Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
INSPIRE Priority Data Set (Compliant) - Species range
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset has been generated using NYUSIM 3.0 mm-Wave channel simulator software, which takes into account atmospheric data such as rain rate, humidity, barometric pressure, and temperature. The input data was collected over the course of a year in South Asia. As a result, the dataset provides an accurate representation of the seasonal variations in mm-wave channel characteristics in these areas. The dataset includes a total of 2835 records, each of which contains T-R Separation Distance (m), Time Delay (ns), Received Power (dBm), Phase (rad), Azimuth AoD (degree), Elevation AoD (degree), Azimuth AoA (degree), Elevation, AoA (degree), RMS Delay Spread (ns), Season, Frequency and Path Loss (dB). Four main seasons have been considered in this dataset: Spring, Summer, Fall, and Winter. Each season is subdivided into three parts (i.e., low, medium, and high), to accurately include the atmospheric variations in a season. To simulate the path loss, realistic Tx and Rx height, NLoS environment, and mean human blockage attenuation effects have been taken into consideration. The data has been preprocessed and normalized to ensure consistency and ease of use. Researchers in the field of mm-wave communications and networking can use this dataset to study the impact of atmospheric conditions on mm-wave channel characteristics and develop more accurate models for predicting channel behavior. The dataset can also be used to evaluate the performance of different communication protocols and signal processing techniques under varying weather conditions. Note that while the data was collected specifically in South Asia region, the high correlation between the weather patterns in this region and other areas means that the dataset may also be applicable to other regions with similar atmospheric conditions.
Acknowledgements The paper in which the dataset was proposed is available on: https://ieeexplore.ieee.org/abstract/document/10307972
If you use this dataset, please cite the following paper:
Rashed Hasan Ratul, S. M. Mehedi Zaman, Hasib Arman Chowdhury, Md. Zayed Hassan Sagor, Mohammad Tawhid Kawser, and Mirza Muntasir Nishat, “Atmospheric Influence on the Path Loss at High Frequencies for Deployment of 5G Cellular Communication Networks,” 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2023, pp. 1–6. https://doi.org/10.1109/ICCCNT56998.2023.10307972
BibTeX ```bibtex @inproceedings{Ratul2023Atmospheric, author = {Ratul, Rashed Hasan and Zaman, S. M. Mehedi and Chowdhury, Hasib Arman and Sagor, Md. Zayed Hassan and Kawser, Mohammad Tawhid and Nishat, Mirza Muntasir}, title = {Atmospheric Influence on the Path Loss at High Frequencies for Deployment of {5G} Cellular Communication Networks}, booktitle = {2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)}, year = {2023}, pages = {1--6}, doi = {10.1109/ICCCNT56998.2023.10307972}, keywords = {Wireless communication; Fluctuations; Rain; 5G mobile communication; Atmospheric modeling; Simulation; Predictive models; 5G-NR; mm-wave propagation; path loss; atmospheric influence; NYUSIM; ML} }
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.
The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.
If you share or use this dataset, please cite [4] and [5] in any relevant documentation.
In addition, an image dataset for crack classification has also been published at [6].
References:
[1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873
[2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605
[3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434
[4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678
[5] (This dataset) Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044
[6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
File name definitions:
'...v_50_175_250_300...' - dataset for velocity ranges [50, 175] + [250, 300] m/s
'...v_175_250...' - dataset for velocity range [175, 250] m/s
'ANNdevelop...' - used to perform 9 parametric sub-analyses where, in each one, many ANNs are developed (trained, validated and tested) and the one yielding the best results is selected
'ANNtest...' - used to test the best ANN from each aforementioned parametric sub-analysis, aiming to find the best ANN model; this dataset includes the 'ANNdevelop...' counterpart
Where to find the input (independent) and target (dependent) variable values for each dataset/excel ?
input values in 'IN' sheet
target values in 'TARGET' sheet
Where to find the results from the best ANN model (for each target/output variable and each velocity range)?
open the corresponding excel file and the expected (target) vs ANN (output) results are written in 'TARGET vs OUTPUT' sheet
Check reference below (to be added when the paper is published)
https://www.researchgate.net/publication/328849817_11_Neural_Networks_-_Max_Disp_-_Railway_Beams
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description of the Credit Card Eligibility Data: Determining Factors
The Credit Card Eligibility Dataset: Determining Factors is a comprehensive collection of variables aimed at understanding the factors that influence an individual's eligibility for a credit card. This dataset encompasses a wide range of demographic, financial, and personal attributes that are commonly considered by financial institutions when assessing an individual's suitability for credit.
