72 datasets found
  1. Pandas Practice Dataset

    • kaggle.com
    zip
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrityunjay Pathak (2023). Pandas Practice Dataset [Dataset]. https://www.kaggle.com/datasets/themrityunjaypathak/pandas-practice-dataset/discussion
    Explore at:
    zip(493 bytes)Available download formats
    Dataset updated
    Jan 27, 2023
    Authors
    Mrityunjay Pathak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    What is Pandas?

    Pandas is a Python library used for working with data sets.

    It has functions for analyzing, cleaning, exploring, and manipulating data.

    The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

    Why Use Pandas?

    Pandas allows us to analyze big data and make conclusions based on statistical theories.

    Pandas can clean messy data sets, and make them readable and relevant.

    Relevant data is very important in data science.

    What Can Pandas Do?

    Pandas gives you answers about the data. Like:

    Is there a correlation between two or more columns?

    What is average value?

    Max value?

    Min value?

  2. u

    Surrogate flood model comparison - Datasets and python code

    • figshare.unimelb.edu.au
    bin
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niels Fraehr (2024). Surrogate flood model comparison - Datasets and python code [Dataset]. http://doi.org/10.26188/24312658.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    The University of Melbourne
    Authors
    Niels Fraehr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data used for publication in "Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models". Five surrogate models for flood inundation is to emulate the results of high-resolution hydrodynamic models. The surrogate models are compared based on accuracy and computational speed for three distinct case studies namely Carlisle (United Kingdom), Chowilla floodplain (Australia), and Burnett River (Australia).The dataset is structured in 5 files - "Carlisle", "Chowilla", "BurnettRV", "Comparison_results", and "Python_data". As a minimum to run the models the "Python_data" file and one of "Carlisle", "Chowilla", or "BurnettRV" are needed. We suggest to use the "Carlisle" case study for initial testing given its small size and small data requirement."Carlisle", "Chowilla", and "BurnettRV" files These files contain hydrodynamic modelling data for training and validation for each individual case study, as well as specific Python scripts for training and running the surrogate models in each case study. There are only small differences between each folder, depending on the hydrodynamic model trying to emulate and input boundary conditions (input features).Each case study file has the following folders:Geometry_data: DEM files, .npz files containing of the high-fidelity models grid (XYZ-coordinates) and areas (Same data is available for the low-fidelity model used in the LSG model), .shp files indicating location of boundaries and main flow paths (mainly used in the LSTM-SRR model). XXX_modeldata: Folder to storage trained model data for each XXX surrogate model. For example, GP_EOF_modeldata contains files used to store the trainined GP-EOF model.HD_model_data: High-fidelity (And low-fidelity) simulation results for all flood events of that case study. This folder also contains all boundary input conditions.HF_EOF_analysis: Storing of data used in the EOF analysis. EOF analysis is applied for the LSG, GP-EOF, and LSTM-EOF surrogate models. Results_data: Storing results of running the evaluation of the surrogate models.Train_test_split_data: The train-test-validation data split is the same for all surrogate models. The specific split for each cross-validation fold is stored in this folder.And Python files:YYY_event_summary, YYY_Extrap_event_summary: Files containing overview of all events, and which events are connected between the low- and high-fidelity models for each YYY case study.EOF_analysis_HFdata_preprocessing, EOF_analysis_HFdata: Preprocessing before EOF analysis and the EOF analysis of the high-fidelity data. This is used for the LSG, GP-EOF, and LSTM-EOF surrogate models.Evaluation, Evaluation_extrap: Scripts for evaluating the surrogate model for that case study and saving the results for each cross-validation fold.train_test_split: Script for splitting the flood datasets for each cross-validation fold, so all surrogate models train on the same data.XXX_training: Script for training each XXX surrogate model.XXX_preprocessing: Some surrogate models might rely on some information that needs to be generated before training. This is performed using these scripts."Comparison_results" fileFiles used for comparing surrogate models and generate the figures in the paper "Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models". Figures are also included. "Python_data" fileFolder containing Python script with utility functions for setting up, training, and running the surrogate models, as well as for evaluating the surrogate models. This folder also contains a python_environment.yml file with all Python package versions and dependencies.This folder also contains two sub-folders:LSG_mods_and_func: Python scripts for using the LSG model. Some of these scripts are also utilized when working with the other surrogate models. SRR_method_master_Zhou2021: Scripts obtained from https://github.com/yuerongz/SRR-method. Small edits have for speed and use in this study.

