise stated ID (of instrument in respiration chambers) ID43=Pulse amplitude fluoresence measurement of control ID44=Pulse amplitude fluoresence measurement of acidified chamber ID=1 Dissolved oxygen ID=2 Dissolved oxygen ID3= PAR ID4= PAR PAR=Photo active radiation umols F0=minimal florescence from PAM Fm=Maximum fluorescence from PAM Yield=(F0 – Fm)/Fm rChl=an estimate of chlorophyll (Note this is uncalibrated and is an estimate only) Temp=Temperature degrees C PAR=Photo active radiation PAR2= Photo active radiation2 DO=Dissolved oxygen %Sat= Saturation of dissolved oxygen Notes=This is the program of the underwater submersible logger with the following abreviations: Notes-1) PAM= Notes-2) PAM=Gain level set (see aquation manual for more detail) Notes-3) Acclimatisation= Program of slowly introducing treatment water into chamber Notes-4) Shutter start up 2 sensors+sample…= Shutter PAMs automatic set up procedure (see aquation manual) Notes-5) Yield step 2=PAM yield measurement and calculation of control Notes-6) Yield step 5= PAM yield measurement and calculation of acidified Notes-7) Abatus respiration DO and PAR step 1= Program to measure dissolved oxygen and PAR (see aquation manual). Steps 1-4 are different stages of this program including pump cycles, DO and PAR measurements. 8) Rapid light curve data Pre LC: A yield measurement prior to the following measurement After 10.0 sec at 0.5% to 8%: Level of each of the 8 steps of the rapid light curve Odessey PAR (only in some deployments): An extra measure of PAR (umols) using an Odessey data logger Dataflow PAR: An extra measure of PAR (umols) using a Dataflow sensor. PAM PAR: This is copied from the PAR or PAR2 column PAR all: This is the complete PAR file and should be used Deployment: Identifying which deployment the data came from

    Respiration chamber biomass data The data is chlorophyll a biomass from cores from the respiration chambers. The headers are: Depth (mm) Treat (Acidified or control) Chl a (pigment and indicator of biomass) Core (5 cores were collected from each chamber, three were analysed for chl a), these are psudoreplicates/subsamples from the chambers and should not be treated as replicates.

    Associated R script file for pump cycles of respirations chambers Associated respiration chamber data to determine the times when respiration chamber pumps delivered treatment water to chambers. Determined from Aquation log files (see associated files). Use the chamber cut times to determine net production rates. Note: Users need to avoid the times when the respiration chambers are delivering water as this will give incorrect results. The headers that get used in the attached/associated R file are start regression and end regression. The remaining headers are not used unless called for in the associated R script. The last columns of these datasets (intercept, ElapsedTimeMincoef) are determined from the linear regressions described below.
    To determine the rate of change of net production, coefficients of the regression of oxygen consumption in discrete 180 minute data blocks were determined. R squared values for fitted regressions of these coefficients were consistently high (greater than 0.9). We make two assumptions with calculation of net production rates: the first is that heterotrophic community members do not change their metabolism under OA; and the second is that the heterotrophic communities are similar between treatments.

    Combined dataset pH, temperature, oxygen, salinity, velocity for experiment This data is rapid light curve data generated from a Shutter PAM fluorimeter. There are eight steps in each rapid light curve. Note: The software component of the Shutter PAM fluorimeter for sensor 44 appeared to be damaged and would not cycle through the PAR cycles. Therefore the rapid light curves and recovery curves should only be used for the control chambers (sensor ID43).
    The headers are PAR: Photoactive radiation relETR: F0/Fm x PAR Notes: Stage/step of light curve Treatment: Acidified or control The associated light treatments in each stage. Each actinic light intensity is held for 10 seconds, then a saturating pulse is taken (see PAM methods).
    After 10.0 sec at 0.5% = 1 umols PAR After 10.0 sec at 0.7% = 1 umols PAR After 10.0 sec at 1.1% = 0.96 umols PAR After 10.0 sec at 1.6% = 4.32 umols PAR After 10.0 sec at 2.4% = 4.32 umols PAR After 10.0 sec at 3.6% = 8.31 umols PAR After 10.0 sec at 5.3% =15.78 umols PAR After 10.0 sec at 8.0% = 25.75 umols PAR This dataset appears to be missing data, note D5 rows potentially not useable information See the word document in the download file for more information.

