53 datasets found
  1. e

    INSPIRE Priority Data Set (Compliant) - Species range

    • inspire-geoportal.ec.europa.eu
    • inspire-geoportal.lt
    • +1more
    Updated Aug 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Construction Sector Development Agency (2020). INSPIRE Priority Data Set (Compliant) - Species range [Dataset]. https://inspire-geoportal.ec.europa.eu/srv/api/records/bfcc7a93-dd66-453b-b7f5-9fc4a868e69f
    Explore at:
    www:download-1.0-http--download, www:link-1.0-http--link, ogc:wms-1.3.0-http-get-mapAvailable download formats
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    State Service for Protected Areas under the Ministry of Environment
    Construction Sector Development Agency
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Area covered
    Description

    INSPIRE Priority Data Set (Compliant) - Species range

  2. Path loss at 5G high frequency range in South Asia

    • kaggle.com
    Updated Apr 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S M MEHEDI ZAMAN (2023). Path loss at 5G high frequency range in South Asia [Dataset]. https://www.kaggle.com/datasets/smmehedizaman/path-loss-at-5g-high-frequency-range-in-south-asia
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    S M MEHEDI ZAMAN
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Asia, South Asia
    Description

    This dataset has been generated using NYUSIM 3.0 mm-Wave channel simulator software, which takes into account atmospheric data such as rain rate, humidity, barometric pressure, and temperature. The input data was collected over the course of a year in South Asia. As a result, the dataset provides an accurate representation of the seasonal variations in mm-wave channel characteristics in these areas. The dataset includes a total of 2835 records, each of which contains T-R Separation Distance (m), Time Delay (ns), Received Power (dBm), Phase (rad), Azimuth AoD (degree), Elevation AoD (degree), Azimuth AoA (degree), Elevation, AoA (degree), RMS Delay Spread (ns), Season, Frequency and Path Loss (dB). Four main seasons have been considered in this dataset: Spring, Summer, Fall, and Winter. Each season is subdivided into three parts (i.e., low, medium, and high), to accurately include the atmospheric variations in a season. To simulate the path loss, realistic Tx and Rx height, NLoS environment, and mean human blockage attenuation effects have been taken into consideration. The data has been preprocessed and normalized to ensure consistency and ease of use. Researchers in the field of mm-wave communications and networking can use this dataset to study the impact of atmospheric conditions on mm-wave channel characteristics and develop more accurate models for predicting channel behavior. The dataset can also be used to evaluate the performance of different communication protocols and signal processing techniques under varying weather conditions. Note that while the data was collected specifically in South Asia region, the high correlation between the weather patterns in this region and other areas means that the dataset may also be applicable to other regions with similar atmospheric conditions.

    Acknowledgements The paper in which the dataset was proposed is available on: https://ieeexplore.ieee.org/abstract/document/10307972

    Citation

    If you use this dataset, please cite the following paper:

    Rashed Hasan Ratul, S. M. Mehedi Zaman, Hasib Arman Chowdhury, Md. Zayed Hassan Sagor, Mohammad Tawhid Kawser, and Mirza Muntasir Nishat, “Atmospheric Influence on the Path Loss at High Frequencies for Deployment of 5G Cellular Communication Networks,” 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2023, pp. 1–6. https://doi.org/10.1109/ICCCNT56998.2023.10307972

    BibTeX ```bibtex @inproceedings{Ratul2023Atmospheric, author = {Ratul, Rashed Hasan and Zaman, S. M. Mehedi and Chowdhury, Hasib Arman and Sagor, Md. Zayed Hassan and Kawser, Mohammad Tawhid and Nishat, Mirza Muntasir}, title = {Atmospheric Influence on the Path Loss at High Frequencies for Deployment of {5G} Cellular Communication Networks}, booktitle = {2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)}, year = {2023}, pages = {1--6}, doi = {10.1109/ICCCNT56998.2023.10307972}, keywords = {Wireless communication; Fluctuations; Rain; 5G mobile communication; Atmospheric modeling; Simulation; Predictive models; 5G-NR; mm-wave propagation; path loss; atmospheric influence; NYUSIM; ML} }

  3. Fused Image dataset for convolutional neural Network-based crack Detection...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. http://doi.org/10.5281/zenodo.6383044
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    [5] (This dataset) Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  4. Z

    ANN development + final testing datasets

    • data.niaid.nih.gov
    • resodate.org
    • +1more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Authors (2020). ANN development + final testing datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1445865
    Explore at:
    Dataset updated
    Jan 24, 2020
    Authors
    Authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    File name definitions:

    '...v_50_175_250_300...' - dataset for velocity ranges [50, 175] + [250, 300] m/s