  3. Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  4. Characteristics that Favor Freq-Itemset Algorithms

    • kaggle.com
    Updated Oct 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeff Heaton (2020). Characteristics that Favor Freq-Itemset Algorithms [Dataset]. https://www.kaggle.com/jeffheaton/characteristics-that-favor-freqitemset-algorithms
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2020
    Dataset provided by
    Kaggle
    Authors
    Jeff Heaton
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Description

    Source Paper

    This dataset is from my paper:

    Heaton, J. (2016, March). Comparing dataset characteristics that favor the Apriori, Eclat or FP-Growth frequent itemset mining algorithms. In SoutheastCon 2016 (pp. 1-7). IEEE.

    Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these three algorithms, by evaluating the scalability of each algorithm as the dataset size increases. While scalability as data size increases is important, previous papers have not examined the performance impact of similarly sized datasets that contain different itemset characteristics. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm.

    Files Generated

    We generated two datasets that allow us to adjust two independent variables to create a total of 20 different transaction sets. We also provide the Python script that generated this data in a notebook. This Python script accepts the following parameters to specify the transaction set to produce:

    • Transaction/Basket count: 5 million default
    • Number of items: 50,000 default
    • Number of frequent sets: 100 default
    • Max transaction/basket size: independent variable, 5-100 range
    • Frequent set density: independent variable, 0.1 to 0.8 range

    Files contained in this dataset reside in two folders: * freq-items-pct - We vary the frequent set density in these transaction sets. * freq-items-tsz - We change the maximum number of items per basket in these transaction sets.

    While you can vary basket count, the number of frequent sets, and the number of items in the script, they will remain fixed at this paper's above values. We determined that the basket count only had a small positive correlation.

    File Content

    The following listing shows the type of data generated for this research. Here we present an example file created with ten baskets out of 100 items, two frequent itemsets, a maximum basket size of 10, and a density of 0.5.

    I36 I94 
    I71 I13 I91 I89 I34
    F6 F5 F3 F4 
    I86 
    I39 I16 I49 I62 I31 I54 I91 
    I22 I31 
    I70 I85 I78 I63 
    F4 F3 F1 F6 F0 I69 I44 
    I82 I50 I9 I31 I57 I20 
    F4 F3 F1 F6 F0 I87
    

    As you can see from the above file, the items are either prefixed with “I” or “F.” The “F” prefix indicates that this line contains one of the frequent itemsets. Items with the “I” prefix are not part of an intentional frequent itemset. Of course, “I” prefixed items might form frequent itemsets, as they are uniformly sampled from the number of things to fill out nonfrequent itemsets. Each basket will have a random size chosen, up to the maximum basket size. The frequent itsemset density specifies the probability of each line containing one of the intentional frequent itemsets. Because we used a density of 0.5, approximately half of the lines above include one of the two intentional frequent itemsets. A frequent itemset line may have additional random “I” prefixed items added to cause the line to reach the randomly chosen length for that line. If the frequent itemset selected does cause the generated sequence to exceed its randomly chosen length, no truncation will occur. The intentional frequent itemsets are all determined to be less than or equal to the maximum basket size.

  5. f

    Comparison of the Predictive Performance and Interpretability of Random...

    • figshare.com
    • acs.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard L. Marchese Robinson; Anna Palczewska; Jan Palczewski; Nathan Kidley (2023). Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets [Dataset]. http://doi.org/10.1021/acs.jcim.6b00753.s005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    ACS Publications
    Authors
    Richard L. Marchese Robinson; Anna Palczewska; Jan Palczewski; Nathan Kidley
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The ability to interpret the predictions made by quantitative structure–activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package (https://r-forge.r-project.org/R/?group_id=1725) for the R statistical programming language and the Python program HeatMapWrapper [https://doi.org/10.5281/zenodo.495163] for heat map generation.

  6. H

    Observational Large Ensemble

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jul 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karen McKinnon (2017). Observational Large Ensemble [Dataset]. http://doi.org/10.7910/DVN/7CPJPQ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 19, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Karen McKinnon
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    These python datasets contain the results presented in the above paper with regard to the variability in trends over North America during DJF due to sampling of internal variability. Two types of files are available. The netcdf file contains samples from the synthetic ensemble of DJF temperatures over North America from 1966-2015. The synthetic ensemble is centered on the observed trend. Recentering the ensemble on the ensemble mean trend from the NCAR CESM1 LENS will create the Observational Large Ensemble, in which each sample can be viewed as a temperature history that could have occurred given various samplings of internal variability. The synthetic ensemble can also be recentered on any other estimate of the forced response to climate change. While the dataset is both land and ocean, it has only been validated over land. The second type of file, presented as python datasets (.npz) contains the results presented in the McKinnon et al (2017) reference. In particular, it contains the 50-year trends for both the observations and the NCAR CESM1 Large Ensemble that actually occurred, and could have occurred given a different sampling of internal variability. The bootstrap results can be compared to the true spread across the NCAR CESM1 Large Ensemble for validation, as was done in the manuscript. Each of these files is named based on the observational dataset, variable, time span, and spatial domain. They contain: BETA: the empirical OLS trend BOOTSAMPLES: the OLS trends estimated after bootstrapping INTERANNUALVAR: the interannual variance in the data after modeling and removing the forced trend empiricalAR1: the empirical AR(1) coefficient estimated from the residuals around the forced trend The first dimension of all variables is 42, which is a stack of the ensemble mean behavior (index 0), the forty members of the NCAR Large Ensemble (indices 1:40), and the observations (last index, -1). The second dimension is spatial. See latlon.npz for the latitude and longitude vectors. The third dimension, when present, is the bootstrap samples. We have saved 1000 bootstrap samples.