  9. T

    Excel files containing data for Figures

    • dataverse.tdl.org
    xls
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parrish Brady; Parrish Brady (2020). Excel files containing data for Figures [Dataset]. http://doi.org/10.18738/T8/EGV2TV
    Explore at:
    xls(22016), xls(71680), xls(9728), xls(13824), xls(529920), xls(339968), xls(26112), xls(17920), xls(67584)Available download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    Texas Data Repository
    Authors
    Parrish Brady; Parrish Brady
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data organization for the figures in the document: Figure 3A LineOutWithSun_SSAzi_135to225_green_Correct_ROI5_INFO.xls Figure 3b LineOutWithSun_SSAzi_m45to45_green_Correct_ROI5_INFO.xls Figure 4 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Sim_Correct_ROI5_INFO.xls Figure 5a LineOut_Camera_Elevation_SqAzi_m180to0_green_Sim_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls Figure 5b LineOut_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_0to180_green_Sim_Correct_ROI5_INFO.xls Figure 6a LineOutColor_SqAzi_m180to0_CP_20to50_Correct_ROI5_INFO.xls Figure 6b LineOutROI_SqAzi_m180to0_CP_20to50_green_Correct_INFO.xls Figure 7 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls

  10. m

    Global Burden of Disease analysis dataset of noncommunicable disease...

    • data.mendeley.com
    Updated Apr 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Cundiff (2023). Global Burden of Disease analysis dataset of noncommunicable disease outcomes, risk factors, and SAS codes [Dataset]. http://doi.org/10.17632/g6b39zxck4.10
    Explore at:
    Dataset updated
    Apr 6, 2023
    Authors
    David Cundiff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.

    The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.

    These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis. The data include the following: 1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc). 2. A text file to import the analysis database into SAS 3. The SAS code to format the analysis database to be used for analytics 4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6 5. SAS code for deriving the multiple regression formula in Table 4. 6. SAS code for deriving the multiple regression formula in Table 5 7. SAS code for deriving the multiple regression formula in Supplementary Table 7
    8. SAS code for deriving the multiple regression formula in Supplementary Table 8 9. The Excel files that accompanied the above SAS code to produce the tables

    For questions, please email davidkcundiff@gmail.com. Thanks.

  11. Z

    Dairy Supply Chain Sales Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christos Chaschatzis (2024). Dairy Supply Chain Sales Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7853252
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Christos Chaschatzis
    Vasileios Argyriou
    Athanasios Liatifis
    Konstantinos Georgakidis
    Ilias Siniosoglou
    Dimitrios Pliatsios
    Thomas Lagkas
    Dimitris Iatropoulos
    Panagiotis Sarigiannidis
    Anna Triantafyllou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    1. Citation

    Please cite the following papers when using this dataset:

    I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    1. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned the previous year

    %

    points_of_distribution

    The amount of sales representatives through which the product was sold to the market for this year

    previous_year_points_of_distribution

    The amount of sales representatives through which the product was sold to the market for the same day for the previous year

    Table 1 – Dataset Feature Description

    1. Structure and Format

    4.1 Dataset Structure

    The provided dataset has the following structure:

    Where:

    Name

    Type

    Property

    Readme.docx

    Report

    A File that contains the documentation of the Dataset.

    product X

    Folder

    A folder containing the data of a product X.

    product X YYYY.xlsx

    Data file

    An excel file containing the sales data of product X for year YYYY.

    Table 2 - Dataset File Description

    1. Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).

    References

    [1] MEVGAL is a Greek dairy production company

  12. b

    Data from: Coarse datasets for the 2002-2010 Tsimane' Amazonian Panel...

    • scholarworks.brandeis.edu
    docx, pdf, xls
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ricardo Godoy; William R. Leonard; Victoria Reyes-Garcia; Tomas Huanca (2022). Coarse datasets for the 2002-2010 Tsimane' Amazonian Panel Study(TAPS) - Introduction and authorization [Dataset]. https://scholarworks.brandeis.edu/esploro/outputs/dataset/Coarse-datasets-for-the-2002-2010-Tsimane/9924097301801921
    Explore at:
    xls(1472000 bytes), pdf(140365 bytes), docx(32618 bytes)Available download formats
    Dataset updated
    Mar 15, 2022
    Authors
    Ricardo Godoy; William R. Leonard; Victoria Reyes-Garcia; Tomas Huanca
    Time period covered
    Mar 2022
    Measurement technique
    <p>See Chapter 4 of "Too little, too late" for general methods, and different chapters for methods on different topics</p>
    Description

    Introduction. This document provides an overview of an archive composed of four sections.