    '...v_175_250...' - dataset for velocity range [175, 250] m/s

    'ANNdevelop...' - used to perform 9 parametric sub-analyses where, in each one, many ANNs are developed (trained, validated and tested) and the one yielding the best results is selected

    'ANNtest...' - used to test the best ANN from each aforementioned parametric sub-analysis, aiming to find the best ANN model; this dataset includes the 'ANNdevelop...' counterpart

    Where to find the input (independent) and target (dependent) variable values for each dataset/excel ?

    input values in 'IN' sheet

    target values in 'TARGET' sheet

    Where to find the results from the best ANN model (for each target/output variable and each velocity range)?

    open the corresponding excel file and the expected (target) vs ANN (output) results are written in 'TARGET vs OUTPUT' sheet

    Check reference below (to be added when the paper is published)

    https://www.researchgate.net/publication/328849817_11_Neural_Networks_-_Max_Disp_-_Railway_Beams

  5. Credit Card Eligibility Data: Determining Factors

    • kaggle.com
    zip
    Updated May 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohit Sharma (2024). Credit Card Eligibility Data: Determining Factors [Dataset]. https://www.kaggle.com/datasets/rohit265/credit-card-eligibility-data-determining-factors
    Explore at:
    zip(303227 bytes)Available download formats
    Dataset updated
    May 18, 2024
    Authors
    Rohit Sharma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description of the Credit Card Eligibility Data: Determining Factors

    The Credit Card Eligibility Dataset: Determining Factors is a comprehensive collection of variables aimed at understanding the factors that influence an individual's eligibility for a credit card. This dataset encompasses a wide range of demographic, financial, and personal attributes that are commonly considered by financial institutions when assessing an individual's suitability for credit.

    Each row in the dataset represents a unique individual, identified by a unique ID, with associated attributes ranging from basic demographic information such as gender and age, to financial indicators like total income and employment status. Additionally, the dataset includes variables related to familial status, housing, education, and occupation, providing a holistic view of the individual's background and circumstances.

    VariableDescription
    IDAn identifier for each individual (customer).
    GenderThe gender of the individual.
    Own_carA binary feature indicating whether the individual owns a car.
    Own_propertyA binary feature indicating whether the individual owns a property.
    Work_phoneA binary feature indicating whether the individual has a work phone.
    PhoneA binary feature indicating whether the individual has a phone.
    EmailA binary feature indicating whether the individual has provided an email address.
    UnemployedA binary feature indicating whether the individual is unemployed.
    Num_childrenThe number of children the individual has.
    Num_familyThe total number of family members.
    Account_lengthThe length of the individual's account with a bank or financial institution.
    Total_incomeThe total income of the individual.
    AgeThe age of the individual.
    Years_employedThe number of years the individual has been employed.
    Income_typeThe type of income (e.g., employed, self-employed, etc.).
    Education_typeThe education level of the individual.
    Family_statusThe family status of the individual.
    Housing_typeThe type of housing the individual lives in.
    Occupation_typeThe type of occupation the individual is engaged in.
    TargetThe target variable for the classification task, indicating whether the individual is eligible for a credit card or not (e.g., Yes/No, 1/0).

    Researchers, analysts, and financial institutions can leverage this dataset to gain insights into the key factors influencing credit card eligibility and to develop predictive models that assist in automating the credit assessment process. By understanding the relationship between various attributes and credit card eligibility, stakeholders can make more informed decisions, improve risk assessment strategies, and enhance customer targeting and segmentation efforts.

    This dataset is valuable for a wide range of applications within the financial industry, including credit risk management, customer relationship management, and marketing analytics. Furthermore, it provides a valuable resource for academic research and educational purposes, enabling students and researchers to explore the intricate dynamics of credit card eligibility determination.

  6. N

    South Range, MI Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). South Range, MI Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/658fcb29-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of South Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of South Range across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 50.54% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the South Range is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of South Range total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here

  7. 🛒 Supermarket Data

    • kaggle.com
    zip
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mexwell (2024). 🛒 Supermarket Data [Dataset]. https://www.kaggle.com/datasets/mexwell/supermarket-data/versions/1
    Explore at:
    zip(78427538 bytes)Available download formats
    Dataset updated
    Jul 19, 2024
    Authors
    mexwell
    Description

    This is the dataset released as companion for the paper “Explaining the Product Range Effect in Purchase Data“, presented at the BigData 2013 conference.

    • supermarket_distances: three columns. The first column is the customer id, the second is the shop id and the third is the distance between the customer’s house and the shop location. The distance is a calculated in meters as a straight line so it does not take into account the road graph.
    • supermarket_prices: two columns. The first column is the product id and the second column is its unit price. The price is in Euro and it is calculated as the average unit price for the time span of the dataset.
    • supermarket_purchases: four columns. The first column is the customer id, the second is the product id, the third is the shop id and the fourth is the total amount of items that the customer bought the product in that particular shop. The data is recorded from January 2007 to December 2011.