  7. Z

    Supplementary materials for the paper "Hyperstyle : A Tool for Assessing the...

    • nde-dev.biothings.io
    • data.niaid.nih.gov
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasiia Birillo (2021). Supplementary materials for the paper "Hyperstyle : A Tool for Assessing the Code Quality of Solutions to Programming Assignments" [Dataset]. https://nde-dev.biothings.io/resources?id=zenodo_5749824
    Explore at:
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    Artyom Burylov
    Vitalii Selishchev
    Ilya Vlasov
    Elena Tikhomirova
    Artyom Goncharov
    Anastasiia Birillo
    Timofey Bryksin
    Nikolay Vyahhi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The set of the artefacts for a SIGCSE-2022 paper. The SIGCSE_atrifacts.pdf document contains detailed information about each folder, also this document has supplementary materials.

    Folders: - comparison. This folder contains a public dataset in Java for comparison of our code assessment tool with the Tutor tool. - dynamics. This folder contains two datasets of Python and Java public submissions from Stepik and Hyperskill platforms to check the influence of our tool on students code style. - plots. This folder contains examples of charts that were plotted to analyze the tool thresholds.

    Supplementary materials: - Examples of code quality issues categories. This section in the document contains code snippets with examples of issues for each code quality issue category for Python and Java. - List of available subcategories in the tool. - Tables with penalty coefficients for detection of recurring errors algorithm - Examples of charts that were plotted to analyze the tool thresholds. This section is the same with the plots folder.

  8. Comparison of sentiment libraries in Python

    • kaggle.com
    zip
    Updated Jul 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristof Boghe (2020). Comparison of sentiment libraries in Python [Dataset]. https://kaggle.com/kboghe/comparison-of-sentiment-libraries-in-python
    Explore at:
    zip(2636106 bytes)Available download formats
    Dataset updated
    Jul 24, 2020
    Authors
    Kristof Boghe
    Description

    Context

    • These datasets were produced as part of a little research project I undertook for a blog post on sentiment analysis, which you can access here: https://bit.ly/32PmWdf

    • I uploaded a more extensive dataset of presidential speeches on Kaggle here: https://bit.ly/2E7Fmvw

    Content

    The datasets were created to compare sentiment scores across two text types (tweets versus political speeches) and three sentiment models (Pattern, Vader and the polarity model incorporated in Stanford CoreNLP).

    ***- sentiment_speeches_Kaggle.csv: *** The dataset contains sentiment codings (Pattern,Vader & Stanford model) for al inauguration and state of the union speeches of US presidents since 1917 on sentence level.

    -sentiment_tweets°Kaggle.csv:

    The dataset contains sentiment codings (Pattern,Vader & Stanford model) for a sample of around 11500 tweets of US politicians (Donald J. Trump (Rep.), Rand Paul (Rep.),Ted Cruz (Rep.), Alexandria Ocasio-Cortez (Dem.), Nancy Pelosi (Dem.) and Bernie Sanders (Dem.)). The sentiment polarity has been computed on tweet-level, not sentence-level. I simply scraped the last 2000-ish tweets of each timeline using the GetOldTweets module for Python. You can read more about the data collection process in the aforementioned blog post (https://bit.ly/32PmWdf).

    Distribution of sentiment scores

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2342187%2Fac6b4a3ca5a33d654f7fb2c755165634%2Fdistribution%20sentiment%20comparison.png?generation=1595583728484033&alt=media" alt="">

    ** Some example analyses **

    • The fact that the analyses of presidential speeches has been performed on sentence-level makes an analysis of polarity-development within the same text extremely easy. For example, one can easily plot the polarity scores across a single inaugural speech, like I did here for the inaugural addressees since JFK: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2342187%2Fb7ff60d3cbc674632f301564bd80636f%2Fsentiment_inauguration.png?generation=1595583860959296&alt=media" alt="">

    • One could also compare how these models code a particular tweet or speech and index the amount of (dis)agreement betwene the different models: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2342187%2Fb207991f30deb2b14c0ef048f0ebdad8%2Fagreement_vs_disagreement_libraries.png?generation=1595583966382283&alt=media" alt="">

    You can read more about the data collection, wrangling and analysis process in the aforementioned blog post.

