31 datasets found
  1. C

    Violence Reduction - Victim Demographics - Aggregated

    • data.cityofchicago.org
    • s.cnmilf.com
    • +1more
    application/rdfxml +5
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Violence Reduction - Victim Demographics - Aggregated [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victim-Demographics-Aggregated/gj7a-742p
    Explore at:
    application/rssxml, csv, json, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.

    This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.

    The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

    How does this dataset classify victims?

    The methodology by which this dataset classifies victims of violent crime differs by victimization type:

    Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

    To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.

    For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

    1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
    2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

    Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

    1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

    Note: All businesses identified as victims in CPD data have been removed from this dataset.

    Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”

    Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

  2. Sudan - Population Density - Dataset - ADH Data Portal

    • ckan.africadatahub.org
    Updated Sep 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    africadatahub.org (2022). Sudan - Population Density - Dataset - ADH Data Portal [Dataset]. https://ckan.africadatahub.org/dataset/sudan-population-density
    Explore at:
    Dataset updated
    Sep 18, 2022
    Dataset provided by
    Africa Data Hub
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sudan
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. The dataset is available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc (approximately 1km at the equator). The projection is Geographic Coordinate System, WGS84. The units are number of people per square kilometer. The units are number of people per square kilometre based on country totals adjusted to match the corresponding official United Nations population estimates that have been prepared by the Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2019 Revision of World Population Prospects). The mapping approach is Random Forest-based dasymetric redistribution.

  3. Somalia - Population Density - Dataset - SODMA Open Data Portal

    • sodma-dev.okfn.org
    Updated May 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sodma-dev.okfn.org (2025). Somalia - Population Density - Dataset - SODMA Open Data Portal [Dataset]. https://sodma-dev.okfn.org/dataset/worldpop-population-density-for-somalia
    Explore at:
    Dataset updated
    May 23, 2025
    Dataset provided by
    Open Knowledge Foundationhttp://okfn.org/
    Somali Disaster Management Agencyhttps://sodma.gov.so/
    Area covered
    Somalia
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator) -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method. -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method. Data for earlier dates is available directly from WorldPop. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  4. Iraq - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Iraq - Age and sex structures [Dataset]. https://data.amerigeoss.org/id/dataset/worldpop-iraq-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Iraq
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  5. Italy - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Italy - Age and sex structures [Dataset]. https://data.amerigeoss.org/bg/dataset/worldpop-italy-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Italy
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  6. h

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes...

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/139
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  7. A

    San Marino - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). San Marino - Age and sex structures [Dataset]. https://data.amerigeoss.org/cs_CZ/dataset/worldpop-san-marino-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    San Marino
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  8. A

    Comoros - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). Comoros - Age and sex structures [Dataset]. https://data.amerigeoss.org/mn_MN/dataset/worldpop-comoros-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Comoros
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  9. School District Enrollment Demographics, Wisconsin, 2023-2024

    • data-wi-dpi.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wisconsin Department of Public Instruction (2024). School District Enrollment Demographics, Wisconsin, 2023-2024 [Dataset]. https://data-wi-dpi.opendata.arcgis.com/datasets/school-district-enrollment-demographics-wisconsin-2023-2024/about
    Explore at:
    Dataset updated
    Mar 7, 2024
    Dataset authored and provided by
    Wisconsin Department of Public Instructionhttps://dpi.wi.gov/
    Area covered
    Description

    This dataset contains yearly certified enrollment for all public school districts (with physical boundaries) in Wisconsin for the 2023-2024 school year. This data is also available in the WISEdash Public Portal. This dataset is derived from publicly available files on the WISEdash Download Page. Enrollment Count is the number of students enrolled on specific dates as determined by school enrollment/exit dates that cover those dates. Percent Enrollment by Student Group is a percent of the enrollment count for all student groups combined. Reporting Disability is indicated in the pupil’s individualized education program (IEP) or individualized service plan (ISP). A person's race or ethnicity is the racial and/or ethnic group to which the person belongs or with which he or she most identifies. Ethnicity is self-reported as either Hispanic/Not Hispanic. Race is self-reported as any of the following 5 categories: Asian, American Indian or Alaskan Native, Black or African American, Native Hawaiian or other Pacific Islander, or White. The data displayed reflects the race/ethnicity that is reported by school districts to DPI.An economically disadvantaged student is one who is identified by Direct Certification (only if participating in the National School Lunch Program) OR a member of a household that meets the income eligibility guidelines for free or reduced-price meals (less than or equal to 185 percent of Federal Poverty Guidelines) under the National School Lunch Program (NSLP) OR identified by an alternate mechanism, such as the alternate household income form.English Learner status is any student whose first language, or whose parents' or guardians' first language, is not English and whose level of English proficiency requires specially designed instruction, either in English or in the first language or both, in order for the student to fully benefit from classroom instruction and to be successful in attaining the state's high academic standards expected of all students at their grade level.A child is eligible for the Migrant Education Program (MEP) (and thereby eligible to receive MEP services) if the child: meets the definition of “migratory child” in section 1309(3) of the ESEA,[1] and is an “eligible child” as the term is used in section 1115(c)(1)(A) of the ESEA and 34 C.F.R. § 200.103; and has the basis for the State’s determination that the child is a “migratory child” properly recorded on the national Certificate of Eligibility (COE). Eligibility determination is made by a Wisconsin state migrant recruiter during a face-to-face family interview.