    Citation

    Pennacchioli, D., Coscia, M., Rinzivillo, S., Pedreschi, D. and Giannotti, F., Explaining the Product Range Effect in Purchase Data. In BigData, 2013.

    Acknowlegement

    Foto von Eduardo Soares auf Unsplash

  8. N

    Grass Range, MT Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Grass Range, MT Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/649529eb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Grass Range
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 52.63% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Grass Range is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Grass Range total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  9. R

    Dataset for "High-throughput phenotyping to characterise range use behaviour...

    • entrepot.recherche.data.gouv.fr
    bin +4
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie Collet; Julie Collet; Claire Bonnefous; Claire Bonnefous; Karine Germain; Karine Germain; Laure Ravon; Laure Ravon; Ludovic Calandreau; Ludovic Calandreau; Vanessa Guesdon; Vanessa Guesdon; Anne Collin; Anne Collin; Elisabeth Le Bihan-Duval; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau; Sandrine Mignon-Grasteau (2024). Dataset for "High-throughput phenotyping to characterise range use behaviour in broiler chickens" [Dataset]. http://doi.org/10.57745/JUDHTG
    Explore at:
    tsv(13468), bin(7829), bin(7706), txt(1910), tsv(5600), text/comma-separated-values(1374092123), tsv(12835), bin(7008), text/comma-separated-values(1057246321), text/comma-separated-values(2204116241), type/x-r-syntax(69557), tsv(44362)Available download formats
    Dataset updated
    Jan 31, 2024
    Dataset provided by
    Recherche Data Gouv
    Authors
    Julie Collet; Julie Collet; Claire Bonnefous; Claire Bonnefous; Karine Germain; Karine Germain; Laure Ravon; Laure Ravon; Ludovic Calandreau; Ludovic Calandreau; Vanessa Guesdon; Vanessa Guesdon; Anne Collin; Anne Collin; Elisabeth Le Bihan-Duval; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau; Sandrine Mignon-Grasteau
    License

    https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html

    Time period covered
    Mar 31, 2021 - Dec 23, 2021
    Dataset funded by
    European Commission
    Description

    A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens’ when they go through pop-holes; hence they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens’ range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all < 40g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens’ range use behaviour. Our dataset includes the files needed to calibrate the system (supplementary materials), the data files used in the publication and the associated codes.

  10. z

    mmWave-based Fitness Activity Recognition Dataset

    • zenodo.org
    png, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yucheng Xie; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen; Yucheng Xie; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen (2024). mmWave-based Fitness Activity Recognition Dataset [Dataset]. http://doi.org/10.5281/zenodo.7793613
    Explore at:
    zip, pngAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodo
    Authors
    Yucheng Xie; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen; Yucheng Xie; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    This mmWave Datasets are used for fitness activity identification. This dataset (FA Dataset) contains 14 common fitness daily activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.

    Format: .png format

    Section 1: Device Configuration

    Section 2: Data Format

    We provide our mmWave data in heatmaps for this dataset. The data file is in the png format. The details are shown in the following:

    • 14 activities are included in the FA Dataset.
    • 2 participants are included in the FA Dataset.
    • FA_d_p_i_u_j.png:
      • d represents the date to collect the fitness data.
      • p represents the environment to collect the fitness data.
      • i represents fitness activity type index
      • u represents user id
      • j represents sample index
    • Example:
      • FA_20220101_lab_1_2_3 represents the 3rd data sample of user 2 of activity 1 collected in the lab

    Section 3: Experimental Setup

    • We place the mmWave device on a table with a height of 60cm.
    • The participants are asked to perform fitness activity in front of a mmWave device with a distance of 2m.
    • The data are collected at an lab with a size of (5.0m×3.0m).

    Section 4: Data Description

    • We develop a spatial-temporal heatmap to integrates multiple activity features, including the range of movement, velocity, and time duration of each activity repetition.

    • We first derive the Doppler-range map of the users' activity by calculating Range-FFT and Doppler-FFT. Then, we generate the spatial-temporal heatmap by accumulating the velocity of every distance in every Doppler-range map together. Next, we normalize the derived velocity information and present the velocity-distance relationship in time dimension. In this way, we transfer the original instantaneous velocity-distance relationship to a more comprehensive spatial-temporal heatmap which describes the process of a whole activity.

    • As shown in Figure attached, in each spatial-temporal heatmap, the horizontal axis represents the time duration of an activity repetition while the vertical axis represents the range of movement. The velocity is represented by color.