  9. Stage Two Experiments - Datasets

    • figshare.com
    bin
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luke Yerbury (2025). Stage Two Experiments - Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.27427629.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Luke Yerbury
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data used in the various stage two experiments in: "Comparing Clustering Approaches for Smart Meter Time Series: Investigating the Influence of Dataset Properties on Performance". This includes datasets with varied characteristics.All datasets are stored in a dict with tuples of (time series array, class labels). To access data in python:import picklefilename = "dataset.txt"with open(filename, 'rb') as f: data = pickle.load(f)

  10. E

    A Replication Dataset for Fundamental Frequency Estimation

    • live.european-language-grid.eu
    • data.niaid.nih.gov
    json
    Updated Oct 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). A Replication Dataset for Fundamental Frequency Estimation [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7808
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 19, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data

    ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:

    CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]

    noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]

    synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]

    noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.

    Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.

    The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:

    John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.

  11. Dataset metadata of known Dataverse installations

    • search.datacite.org
    • dataverse.harvard.edu
    • +1more
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julian Gautier (2019). Dataset metadata of known Dataverse installations [Dataset]. http://doi.org/10.7910/dvn/dcdkzq
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Harvard Dataverse
    Authors
    Julian Gautier
    Description

    This dataset contains the metadata of the datasets published in 77 Dataverse installations, information about each installation's metadata blocks, and the list of standard licenses that dataset depositors can apply to the datasets they publish in the 36 installations running more recent versions of the Dataverse software. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation on October 2 and October 3, 2022 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another named "apikey" listing my accounts' API tokens. The Python script expects and uses the API tokens in this CSV file to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation).csv │ ├── basic.csv │ ├── contributor(citation).csv │ ├── ... │ └── topic_classification(citation).csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2022.10.02_17.11.19.zip │ ├── dataset_pids_Abacus_2022.10.02_17.11.19.csv │ ├── Dataverse_JSON_metadata_2022.10.02_17.11.19 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0.json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2022.10.02_17.26.19.zip │ ├── ADA_Dataverse_2022.10.02_17.26.57.zip │ ├── Arca_Dados_2022.10.02_17.44.35.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2022.10.02_22.59.36.zip └── dataset_pids_from_most_known_dataverse_installations.csv └── licenses_used_by_dataverse_installations.csv └── metadatablocks_from_most_known_dataverse_installations.csv This dataset contains two directories and three CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 18 CSV files that contain the values from common metadata fields of all 77 Dataverse installations. For example, author(citation)_2022.10.02-2022.10.03.csv contains the "Author" metadata for all published, non-deaccessioned, versions of all datasets in the 77 installations, where there's a row for each author name, affiliation, identifier type and identifier. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 77 zipped files, one for each of the 77 Dataverse installations whose dataset metadata I was able to download using Dataverse APIs. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate whether or not the Python script was able to download the Dataverse JSON metadata for each dataset. For Dataverse installations using Dataverse software versions whose Search APIs include each dataset's owning Dataverse collection name and alias, the CSV files also include which Dataverse collection (within the installation) that dataset was published in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I saved them so that they can be used when extracting metadata from the Dataverse JSON files. The dataset_pids_from_most_known_dataverse_installations.csv file contains the dataset PIDs of all published datasets in the 77 Dataverse installations, with a column to indicate if the Python script was able to download the dataset's metadata. It's a union of all of the "dataset_pids_..." files in each of the 77 zip files. The licenses_used_by_dataverse_installations.csv file contains information about the licenses that a number of the installations let depositors choose when creating datasets. When I collected this data, 36 installations were running versions of the Dataverse software that allow depositors to choose a license or data use agreement from a dropdown menu in the dataset deposit form. For more information, see https://guides.dataverse.org/en/5.11.1/user/dataset-management.html#choosing-a-license. The metadatablocks_from_most_known_dataverse_installations.csv file contains the metadata block names, field names and child field names (if the field is a compound field) of the 77 Dataverse installations' metadata blocks. The metadatablocks_from_most_known_dataverse_installations.csv file is useful for comparing each installation's dataset metadata model (the metadata fields and the metadata blocks that each installation uses). The CSV file was created using a Python script at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_csv_file_with_metadata_block_fields_of_all_installations.py, which takes as inputs the directories and files created by the get_dataset_metadata_of_all_installations.py script. Known errors The metadata of two datasets from one of the known installations could not be downloaded because the datasets' pages and metadata could not be accessed with the Dataverse APIs. About metadata blocks Read about the Dataverse software's metadata blocks system at http://guides.dataverse.org/en/latest/admin/metadatacustomization.html