  10. Bosnia and Herzegovina - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). Bosnia and Herzegovina - Age and sex structures [Dataset]. https://data.amerigeoss.org/dataset/worldpop-bosnia-and-herzegovina-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Bosnia and Herzegovina
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  11. Argentina - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Argentina - Age and sex structures [Dataset]. https://data.amerigeoss.org/fi/dataset/worldpop-argentina-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Argentina
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  12. Somalia - Age and sex structures - Dataset - SODMA Open Data Portal

    • sodma-dev.okfn.org
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sodma-dev.okfn.org (2025). Somalia - Age and sex structures - Dataset - SODMA Open Data Portal [Dataset]. https://sodma-dev.okfn.org/dataset/worldpop-age-and-sex-structures-for-somalia
    Explore at:
    Dataset updated
    May 23, 2025
    Dataset provided by
    Open Knowledge Foundationhttp://okfn.org/
    Somali Disaster Management Agencyhttps://sodma.gov.so/
    Area covered
    Somalia
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset. A description of the modelling methods used for age and sex structures can be found in Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here. Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020. The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping. Data for earlier dates is available directly from WorldPop. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  13. A

    ‘Violence Reduction - Victim Demographics - Aggregated’ analyzed by...

    • analyst-2.ai
    Updated May 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Violence Reduction - Victim Demographics - Aggregated’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-violence-reduction-victim-demographics-aggregated-1b68/43634af5/?iid=006-037&v=presentation
    Explore at:
    Dataset updated
    May 24, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Violence Reduction - Victim Demographics - Aggregated’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/6c4e2995-7bdf-4c37-a269-386348be7e65 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.

    This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.

    The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

    How does this dataset classify victims?

    The methodology by which this dataset classifies victims of violent crime differs by victimization type:

    Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

    To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.

    For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset

    --- Original source retains full ownership of the source dataset ---

  14. G

    Residential property buyers: Demographic data, first-time home buyer status,...

    • open.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Dec 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Residential property buyers: Demographic data, first-time home buyer status, and price-to-income ratio [Dataset]. https://open.canada.ca/data/dataset/487292a4-4b27-4cbe-a78c-26c3661b5580
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Data on resident buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form: number of and incomes of residential property buyers, sale price, price-to-income ratio by the number of buyers as part of a sale, age groups, first-time home buyer status, buyer characteristics (sex, family type, immigration status, period of immigration, admission category).

  15. h

    NIHR Midlands ARC Dataset: Outcomes from out-of-hospital cardiac arrest

    • healthdatagateway.org
    unknown
    Updated Oct 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). NIHR Midlands ARC Dataset: Outcomes from out-of-hospital cardiac arrest [Dataset]. https://healthdatagateway.org/en/dataset/935
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 31, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Resuscitation to Recovery is the national framework to improve care of people with Out of hospital cardiac arrests (OHCA). Despite this, survival rates continue to be around 10%. Recently an OHCA care pathway been developed by the British Cardiovascular Interventional Society, aiming to reduce unwarranted variation in interventional cardiovascular practice for OHCA. However, little research has tracked the care OHCA patients receive along the whole pathway. 

    To support a better understanding of OHCA care pathways, PIONEER, working with the NIHR Midlands Applied Research Collaboration and West Midlands Ambulance Service, has curated a highly granular dataset of 1588 OHCA events. The data includes demography, comorbidities, initial presentation, serial physiology, assessments, treatment provided both before and after West Midlands Ambulance Service arrival, onward hospital investigations, management and outcomes, including future healthcare use. The current dataset includes OHCA from 2018 to 2022 but can be expanded to assess other timelines of interest.