    • We create 14 zip files to store the the dataset. There are 14 zip files starting with "FA", each contains repetitions from the same fitness activity.

    14 common daily activities and their corresponding files

    File Name Activity Type File Name Activity Type

    FA1 Crunches FA8 Squats

    FA2 Elbow plank and reach FA9 Burpees

    FA3 Leg raise FA10 Chest squeezes

    FA4 Lunges FA11 High knees

    FA5 Mountain climber FA12 Side leg raise

    FA6 Punches FA13 Side to side chops

    FA7 Push ups FA14 Turning kicks

    Section 5: Raw Data and Data Processing Algorithms

    • We also provide the mmWave raw data (.mat format) stored in the same zip file corresponding to the heatmap datasets. Each .mat file can store one set of activity repetitions (e.g., 4 repetations) from a same user.
      • For example: FA_d_p_i_u_j.mat:
        • d represents the data to collect the data.
        • p represents the environment to collect the data.
        • i represents the activity type index
        • u represents the user id
        • j represents the set index
    • We plan to provide the data processing algorithms (heatmap_generation.py) to load the mmWave raw data and generate the corresponding heatmap data.

    Section 6: Citations

    If your paper is related to our works, please cite our papers as follows.

    https://ieeexplore.ieee.org/document/9868878/

    Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.

    Bibtex:

    @inproceedings{xie2022mmfit,

    title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},

    author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},

    booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},

    pages={1--10},

    year={2022},

    organization={IEEE}

    }

  11. Coffee Shop Daily Revenue Prediction Dataset

    • kaggle.com
    zip
    Updated Feb 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Himel Sarder (2025). Coffee Shop Daily Revenue Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/himelsarder/coffee-shop-daily-revenue-prediction-dataset
    Explore at:
    zip(30259 bytes)Available download formats
    Dataset updated
    Feb 7, 2025
    Authors
    Himel Sarder
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Overview

    This dataset contains 2,000 rows of data from coffee shops, offering detailed insights into factors that influence daily revenue. It includes key operational and environmental variables that provide a comprehensive view of how business activities and external conditions affect sales performance. Designed for use in predictive analytics and business optimization, this dataset is a valuable resource for anyone looking to understand the relationship between customer behavior, operational decisions, and revenue generation in the food and beverage industry.

    Columns & Variables

    The dataset features a variety of columns that capture the operational details of coffee shops, including customer activity, store operations, and external factors such as marketing spend and location foot traffic.

    1. Number of Customers Per Day

      • The total number of customers visiting the coffee shop on any given day.
      • Range: 50 - 500 customers.
    2. Average Order Value ($)

      • The average dollar amount spent by each customer during their visit.
      • Range: $2.50 - $10.00.
    3. Operating Hours Per Day

      • The total number of hours the coffee shop is open for business each day.
      • Range: 6 - 18 hours.
    4. Number of Employees

      • The number of employees working on a given day. This can influence service speed, customer satisfaction, and ultimately, sales.
      • Range: 2 - 15 employees.
    5. Marketing Spend Per Day ($)

      • The amount of money spent on marketing campaigns or promotions on any given day.
      • Range: $10 - $500 per day.
    6. Location Foot Traffic (people/hour)

      • The number of people passing by the coffee shop per hour, a variable indicative of the shop's location and its potential to attract customers.
      • Range: 50 - 1000 people per hour.

    Target Variable

    • Daily Revenue ($)
      • This is the dependent variable representing the total revenue generated by the coffee shop each day.
      • It is calculated as a combination of customer visits, average spending, and other operational factors like marketing spend and staff availability.
      • Range: $200 - $10,000 per day.

    Data Distribution & Insights

    The dataset spans a wide variety of operational scenarios, from small neighborhood coffee shops with limited traffic to larger, high-traffic locations with extensive marketing budgets. This variety allows for exploring different predictive modeling strategies. Key insights that can be derived from the data include:

    • The effect of marketing spend on daily revenue.
    • The correlation between customer count and daily sales.
    • The relationship between staffing levels and revenue generation.
    • The influence of foot traffic and operating hours on customer behavior.

    Use Cases & Applications

    The dataset offers a wide range of applications, especially in predictive analytics, business optimization, and forecasting:

    • Predictive Modeling: Use machine learning models such as regression, decision trees, or neural networks to predict daily revenue based on operational data.
    • Business Strategy Development: Analyze how changes in marketing spend, staff numbers, or operating hours can optimize revenue and improve efficiency.
    • Customer Insights: Identify patterns in customer behavior related to shop operations and external factors like foot traffic and marketing campaigns.
    • Resource Allocation: Determine optimal staffing levels and marketing budgets based on predicted sales, improving overall profitability.