  12. Z

    DustNet - structured data and Python code to reproduce the model,...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nowak, T. E.; Augousti, Andy T.; Simmons, Benno I.; Siegert, Stefan (2024). DustNet - structured data and Python code to reproduce the model, statistical analysis and figures [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10631953
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    University of Exeter
    Kingston University
    Authors
    Nowak, T. E.; Augousti, Andy T.; Simmons, Benno I.; Siegert, Stefan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and Python code used for AOD prediction with DustNet model - a Machine Learning/AI based forecasting.

    Model input data and code

    Processed MODIS AOD data (from Aqua and Terra) and selected ERA5 variables* ready to reproduce the DustNet model results or for similar forecasting with Machine Learning. These long-term daily timeseries (2003-2022) are provided as n-dimensional NumPy arrays. The Python code to handle the data and run the DustNet model** is included as Jupyter Notebook ‘DustNet_model_code.ipynb’. A subfolder with normalised and split data into training/validation/testing sets is also provided with Python code for two additional ML based models** used for comparison (U-NET and Conv2D). Pre-trained models are also archived here as TensorFlow files.

    Model output data and code

    This dataset was constructed by running the ‘DustNet_model_code.ipynb’ (see above). It consists of 1095 days of forecased AOD data (2020-2022) by CAMS, DustNet model, naïve prediction (persistence) and gridded climatology. The ground truth raw AOD data form MODIS is provided for comparison and statystical analysis of predictions. It is intended for a quick reproduction of figures and statystical analysis presented in DustNet introducing paper.

    *datasets are NumPy arrays (v1.23) created in Python v3.8.18.

    **all ML models were created with Keras in Python v3.10.10.

  13. Z

    Auditory cortex single unit population activity during natural sound...

    • data.niaid.nih.gov
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pennington, Jacob; David, Stephen (2023). Auditory cortex single unit population activity during natural sound presentation -- dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7796573
    Explore at:
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Oregon Health & Science University
    Washington State University, Vancouver
    Authors
    Pennington, Jacob; David, Stephen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    High-density multi-channel neurophysiology data were collected from primary (A1) and secondary (PEG) fields of auditory cortex of passively listening ferrets during presentation of a large natural sound library. Single unit spikes were sorted using Kilosort. This dataset includes spike times for 849 A1 units and 398 PEG units. Stimulus waveforms were transformed to log-spaced spectrograms for analysis (18 channels, 10 ms time bins). Data set includes raw sound waveforms as well.

    The authors request that any publication using this data cite the following work: https://www.biorxiv.org/content/10.1101/2022.06.10.495698v2

    Data format/description

    Neural data are stored in two files. All recordings were performed during presentation of the same natural sound library.

    recordings/A1_NAT4_ozgf.fs100.ch18.tgz - data from 849 A1 single units and log spectrogram of stimuli aligned with spike times.

    recordings/PEG_NAT4_ozgf.fs100.ch18.tgz - data from 398 PEG single units and log spectrogram of stimuli aligned with spike times.

    wav.zip - raw wav files. Note: Only first 1-sec of each wav file was presented during experiments. Recordings have longer duration

    Example scripts

    Python scripts included with this dataset demonstrate how to load the neural data and perform a CNN model fit. Running the scripts requires the NEMS0 python library, which is available open source at https://github.com/lbhb/NEMS0.

    Quick install

    Create and activate a new conda environment:

    conda create -n NEMS0 python=3.7 conda activate NEMS0

    Download NEMS0:

    git clone https://github.com/lbhb/NEMS0

    Install NEMS0:

    pip install -e NEMS0

    Detailed instructions for installing NEMS0 are available in the Github repository (https://github.com/lbhb/NEMS0).

    Demo scripts

    Once NEMS0 is installed and the data are downloaded, move to the directory where the data and demo scripts are stored and run them in a NEMS0 environment.

    pop_cnn_load.py - Load the A1 data and compare predictions for two neurons (Fig 3) by two population models (stage 1 fit complete). Illustrates how to load the data using Python.

    pop_cnn_fit.py - Load a pre-fit A1 population model (stage 1) and complete stage 2 fit (refinement) for a single neuron. Illustrates use of NEMS0 for CNN model fitting.

    Funding

    Data collection, software development and processing were supported by funding from the NIH (R01DC014950, R01EB028155).

  14. d

    Data from: Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 -...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data [Dataset]. https://catalog.data.gov/dataset/variable-terrestrial-gps-telemetry-detection-rates-parts-1-7data
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    Studies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.