    [1] An introduction (this document) which describes the scope of the project

    [2] Yearly folder, from 2002 until 2010, of the coarse Microsoft Access datasets + the surveys used to collect information for each year. The word coarse does not mean the information in the Microsoft Access dataset was not corrected for mistakes; it was, but some mistakes and inconsistencies remain, such as with data on age or education. Furthermore, the coarse dataset provides disaggregated information for selected topics, which appear in summary statistics in the clean dataset. For example, in the coarse dataset one can find the different illnesses afflicting a person during the past 14 days whereas in the clean dataset only the total number of illnesses appears.

    [3] A letter from the Gran Consejo Tsimane’ authorizing the public use of de-identified data collected in our studies among Tsimane’.

    [4] A Microsoft Excel document with the unique identification number for each person in the panel study.


    Background. During 2002-2010, a team of international researchers, surveyors, and translators gathered longitudinal (panel) data on the demography, economy, social relations, health, nutritional status, local ecological knowledge, and emotions of about 1400 native Amazonians known as Tsimane’ who lived in thirteen villages near and far from towns in the department of Beni in the Bolivian Amazon. A report titled “Too little, too late” summarizes selected findings from the study and is available to the public at the electronic library of Brandeis University:

    https://scholarworks.brandeis.edu/permalink/01BRAND_INST/1bo2f6t/alma9923926194001921


    A copy of the clean, merged, and appended Stata (V17) dataset is available to the public at the following two web addresses:

    [a] Brandeis University:

    https://scholarworks.brandeis.edu/permalink/01BRAND_INST/1bo2f6t/alma9923926193901921

    [b] Inter-university Consortium for Political and Social Research (ICPSR), University of Michigan (only available to users affiliated with institutions belonging to ICPSR)

    http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37671/utilization

    Chapter 4 of the report “Too little, too late” mentioned above describes the motivation and history of the study, the difference between the coarse and clean datasets, and topics which can be examined only with coarse data.


    Aims. The aims of this archive are to:

    · Make available in Microsoft Access the coarse de-identified dataset [1] for each of the seven yearly surveys (2004-2010) and [2] one Access data based on quarterly surveys done during 2002 and 2003. Together, these two datasets form one longitudinal dataset of individuals, households, and villages.

    · Provide guidance on how to link files within and across years, and

    · Make available a Microsoft Excel file with a unique identification number to link individuals across years

    The datasets in the archive.

    · Eight Microsoft Access datasets with data on a wide range of variables. Except for the Access file for 2002-2003, all the other information in each of the other Access files refers to one year. Within any Access dataset, users will find two types of files:

    o Thematic files. The name of a thematic file contains the prefix tbl (e.g., 29_tbl_Demography or tbl_29_Demography). The file name (sometimes in Spanish, sometimes in English) indicates the content of the file. For example, in the Access dataset for one year, the micro file tbl_30_Ventas has all the information on sales for that year. Within each micro file, columns contain information on a variable and the name of the column indicates the content of the variable. For instance, the column heading item in the Sales file would indicate the type of good sold. The exac…

  13. T

    Excel files containing the data for the paper titled: "Diffuse blue vs....

    • dataverse.tdl.org
    xls, xlsx
    Updated Aug 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parrish Brady; Parrish Brady (2020). Excel files containing the data for the paper titled: "Diffuse blue vs. structural silver—comparing alternative strategies for pelagic background matching between two coral reef fishes" [Dataset]. http://doi.org/10.18738/T8/ULQZPP
    Explore at:
    xls(56832), xls(69632), xls(53760), xls(30208), xls(80384), xlsx(14240), xlsx(1534870), xls(93696)Available download formats
    Dataset updated
    Aug 5, 2020
    Dataset provided by
    Texas Data Repository
    Authors
    Parrish Brady; Parrish Brady
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Excel files containing the data for the paper titled: "Diffuse blue vs. structural silver—comparing alternative strategies for pelagic background matching between two coral reef fishes." See Data for creole wrasse vs bar jack.docx for more details