    Real-World Applications in the Food & Beverage Industry

    For coffee shop owners, managers, and analysts in the food and beverage industry, this dataset provides an essential tool for refining daily operations and boosting profitability. Insights gained from this data can help:

    • Optimize Marketing Campaigns: Evaluate the effectiveness of daily or seasonal marketing campaigns on revenue.
    • Staff Scheduling: Predict busy days and ensure that the right number of employees are scheduled to maximize efficiency.
    • Revenue Forecasting: Provide accurate revenue projections that can assist with financial planning and decision-making.
    • Operational Efficiency: Discover the most profitable operating hours and adjust business hours accordingly.

    This dataset is also ideal for aspiring data scientists and machine learning practitioners looking to apply their skills to real-world business problems in the food and beverage sector.

    Conclusion

    The Coffee Shop Revenue Prediction Dataset is a versatile and comprehensive resource for understanding the dynamics of daily sales performance in coffee shops. With a focus on key operational factors, it is perfect for building predictive models, ...

  12. Simulation Data Set

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  13. r

    Global tidal variables

    • researchdata.se
    • data.europa.eu
    Updated Jun 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Obst (2019). Global tidal variables [Dataset]. http://doi.org/10.5879/c49r-x993
    Explore at:
    (120227407)Available download formats
    Dataset updated
    Jun 11, 2019
    Dataset provided by
    University of Gothenburg
    Authors
    Matthias Obst
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains global tidal variables in form of GeoTIFF raster layers generated by Vestbo et al (2018). The raster layers were generated using the Finite Element Solution oceanographic model (FES2012), provided by Noveltis, Legos and CLS Space Oceanography Division and distributed by AVISO+ (http://www.aviso.altimetry.fr). FES2012 includes overall 32 tidal constituents distributed on 1/16° grids (amplitude and phase), corresponding to 3.75 arc-minutes.

    The dataset contains the following five raster layers, plus the algorithm for calling the FES program (written in C).

    (1) Annual average cycle amplitude in cm. (2) Maximum annual cycle amplitude in cm. (3) Annual standard deviation of cycle amplitude in cm. (4) Annual average duration of tidal cycles in hours. (5) Annual number of cycles.

    A detailed description of the data generation procedure is provided in the original paper (Vestbo et al 2018). References: Vestbo S, Obst M, Quevedo-Fernandez F, Intanai I, Funch P (2018). Present and Potential Future Distributions of Asian Horseshoe Crabs Determine Areas for Conservation. Frontiers in Marine Science. doi: 10.3389/fmars.2018.00164 https://www.frontiersin.org/articles/10.3389/fmars.2018.00164/abstract

    The dataset contains the following five raster layers, plus the algorithm for calling the FES program (written in C): (1) Annual average cycle amplitude in cm (2) Maximum annual cycle amplitude in cm (3) Annual standard deviation of cycle amplitude in cm (4) Annual average duration of tidal cycles in hours (5) Annual number of cycles

  14. d

    Data from: Haploids adapt faster than diploids across a range of...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Dec 7, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleeza C Gerstein; Lesley A Cleathero; Mohammad A Mandegar; Sarah P. Otto (2010). Haploids adapt faster than diploids across a range of environments [Dataset]. http://doi.org/10.5061/dryad.8048
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2010
    Dataset provided by
    Dryad
    Authors
    Aleeza C Gerstein; Lesley A Cleathero; Mohammad A Mandegar; Sarah P. Otto
    Time period covered
    Dec 7, 2010
    Description

    Raw data to calculate rate of adaptationRaw dataset for rate of adaptation calculations (Figure 1) and related statistics.dataall.csvR code to analyze raw data for rate of adaptationCompetition Analysis.RRaw data to calculate effective population sizesdatacount.csvR code to analayze effective population sizesR code used to analyze effective population sizes; Figure 2Cell Count Ne.RR code to determine our best estimate of the dominance coefficient in each environmentR code to produce figures 3, S4, S5 -- what is the best estimate of dominance? Note, competition and effective population size R code must be run first in the same session.what is h.R

  15. Data from: FISBe: A real-world benchmark dataset for instance segmentation...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, json +3
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa (2024). FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [Dataset]. http://doi.org/10.5281/zenodo.10875063
    Explore at:
    zip, text/x-python, bin, json, txtAvailable download formats
    Dataset updated
    Apr 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 26, 2024
    Description

    General

    For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.

    Summary

    • A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
      • 30 completely labeled (segmented) images
      • 71 partly labeled images
      • altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
    • To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
    • A set of metrics and a novel ranking score for respective meaningful method benchmarking
    • An evaluation of three baseline methods in terms of the above metrics and score

    Abstract

    Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.