  15. Z

    Three Annotated Anomaly Detection Datasets for Line-Scan Algorithms

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garske, Samuel; Mao, Yiwei (2024). Three Annotated Anomaly Detection Datasets for Line-Scan Algorithms [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13370799
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    University of Sydney
    Authors
    Garske, Samuel; Mao, Yiwei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary

    This dataset contains two hyperspectral and one multispectral anomaly detection images, and their corresponding binary pixel masks. They were initially used for real-time anomaly detection in line-scanning, but they can be used for any anomaly detection task.

    They are in .npy file format (will add tiff or geotiff variants in the future), with the image datasets being in the order of (height, width, channels). The SNP dataset was collected using sentinelhub, and the Synthetic dataset was collected from AVIRIS. The Python code used to analyse these datasets can be found at: https://github.com/WiseGamgee/HyperAD

    How to Get Started

    All that is needed to load these datasets is Python (preferably 3.8+) and the NumPy package. Example code for loading the Beach Dataset if you put it in a folder called "data" with the python script is:

    import numpy as np

    Load image file

    hsi_array = np.load("data/beach_hsi.npy") n_pixels, n_lines, n_bands = hsi_array.shape print(f"This dataset has {n_pixels} pixels, {n_lines} lines, and {n_bands}.")

    Load image mask

    mask_array = np.load("data/beach_mask.npy") m_pixels, m_lines = mask_array.shape print(f"The corresponding anomaly mask is {m_pixels} pixels by {m_lines} lines.")

    Citing the Datasets

    If you use any of these datasets, please cite the following paper:

    @article{garske2024erx, title={ERX - a Fast Real-Time Anomaly Detection Algorithm for Hyperspectral Line-Scanning}, author={Garske, Samuel and Evans, Bradley and Artlett, Christopher and Wong, KC}, journal={arXiv preprint arXiv:2408.14947}, year={2024},}

    If you use the beach dataset please cite the following paper as well (original source):

    @article{mao2022openhsi, title={OpenHSI: A complete open-source hyperspectral imaging solution for everyone}, author={Mao, Yiwei and Betters, Christopher H and Evans, Bradley and Artlett, Christopher P and Leon-Saval, Sergio G and Garske, Samuel and Cairns, Iver H and Cocks, Terry and Winter, Robert and Dell, Timothy}, journal={Remote Sensing}, volume={14}, number={9}, pages={2244}, year={2022}, publisher={MDPI} }

  16. Z

    One Classifier Ignores a Feature

    • data.niaid.nih.gov
    Updated Apr 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maier, Karl (2022). One Classifier Ignores a Feature [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6502642
    Explore at:
    Dataset updated
    Apr 29, 2022
    Authors
    Maier, Karl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data sets are used in a controlled experiment, where two classifiers should be compared. train_a.csv and explain.csv are slices from the original data set. train_b.csv contains the same instances as in train_a.csv, but with feature x1 set to 0 to make it unusable to classifier B.

    The original data set was created and split using this Python code:

    from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression

    X, y = make_classification(n_samples=300, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, class_sep=0.75, random_state=0) X *= 100

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) lm = LogisticRegression() lm.fit(X_train, y_train) clf_a = lm

    clf_b = LogisticRegression() X2 = X.copy() X2[:, 0] = 0 X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y, test_size=0.5, random_state=0) clf_b.fit(X2_train, y2_train)

    X_explain = X_test y_explain = y_test

  17. Data from: ESAT: Environmental Source Apportionment Toolkit Python package

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). ESAT: Environmental Source Apportionment Toolkit Python package [Dataset]. https://catalog.data.gov/dataset/esat-environmental-source-apportionment-toolkit-python-package
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The Environmental Source Apportionment Toolkit (ESAT) is an open-source software package that provides API and CLI functionality to create source apportionment workflows specifically targeting environmental datasets. Source apportionment in environment science is the process of mathematically estimating the profiles and contributions of multiple sources in some dataset, and in the case of ESAT, while considering data uncertainty. There are many potential use cases for source apportionment in environmental science research, such as in the fields of air quality, water quality and potentially many others. The ESAT toolkit is written in Python and Rust, and uses common packages such as numpy, scipy and pandas for data processing. The source apportionment algorithms provided in ESAT include two variants of non-negative matrix factorization (NMF), both of which have been written in Rust and contained within the python package. A collection of data processing and visualization features are included for data and model analytics. The ESAT package includes a synthetic data generator and comparison tools to evaluate ESAT model outputs.