  14. Input-Output Data Sets Used in the Evaluation of the Two-Layer Soil Moisture...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). Input-Output Data Sets Used in the Evaluation of the Two-Layer Soil Moisture and Flux Model [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/input-output-data-sets-used-in-the-evaluation-of-the-two-layer-soil-moisture-and-flux-mode
    Explore at:
    Dataset updated
    Mar 3, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The Excel file contains the model input-out data sets that where used to evaluate the two-layer soil moisture and flux dynamics model. The model is original and was developed by Dr. Hantush by integrating the well-known Richards equation over the root layer and the lower vadose zone. The input-output data are used for: 1) the numerical scheme verification by comparison against HYDRUS model as a benchmark; 2) model validation by comparison against real site data; and 3) for the estimation of model predictive uncertainty and sources of modeling errors. This dataset is associated with the following publication: He, J., M.M. Hantush, L. Kalin, and S. Isik. Two-Layer numerical model of soil moisture dynamics: Model assessment and Bayesian uncertainty estimation. JOURNAL OF HYDROLOGY. Elsevier Science Ltd, New York, NY, USA, 613 part A: 128327, (2022).

  15. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  16. s

    Data from: Fostering cultures of open qualitative research: Dataset 1 –...

    • orda.shef.ac.uk
    docx
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard; Itzel San Roman Pineda (2025). Fostering cultures of open qualitative research: Dataset 1 – Survey Responses [Dataset]. http://doi.org/10.15131/shef.data.23567250.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard; Itzel San Roman Pineda
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.

    The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:

    · Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book

    The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.

    The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.

    ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.

    This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.

    The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.

    The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.

    The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.

    The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.

    A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):

    · I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.

    The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk

    Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science

  17. Z

    Dataset: A Systematic Literature Review on the topic of High-value datasets

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasija Nikiforova; Nina Rizun; Magdalena Ciesielska; Charalampos Alexopoulos; Andrea Miletič (2023). Dataset: A Systematic Literature Review on the topic of High-value datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7944424
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    Gdańsk University of Technology
    University of Zagreb
    University of the Aegean
    University of Tartu
    Authors
    Anastasija Nikiforova; Nina Rizun; Magdalena Ciesielska; Charalampos Alexopoulos; Andrea Miletič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.

    The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.

    Methodology

    To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).

    These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.

    To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.

    Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.

    Description of the data in this data set

    Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies

    The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information

    Descriptive information
    1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet 2) Complete reference - the complete source information to refer to the study 3) Year of publication - the year in which the study was published 4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter} 5) DOI / Website- a link to the website where the study can be found 6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science 7) Availability in OA - availability of an article in the Open Access 8) Keywords - keywords of the paper as indicated by the authors 9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}

    Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?

    Quality- and relevance- related information
    17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)? 18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))

    HVD determination-related information
    19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term? 20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output") 21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description) 22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles? 23) Data - what data do HVD cover? 24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)

    Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx

    Licenses or restrictions CC-BY

    For more info, see README.txt

  18. c

    Standardization in Quantitative Imaging: A Multi-center Comparison of...

    • cancerimagingarchive.net
    • stage.cancerimagingarchive.net
    n/a, nifti and zip +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive, Standardization in Quantitative Imaging: A Multi-center Comparison of Radiomic Feature Values [Dataset]. http://doi.org/10.7937/tcia.2020.9era-gg29
    Explore at:
    xlsx, n/a, nifti and zipAvailable download formats
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Jun 9, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    This dataset was used by the NCI's Quantitative Imaging Network (QIN) PET-CT Subgroup for their project titled: Multi-center Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Datasets. The purpose of this project was to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included common image data sets and standardized feature definitions. The image datasets (and Volumes of Interest – VOIs) provided here are the same ones used in that project and reported in the publication listed below (ISSN 2379-1381 https://doi.org/10.18383/j.tom.2019.00031). In addition, we have provided detailed information about the software packages used (Table 1 in that publication) as well as the individual feature value results for each image dataset and each software package that was used to create the summary tables (Tables 2, 3 and 4) in that publication. For that project, nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture and that are described in detail in the International Biomarker Standardisation Initiative (IBSI, https://arxiv.org/abs/1612.07003 and publication (Zwanenburg A. Vallières M, et al, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020 May;295(2):328-338. doi: https://doi.org/10.1148/radiol.2020191145). There are three datasets provided – two image datasets and one dataset consisting of four excel spreadsheets containing feature values.