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment (TRE) build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  16. A

    New Caledonia - Age and sex structures

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). New Caledonia - Age and sex structures [Dataset]. https://data.amerigeoss.org/fr/dataset/worldpop-new-caledonia-age-and-sex-structures
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    New Caledonia
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  17. H

    Belgium - Age and sex structures

    • data.humdata.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated Sep 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). Belgium - Age and sex structures [Dataset]. https://data.humdata.org/dataset/worldpop-age-and-sex-structures-for-belgium
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Sep 19, 2021
    Dataset provided by
    WorldPop
    Area covered
    Belgium
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

  18. h

    Admission patterns in Multiple Long-Term Conditions: NIHR/UKRI ADMISSION...

    • healthdatagateway.org
    unknown
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). Admission patterns in Multiple Long-Term Conditions: NIHR/UKRI ADMISSION dataset [Dataset]. https://healthdatagateway.org/en/dataset/174
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jan 10, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    This dataset forms part of ADMISSION, the NIHR and UKRI funded programme of work to better understand and to design healthcare services which are better able to care for patients with multiple long term conditions.

    This dataset includes >70,000 adult patients who were acutely admitted to hospital. It includes longitudinal and detailed data for these people over 10-years, designed to trace the accrual, progression and impact of multiple co-morbidities as well as acute health care use and outcomes.

    The dataset contains highly granular data regarding patient demographics and the specific co-morbidities associated with each patient, categorised according to ICD-10 codes. It provides a structured sequence of data related to the acute care and inpatient process, capturing critical timings, acuity, medications, laboratory results, observations, readmissions, and mortality rates.

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. Data access must reference ADMISSION and the papers which describe this resource. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment (TRE) build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  19. C

    Park, Beach, Open Space, or Coastline Access

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, html, pdf, xlsx +1
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Park, Beach, Open Space, or Coastline Access [Dataset]. https://data.chhs.ca.gov/dataset/park-beach-open-space-or-coastline-access
    Explore at:
    zip, xlsx, pdf, csv(129337734), htmlAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This table contains data on access to parks measured as the percent of population within ½ a mile of a parks, beach, open space or coastline for California, its regions, counties, county subdivisions, cities, towns, and census tracts. More information on the data table and a data dictionary can be found in the Data and Resources section. As communities become increasingly more urban, parks and the protection of green and open spaces within cities increase in importance. Parks and natural areas buffer pollutants and contribute to the quality of life by providing communities with social and psychological benefits such as leisure, play, sports, and contact with nature. Parks are critical to human health by providing spaces for health and wellness activities. The access to parks table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. The format of the access to parks table is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.

  20. H

    Turks and Caicos Islands - Age and sex structures

    • data.humdata.org
    • cloud.csiss.gmu.edu
    geotiff
    Updated May 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2023). Turks and Caicos Islands - Age and sex structures [Dataset]. https://data.humdata.org/dataset/worldpop-age-and-sex-structures-for-turks-and-caicos-islands
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    May 24, 2023
    Dataset provided by
    WorldPop
    Area covered
    Turks and Caicos Islands
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    A description of the modelling methods used for age and sex structures can be found in "https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-11-11" target="_blank"> Tatem et al and Pezzulo et al. Details of the input population count datasets used can be found here, and age/sex structure proportion datasets here.
    Both top-down 'unconstrained' and 'constrained' versions of the datasets are available, and the differences between the two methods are outlined here. The datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The unconstrained datasets are available for each year from 2000 to 2020.
    The constrained datasets are only available for 2020 at present, given the time periods represented by the building footprint and built settlement datasets used in the mapping.
    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00646

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Chicago (2025). Violence Reduction - Victim Demographics - Aggregated [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victim-Demographics-Aggregated/gj7a-742p

Violence Reduction - Victim Demographics - Aggregated

Explore at:
application/rssxml, csv, json, application/rdfxml, xml, tsvAvailable download formats
Dataset updated
Jul 11, 2025
Dataset authored and provided by
City of Chicago
Description

This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.

This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.

The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

How does this dataset classify victims?

The methodology by which this dataset classifies victims of violent crime differs by victimization type:

Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.

For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

  1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
  2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

  1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

Note: All businesses identified as victims in CPD data have been removed from this dataset.

Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”

Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

Search
Clear search
Close search
Google apps
Main menu