  18. Avokado gelişim

    • kaggle.com
    zip
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ABD�LKAD�R UY�UR (2025). Avokado gelişim [Dataset]. https://www.kaggle.com/datasets/abdlkadruyur/avokado-geliim
    Explore at:
    zip(5439 bytes)Available download formats
    Dataset updated
    May 22, 2025
    Authors
    ABD�LKAD�R UY�UR
    Description

    This dataset has been created for educational purposes, specifically to help learners practice SQL-like operations using Python’s pandas library. It is ideal for beginners who want to improve their data manipulation, querying, and transformation skills in a notebook environment such as Kaggle.

    The dataset simulates a simple personnel and department system. It includes two tables:

    personel: Contains employee data such as names, ages, salaries, and department IDs. departman: Contains department IDs and corresponding department names. Throughout this project, key SQL operations have been demonstrated with their pandas equivalents. These include:

    Basic commands like SELECT, INSERT, UPDATE, DELETE Table structure operations: ALTER, DROP, TRUNCATE, COPY Filtering and logical expressions: WHERE, AND, OR, IN, IS NULL, BETWEEN, LIKE Aggregations and sorting: COUNT(), ORDER BY, LIMIT, DISTINCT String functions: LOWER, TRIM, REPLACE, SPLIT, LENGTH Joins: INNER JOIN, LEFT JOIN Comparison operators: =, !=, <, > The goal is to provide a hands-on, interactive environment for practicing SQL logic using real Python code. This dataset does not represent real individuals or businesses — it is entirely fictional and meant for training, teaching, and experimentation purposes only.

  19. n

    PyTorch geometric datasets for morphVQ models

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oshane Thomas; Hongyu Shen; Ryan L. Rauum; William E. H. Harcourt-Smith; John D. Polk; Mark Hasegawa-Johnson (2022). PyTorch geometric datasets for morphVQ models [Dataset]. http://doi.org/10.5061/dryad.bvq83bkcr
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    University of Illinois Urbana-Champaign
    American Museum of Natural History
    City University of New York
    Authors
    Oshane Thomas; Hongyu Shen; Ryan L. Rauum; William E. H. Harcourt-Smith; John D. Polk; Mark Hasegawa-Johnson
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The methods of geometric morphometrics are commonly used to quantify morphology in a broad range of biological sciences. The application of these methods to large datasets is constrained by manual landmark placement limiting the number of landmarks and introducing observer bias. To move the field forward, we need to automate morphological phenotyping in ways that capture comprehensive representations of morphological variation with minimal observer bias. Here, we present Morphological Variation Quantifier (morphVQ), a shape analysis pipeline for quantifying, analyzing, and exploring shape variation in the functional domain. morphVQ uses descriptor learning to estimate the functional correspondence between whole triangular meshes in lieu of landmark configurations. With functional maps between pairs of specimens in a dataset, we can analyze and explore shape variation. morphVQ uses Consistent ZoomOut refinement to improve these functional maps and produce a new representation of shape variation and area-based and conformal (angular) latent shape space differences (LSSDs). We compare this new representation of shape variation to shape variables obtained via manual digitization and auto3DGM, an existing approach to automated morphological phenotyping. We find that LSSDs compare favorably to modern 3DGM and auto3DGM while being more computationally efficient. By characterizing whole surfaces, our method incorporates more morphological detail in shape analysis. We can classify known biological groupings, such as Genus affiliation with comparable accuracy. The shape spaces produced by our method are similar to those produced by modern 3DGM and to auto3DGM, and distinctiveness functions derived from LSSDs show us how shape variation differs between groups. morphVQ can capture shape in an automated fashion while avoiding the limitations of manually digitized landmarks and thus represents a novel and computationally efficient addition to the geometric morphometrics toolkit. Methods The main dataset consists of 102 triangular meshes from laser surface scans of hominoid cuboid bones. These cuboids were from wild-collected individuals housed in the American Museum of Natural History, the National Museum of Natural History, the Harvard Museum of Comparative Biology, and the Field Museum. Hylobates, Pongo, Gorilla, Pan, and Homo are all well represented. Each triangular mesh is denoised, remeshed, and cleaned using the Geomagic Studio Wrap Software. The resulting meshes vary in vertex-count/resolution from 2,000 - 390,000. Each mesh is then upsampled or decimated to an even 12,000 vertices using the recursive subdivisions process and quadric decimation algorithm implemented in VTK python. The first of the two smaller datasets is comprised of 26 hominoid medial cuneiforms meshes isolated from laser surface scans obtained from the same museum collections listed above. The second dataset comprises 33 mouse humeri meshes from micro-CT data (34.5 μm resolution using a Skyscan 1172). These datasets were processed identically to the 102 hominoid cuboid meshes introduced above.