    1. The first image dataset is a set of three Digital Reference Objects (DROs) used in the project, which are: (a) a sphere with uniform intensity, (b) a sphere with intensity variation (c) a nonspherical (but mathematically defined) object with uniform intensity. These DROs were created by the team at Stanford University and are described in (Jaggi A, Mattonen SA, McNitt-Gray M, Napel S. Stanford DRO Toolkit: digital reference objects for standardization of radiomic features. Tomography. 2019;6:–.) and are a subset of the DROs described in DRO Toolkit. Each DRO is represented in both DICOM and NIfTI format and the VOI was provided in each format as well (DICOM Segmentation Object (DSO) as well as NIfTI segmentation boundary).
    2. The second image dataset is the set of 10 patient CT scans, originating from the LIDC-IDRI dataset, that were used in the QIN multi-site collection of Lung CT data with Nodule Segmentations project ( https://doi.org/10.7937/K9/TCIA.2015.1BUVFJR7 ). In that QIN study, a single lesion from each case was identified for analysis and then nine VOIs were generated using three repeat runs of three segmentation algorithms (one from each of three academic institutions) on each lesion. To eliminate one source of variability in our project, only one of the VOIs previously created for each lesion was identified and all sites used that same VOI definition. The specific VOI chosen for each lesion was the first run of the first algorithm (algorithm 1, run 1). DICOM images were provided for each dataset and the VOI was provided in both DICOM Segmentation Object (DSO) and NIfTI segmentation formats.
    3. The third dataset is a collection of four excel spreadsheets, each of which contains detailed information corresponding to each of the four tables in the publication. For example, the raw feature values and the summary tables for Tables 2,3 and 4 reported in the publication cited (https://doi.org/10.18383/j.tom.2019.00031). These tables are:
    Software Package details : This table contains detailed information about the software packages used in the study (and listed in Table 1 in the publication) including version number and any parameters specified in the calculation of the features reported. DRO results : This contains the original feature values obtained for each software package for each DRO as well as the table summarizing results across software packages (Table 2 in the publication) . Patient Dataset results: This contains the original feature values for each software package for each patient dataset (1 lesion per case) as well as the table summarizing results across software packages and patient datasets (Table 3 in the publication). Harmonized GLCM Entropy Results : This contains the values for the “Harmonized” GLCM Entropy feature for each patient dataset and each software package as well as the summary across software packages (Table 4 in the publication).

  19. m

    Global data set on micro- and mesoplastic loads in marine sediments

    • data.mendeley.com
    Updated Oct 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cecilia Martin (2021). Global data set on micro- and mesoplastic loads in marine sediments [Dataset]. http://doi.org/10.17632/6k38hr5zhw.1
    Explore at:
    Dataset updated
    Oct 18, 2021
    Authors
    Cecilia Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We provide two files, an excel file named: "Global data set on micro- and mesoplastic loads in marine sediments" and a PDF file named "Metadata-Dataset". The excel file provides the dataset and the list of references from which the data were extracted or derived. The PDF file provides a detailed description of the dataset and of the methods used to extract and derive data.

  20. s

    Analysis of CBCS publications for Open Access, data availability statements...