    Dataset documentation:

    We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:

    >> FISBe Datasheet

    Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.

    Files

    • fisbe_v1.0_{completely,partly}.zip
      • contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
    • fisbe_v1.0_mips.zip
      • maximum intensity projections of all samples, for convenience.
    • sample_list_per_split.txt
      • a simple list of all samples and the subset they are in, for convenience.
    • view_data.py
      • a simple python script to visualize samples, see below for more information on how to use it.
    • dim_neurons_val_and_test_sets.json
      • a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
    • Readme.md
      • general information

    How to work with the image files

    Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
    For each image, we provide a pixel-wise instance segmentation for all separable neurons.
    Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
    The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
    The segmentation mask for each neuron is stored in a separate channel.
    The order of dimensions is CZYX.

    We recommend to work in a virtual environment, e.g., by using conda:

    conda create -y -n flylight-env -c conda-forge python=3.9
    conda activate flylight-env

    How to open zarr files

    1. Install the python zarr package:
      pip install zarr
    2. Opened a zarr file with:

      import zarr
      raw = zarr.open(
      seg = zarr.open(

      # optional:
      import numpy as np
      raw_np = np.array(raw)

    Zarr arrays are read lazily on-demand.
    Many functions that expect numpy arrays also work with zarr arrays.
    Optionally, the arrays can also explicitly be converted to numpy arrays.

    How to view zarr image files

    We recommend to use napari to view the image data.

    1. Install napari:
      pip install "napari[all]"
    2. Save the following Python script:

      import zarr, sys, napari

      raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
      gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")

      viewer = napari.Viewer(ndisplay=3)
      for idx, gt in enumerate(gts):
      viewer.add_labels(
      gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
      viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
      viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
      viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
      napari.run()

    3. Execute:
      python view_data.py 

    Metrics

    • S: Average of avF1 and C
    • avF1: Average F1 Score
    • C: Average ground truth coverage
    • clDice_TP: Average true positives clDice
    • FS: Number of false splits
    • FM: Number of false merges
    • tp: Relative number of true positives

    For more information on our selected metrics and formal definitions please see our paper.

    Baseline

    To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
    For detailed information on the methods and the quantitative results please see our paper.

    License

    The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Citation

    If you use FISBe in your research, please use the following BibTeX entry:

    @misc{mais2024fisbe,
     title =    {FISBe: A real-world benchmark dataset for instance
             segmentation of long-range thin filamentous structures},
     author =    {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
             Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
             Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
     year =     2024,
     eprint =    {2404.00130},
     archivePrefix ={arXiv},
     primaryClass = {cs.CV}
    }

    Acknowledgments

    We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
    discussions.
    P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
    This work was co-funded by Helmholtz Imaging.

    Changelog

    There have been no changes to the dataset so far.
    All future change will be listed on the changelog page.

    Contributing

    If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.

    All contributions are welcome!

  16. b

    A low cost, short range quantum key distribution system/Figure 11-16 -...

    • data.bris.ac.uk
    Updated Mar 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). A low cost, short range quantum key distribution system/Figure 11-16 - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/ddf260c9ff7673221d6a70c089910ba9
    Explore at:
    Dataset updated
    Mar 30, 2022
    Description

    A low cost, short range quantum key distribution system/Figure 11-16

  17. c

    Data from: Raster image of mean tidal range in the Edwin B. Forsythe...

    • s.cnmilf.com
    • data.usgs.gov
    • +4more
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Raster image of mean tidal range in the Edwin B. Forsythe National Wildlife Refuge, New Jersey (32-bit GeoTIFF) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/raster-image-of-mean-tidal-range-in-the-edwin-b-forsythe-national-wildlife-refuge-new-jers
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    New Jersey
    Description

    Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.

  18. z

    mmWave-based Activity Recognition Dataset

    • zenodo.org
    png, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yucheng Xie; Ruizhe Jiang; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen; Yucheng Xie; Ruizhe Jiang; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen (2024). mmWave-based Activity Recognition Dataset [Dataset]. http://doi.org/10.5281/zenodo.7678020
    Explore at:
    png, zipAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodo
    Authors
    Yucheng Xie; Ruizhe Jiang; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen; Yucheng Xie; Ruizhe Jiang; Xiaonan Guo; Yan Wang; Jerry Cheng; Yingying Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    This mmWave Datasets are used for activity verification. It contains two datasets. The first dataset (FA Dataset) contains 14 common daily activities. This second one (EA Dataset) contains 5 kinds of eating activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.