  20. Z

    Google's Audioset: Reformatted

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated Sep 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bakhtin (2022). Google's Audioset: Reformatted [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7096701
    Explore at:
    Dataset updated
    Sep 21, 2022
    Dataset provided by
    Alexander
    Authors
    Bakhtin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Google's AudioSet consistently reformatted

    During my work with Google's AudioSet(https://research.google.com/audioset/index.html) I encountered some problems due to the fact that Weak (https://research.google.com/audioset/download.html) and Strong (https://research.google.com/audioset/download_strong.html) versions of the dataset used different csv formatting for the data, and that also labels used in the two datasets are different (https://github.com/audioset/ontology/issues/9) and also presented in files with different formatting.

    This dataset reformatting aims to unify the formats of the datasets so that it is possible to analyse them in the same pipelines, and also make the dataset files compatible with psds_eval, dcase_util and sed_eval Python packages used in Audio Processing.

    For better formatted documentation and source code of reformatting refer to https://github.com/bakhtos/GoogleAudioSetReformatted

    -Changes in dataset

    All files are converted to tab-separated *.tsv files (i.e. csv files with \t as a separator). All files have a header as the first line.

    -New fields and filenames

    Fields are renamed according to the following table, to be compatible with psds_eval:

    Old field -> New field YTID -> filename segment_id -> filename start_seconds -> onset start_time_seconds -> onset end_seconds -> offset end_time_seconds -> offset positive_labels -> event_label label -> event_label present -> present

    For class label files, id is now the name for the for mid label (e.g. /m/09xor) and label for the human-readable label (e.g. Speech). Index of label indicated for Weak dataset labels (index field in class_labels_indices.csv) is not used.

    Files are renamed according to the following table to ensure consisted naming of the form audioset_[weak|strong]_[train|eval]_[balanced|unbalanced|posneg]*.tsv:

    Old name -> New name balanced_train_segments.csv -> audioset_weak_train_balanced.tsv unbalanced_train_segments.csv -> audioset_weak_train_unbalanced.tsv eval_segments.csv -> audioset_weak_eval.tsv audioset_train_strong.tsv -> audioset_strong_train.tsv audioset_eval_strong.tsv -> audioset_strong_eval.tsv audioset_eval_strong_framed_posneg.tsv -> audioset_strong_eval_posneg.tsv class_labels_indices.csv -> class_labels.tsv (merged with mid_to_display_name.tsv) mid_to_display_name.tsv -> class_labels.tsv (merged with class_labels_indices.csv)

    -Strong dataset changes

    Only changes to the Strong dataset are renaming of fields and reordering of columns, so that both Weak and Strong version have filename and event_label as first two columns.

    -Weak dataset changes

    -- Labels are given one per line, instead of comma-separated and quoted list

    -- To make sure that filename format is the same as in Strong version, the following format change is made: The value of the start_seconds field is converted to milliseconds and appended to the filename with an underscore. Since all files in the dataset are assumed to be 10 seconds long, this unifies the format of filename with the Strong version and makes end_seconds also redundant.

    -Class labels changes

    Class labels from both datasets are merged into one file and given in alphabetical order of ids. Since same ids are present in both datasets, but sometimes with different human-readable labels, labels from Strong dataset overwrite those from Weak. It is possible to regenerate class_labels.tsv while giving priority to the Weak version of labels by calling convert_labels(False) from convert.py in the GitHub repository.

    -License

    Google's AudioSet was published in two stages - first the Weakly labelled data (Gemmeke, Jort F., et al. "Audio set: An ontology and human-labeled dataset for audio events." 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017.), then the strongly labelled data (Hershey, Shawn, et al. "The benefit of temporally-strong labels in audio event classification." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.)

    Both the original dataset and this reworked version are licensed under CC BY 4.0

    Class labels come from the AudioSet Ontology, which is licensed under CC BY-SA 4.0.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Mrityunjay Pathak (2023). Pandas Practice Dataset [Dataset]. https://www.kaggle.com/datasets/themrityunjaypathak/pandas-practice-dataset/discussion
Organization logo

Pandas Practice Dataset

Dataset to Practice Your Pandas Skill's

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(493 bytes)Available download formats
Dataset updated
Jan 27, 2023
Authors
Mrityunjay Pathak
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

What is Pandas?

Pandas is a Python library used for working with data sets.

It has functions for analyzing, cleaning, exploring, and manipulating data.

The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

Why Use Pandas?

Pandas allows us to analyze big data and make conclusions based on statistical theories.

Pandas can clean messy data sets, and make them readable and relevant.

Relevant data is very important in data science.

What Can Pandas Do?

Pandas gives you answers about the data. Like:

Is there a correlation between two or more columns?

What is average value?

Max value?

Min value?

Search
Clear search
Close search
Google apps
Main menu