    • figshare.scilifelab.se
    • researchdata.se
    txt
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Theresa Kieselbach (2025). Analysis of CBCS publications for Open Access, data availability statements and persistent identifiers for supplementary data [Dataset]. http://doi.org/10.17044/scilifelab.23641749.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    Umeå University
    Authors
    Theresa Kieselbach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General descriptionThis dataset contains some markers of Open Science in the publications of the Chemical Biology Consortium Sweden (CBCS) between 2010 and July 2023. The sample of CBCS publications during this period consists of 188 articles. Every publication was visited manually at its DOI URL to answer the following questions.1. Is the research article an Open Access publication?2. Does the research article have a Creative Common license or a similar license?3. Does the research article contain a data availability statement?4. Did the authors submit data of their study to a repository such as EMBL, Genbank, Protein Data Bank PDB, Cambridge Crystallographic Data Centre CCDC, Dryad or a similar repository?5. Does the research article contain supplementary data?6. Do the supplementary data have a persistent identifier that makes them citable as a defined research output?VariablesThe data were compiled in a Microsoft Excel 365 document that includes the following variables.1. DOI URL of research article2. Year of publication3. Research article published with Open Access4. License for research article5. Data availability statement in article6. Supplementary data added to article7. Persistent identifier for supplementary data8. Authors submitted data to NCBI or EMBL or PDB or Dryad or CCDCVisualizationParts of the data were visualized in two figures as bar diagrams using Microsoft Excel 365. The first figure displays the number of publications during a year, the number of publications that is published with open access and the number of publications that contain a data availability statement (Figure 1). The second figure shows the number of publication sper year and how many publications contain supplementary data. This figure also shows how many of the supplementary datasets have a persistent identifier (Figure 2).File formats and softwareThe file formats used in this dataset are:.csv (Text file).docx (Microsoft Word 365 file).jpg (JPEG image file).pdf/A (Portable Document Format for archiving).png (Portable Network Graphics image file).pptx (Microsoft Power Point 365 file).txt (Text file).xlsx (Microsoft Excel 365 file)All files can be opened with Microsoft Office 365 and work likely also with the older versions Office 2019 and 2016. MD5 checksumsHere is a list of all files of this dataset and of their MD5 checksums.1. Readme.txt (MD5: 795f171be340c13d78ba8608dafb3e76)2. Manifest.txt (MD5: 46787888019a87bb9d897effdf719b71)3. Materials_and_methods.docx (MD5: 0eedaebf5c88982896bd1e0fe57849c2),4. Materials_and_methods.pdf (MD5: d314bf2bdff866f827741d7a746f063b),5. Materials_and_methods.txt (MD5: 26e7319de89285fc5c1a503d0b01d08a),6. CBCS_publications_until_date_2023_07_05.xlsx (MD5: 532fec0bd177844ac0410b98de13ca7c),7. CBCS_publications_until_date_2023_07_05.csv (MD5: 2580410623f79959c488fdfefe8b4c7b),8. Data_from_CBCS_publications_until_date_2023_07_05_obtained_by_manual_collection.xlsx (MD5: 9c67dd84a6b56a45e1f50a28419930e5),9. Data_from_CBCS_publications_until_date_2023_07_05_obtained_by_manual_collection.csv (MD5: fb3ac69476bfc57a8adc734b4d48ea2b),10. Aggregated_data_from_CBCS_publications_until_2023_07_05.xlsx (MD5: 6b6cbf3b9617fa8960ff15834869f793),11. Aggregated_data_from_CBCS_publications_until_2023_07_05.csv (MD5: b2b8dd36ba86629ed455ae5ad2489d6e),12. Figure_1_CBCS_publications_until_2023_07_05_Open_Access_and_data_availablitiy_statement.xlsx (MD5: 9c0422cf1bbd63ac0709324cb128410e),13. Figure_1.pptx (MD5: 55a1d12b2a9a81dca4bb7f333002f7fe),14. Image_of_figure_1.jpg (MD5: 5179f69297fbbf2eaaf7b641784617d7),15. Image_of_figure_1.png (MD5: 8ec94efc07417d69115200529b359698),16. Figure_2_CBCS_publications_until_2023_07_05_supplementary_data_and_PID_for_supplementary_data.xlsx (MD5: f5f0d6e4218e390169c7409870227a0a),17. Figure_2.pptx (MD5: 0fd4c622dc0474549df88cf37d0e9d72),18. Image_of_figure_2.jpg (MD5: c6c68b63b7320597b239316a1c15e00d),19. Image_of_figure_2.png (MD5: 24413cc7d292f468bec0ac60cbaa7809)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yaacov Petscher (2023). Statistical Comparison of Two ROC Curves [Dataset]. http://doi.org/10.6084/m9.figshare.860448.v1

Statistical Comparison of Two ROC Curves

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
figshare
Authors
Yaacov Petscher
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.

Search
Clear search
Close search
Google apps
Main menu