    Format: .png format

    Section 1: Device Configuration

    Section 2: Data Format

    We provide our mmWave data in heatmaps for the two datasets. The data file is in the png format. The details are shown in the following:

    FA Dataset

    • 2 participants are included in the FA Dataset.
    • 14 activities are included in the FA Dataset.
    • FA_d_p_i_u_j.png:
      • d represents the data to collect the data.
      • p represents the environment to collect the data.
      • i represents activity type index
      • u represents user id
      • j represents sample index
    • Example:
      • FA_20220101_lab_1_2_3 represents the 3rd data sample of user 2 of activity 1 collected in the lab

    EA Dataset

    • 2 participants are included in the EA Dataset.
    • 5 activities are included in the EA Dataset.
    • EA_d_p_i_u_j.png:
      • d represents the data to collect the data.
      • p represents the environment to collect the data.
      • i represents the activity type index
      • u represents the user id
      • j represents the sample index

    Section 3: Experimental Setup

    FA Dataset

    • We place the mmWave device on a table with a height of 60cm.
    • The participants are asked to perform fitness activity in front of a mmWave device with a distance of 2m.
    • The data are collected at an lab with a size of (5.0m×3.0m).

    EA Dataset

    • We place the mmWave device on a table with a height of 60cm.
    • The participants are asked to eat with different utensils (i.e., fork, fork&knife, spoon, chopsticks, bare hand) in front of a mmWave device with a distance of 1m.
    • The data are collected at an lab with a size of (5.0m×3.0m).

    Section 4: Data Description

    • We develop a spatial-temporal heatmap to integrates multiple activity features, including the range of movement, velocity, and time duration of each activity repetition.

    • We first derive the Doppler-range map of the users’ activity by calculating Range-FFT and Doppler-FFT. Then, we generate the spatial-temporal heatmap by accumulating the velocity of every distance in every Doppler-range map together. Next, we normalize the derived velocity information and present the velocity-distance relationship in time dimension. In this way, we transfer the original instantaneous velocity-distance relationship to a more comprehensive spatial-temporal heatmap which describes the process of a whole activity.

    • As shown in Figure attached, in each spatial-temporal heatmap, the horizontal axis represents the time duration of an activity repetition while the vertical axis represents the range of movement. The velocity is represented by color.

    • We create 2 folders to store two dataset respectively. In FA folder, there are 14 subfolders, each contains repetitions from the same fitness activity. In EA folder, there are 5 subfolders, each contains repetitions with different utensils.
    14 common daily activities and their corresponding folders

    Folder Name

    Activity Type

    Folder Name

    Activity Type

    FA1

    Crunches

    FA8

    Squats

    FA2

    Elbow plank and reach

    FA9

    Burpees

    FA3

    Leg raise

    FA10

    Chest squeezes

    FA4

    Lunges

    FA11

    High knees

    FA5

    Mountain climber

    FA12

    Side leg raise

    FA6

    Punches

    FA13

    Side to side chops

    FA7

    Push ups

    FA14

    Turning kicks

    5 eating activities and their corresponding folders

    Folder Name

    Activity Type

    EA1

    Eating with chopsticks

    EA2

    Eating with fork

    EA3

    Eating with bare hand

    EA4

    Eating with fork&knife

    EA5

    Eating with spoon

    Section 5: Raw Data and Data Processing Algorithms

    • We also provide the mmWave raw data (.mat format) stored in the same folder corresponding to the heatmap datasets. Each .mat file can store one set of activity repetitions (e.g., 4 repetations) from a same user.
      • For example: EA_d_p_i_u_j.mat:
        • d represents the data to collect the data.
        • p represents the environment to collect the data.
        • i represents the activity type index
        • u represents the user id
        • j represents the set index
    • We plan to provide the data processing algorithms (heatmap_generation.py) to load the mmWave raw data and generate the corresponding heatmap data.

    Section 6: Citations

    If your paper is related to our works, please cite our papers as follows.

    https://ieeexplore.ieee.org/document/9868878/

    Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.

    Bibtex:

    @inproceedings{xie2022mmfit,

    title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},

    author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},

    booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},

    pages={1--10},

    year={2022},

    organization={IEEE}

    }

    https://www.sciencedirect.com/science/article/abs/pii/S2352648321000532

    Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring." Smart Health 23 (2022): 100236.

    Bibtex:

    @article{xie2022mmeat,

    title={mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring},

    author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},

    journal={Smart Health},

    volume={23},

    pages={100236},

    year={2022},

    publisher={Elsevier}

    }

  19. N

    Grass Range, MT annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/grass-range-mt-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Grass Range
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Grass Range. The dataset can be utilized to gain insights into gender-based income distribution within the Grass Range population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Grass Range, among individuals aged 15 years and older with income, there were 26 men and 37 women in the workforce. Among them, 8 men were engaged in full-time, year-round employment, while 5 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 12.50% fell within the income range of under $24,999, while none of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 37.50% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range median household income by race. You can refer the same here

  20. B

    Data from: A comprehensive analysis of autocorrelation and bias in home...

    • borealisdata.ca
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael J. Noonan; Marlee A. Tucker; Christen H. Fleming; Tom S. Akre; Susan C. Alberts; Abdullahi H. Ali; Jeanne Altmann; Pamela C. Antunes; Jerrold L. Belant; Dean Beyer; Niels Blaum; Katrin Böhning-Gaese; Laury Cullen Jr.; Rogerio de Paula Cunha; Jasja Dekker; Jonathan Drescher-Lehman; Nina Farwig; Claudia Fichtel; Christina Fischer; Adam T. Ford; Jacob R. Goheen; René Janssen; Florian Jeltsch; Matthew Kauffman; Peter M. Kappeler; Flávia Koch; Scott LaPoint; A. Catherine Markham; Emilia Patricia Medici; Ronaldo G. Morato; Ran Nathan; Luiz Gustavo R. Oliveira-Santos; Kirk A. Olson; Bruce D. Patterson; Agustin Paviolo; Emiliano E. Ramalho; Sascha Rosner; Nuria Selva; Agnieszka Sergiel; Marina X. da Silva; Orr Spiegel; Peter Thompson; Wiebke Ullmann; Filip Zięba; Tomasz Zwijacz-Kozica; William F. Fagan; Thomas Mueller; Justin M. Calabrese (2021). Data from: A comprehensive analysis of autocorrelation and bias in home range estimation [Dataset]. http://doi.org/10.5683/SP2/OAJTAO
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2021
    Dataset provided by
    Borealis
    Authors
    Michael J. Noonan; Marlee A. Tucker; Christen H. Fleming; Tom S. Akre; Susan C. Alberts; Abdullahi H. Ali; Jeanne Altmann; Pamela C. Antunes; Jerrold L. Belant; Dean Beyer; Niels Blaum; Katrin Böhning-Gaese; Laury Cullen Jr.; Rogerio de Paula Cunha; Jasja Dekker; Jonathan Drescher-Lehman; Nina Farwig; Claudia Fichtel; Christina Fischer; Adam T. Ford; Jacob R. Goheen; René Janssen; Florian Jeltsch; Matthew Kauffman; Peter M. Kappeler; Flávia Koch; Scott LaPoint; A. Catherine Markham; Emilia Patricia Medici; Ronaldo G. Morato; Ran Nathan; Luiz Gustavo R. Oliveira-Santos; Kirk A. Olson; Bruce D. Patterson; Agustin Paviolo; Emiliano E. Ramalho; Sascha Rosner; Nuria Selva; Agnieszka Sergiel; Marina X. da Silva; Orr Spiegel; Peter Thompson; Wiebke Ullmann; Filip Zięba; Tomasz Zwijacz-Kozica; William F. Fagan; Thomas Mueller; Justin M. Calabrese
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Global
    Dataset funded by
    National Science Foundation
    Description

    AbstractHome range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive dataset of GPS locations from 369 individuals representing 27 species distributed across 5 continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function (AKDE), Silverman's rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ($\hat{N}_\mathrm{area}$) to quantify the information content of each dataset. We found that AKDE 95\% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the holdout sets by AKDE 95\% (or 50\%) estimates was 95.3\% (or 50.1\%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing $\hat{N}_\mathrm{area}$. To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small $\hat{N}_\mathrm{area}$. While 72\% of the 369 empirical datasets had \textgreater1000 total observations, only 4\% had an $\hat{N}_\mathrm{area}$ \textgreater1000, where 30\% had an $\hat{N}_\mathrm{area}$ \textless30. In this frequently encountered scenario of small $\hat{N}_\mathrm{area}$, AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data. Usage notesEmpirical GPS tracking dataAnonymised, empirical tracking data used to estimate home range areas based on various home range estimators.Anonymised_Data.zip

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Construction Sector Development Agency (2020). INSPIRE Priority Data Set (Compliant) - Species range [Dataset]. https://inspire-geoportal.ec.europa.eu/srv/api/records/bfcc7a93-dd66-453b-b7f5-9fc4a868e69f

INSPIRE Priority Data Set (Compliant) - Species range

Explore at:
www:download-1.0-http--download, www:link-1.0-http--link, ogc:wms-1.3.0-http-get-mapAvailable download formats
Dataset updated
Aug 26, 2020
Dataset provided by
State Service for Protected Areas under the Ministry of Environment
Construction Sector Development Agency
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

Area covered
Description

INSPIRE Priority Data Set (Compliant) - Species range

Search
Clear search
Close search
Google apps
Main menu