Each row in the dataset represents a unique individual, identified by a unique ID, with associated attributes ranging from basic demographic information such as gender and age, to financial indicators like total income and employment status. Additionally, the dataset includes variables related to familial status, housing, education, and occupation, providing a holistic view of the individual's background and circumstances.
| Variable | Description |
|---|---|
| ID | An identifier for each individual (customer). |
| Gender | The gender of the individual. |
| Own_car | A binary feature indicating whether the individual owns a car. |
| Own_property | A binary feature indicating whether the individual owns a property. |
| Work_phone | A binary feature indicating whether the individual has a work phone. |
| Phone | A binary feature indicating whether the individual has a phone. |
| A binary feature indicating whether the individual has provided an email address. | |
| Unemployed | A binary feature indicating whether the individual is unemployed. |
| Num_children | The number of children the individual has. |
| Num_family | The total number of family members. |
| Account_length | The length of the individual's account with a bank or financial institution. |
| Total_income | The total income of the individual. |
| Age | The age of the individual. |
| Years_employed | The number of years the individual has been employed. |
| Income_type | The type of income (e.g., employed, self-employed, etc.). |
| Education_type | The education level of the individual. |
| Family_status | The family status of the individual. |
| Housing_type | The type of housing the individual lives in. |
| Occupation_type | The type of occupation the individual is engaged in. |
| Target | The target variable for the classification task, indicating whether the individual is eligible for a credit card or not (e.g., Yes/No, 1/0). |
Researchers, analysts, and financial institutions can leverage this dataset to gain insights into the key factors influencing credit card eligibility and to develop predictive models that assist in automating the credit assessment process. By understanding the relationship between various attributes and credit card eligibility, stakeholders can make more informed decisions, improve risk assessment strategies, and enhance customer targeting and segmentation efforts.
This dataset is valuable for a wide range of applications within the financial industry, including credit risk management, customer relationship management, and marketing analytics. Furthermore, it provides a valuable resource for academic research and educational purposes, enabling students and researchers to explore the intricate dynamics of credit card eligibility determination.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of South Range across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.54% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here
Facebook
TwitterThis is the dataset released as companion for the paper “Explaining the Product Range Effect in Purchase Data“, presented at the BigData 2013 conference.
Pennacchioli, D., Coscia, M., Rinzivillo, S., Pedreschi, D. and Giannotti, F., Explaining the Product Range Effect in Purchase Data. In BigData, 2013.
Foto von Eduardo Soares auf Unsplash
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 52.63% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here
Facebook
Twitterhttps://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html
A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens’ when they go through pop-holes; hence they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens’ range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all < 40g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens’ range use behaviour. Our dataset includes the files needed to calibrate the system (supplementary materials), the data files used in the publication and the associated codes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
This mmWave Datasets are used for fitness activity identification. This dataset (FA Dataset) contains 14 common fitness daily activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.
Format: .png format
Section 1: Device Configuration
Section 2: Data Format
We provide our mmWave data in heatmaps for this dataset. The data file is in the png format. The details are shown in the following:
Section 3: Experimental Setup
Section 4: Data Description
14 common daily activities and their corresponding files
File Name Activity Type File Name Activity Type
FA1 Crunches FA8 Squats
FA2 Elbow plank and reach FA9 Burpees
FA3 Leg raise FA10 Chest squeezes
FA4 Lunges FA11 High knees
FA5 Mountain climber FA12 Side leg raise
FA6 Punches FA13 Side to side chops
FA7 Push ups FA14 Turning kicks
Section 5: Raw Data and Data Processing Algorithms
Section 6: Citations
If your paper is related to our works, please cite our papers as follows.
https://ieeexplore.ieee.org/document/9868878/
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.
Bibtex:
@inproceedings{xie2022mmfit,
title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},
pages={1--10},
year={2022},
organization={IEEE}
}
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains 2,000 rows of data from coffee shops, offering detailed insights into factors that influence daily revenue. It includes key operational and environmental variables that provide a comprehensive view of how business activities and external conditions affect sales performance. Designed for use in predictive analytics and business optimization, this dataset is a valuable resource for anyone looking to understand the relationship between customer behavior, operational decisions, and revenue generation in the food and beverage industry.
The dataset features a variety of columns that capture the operational details of coffee shops, including customer activity, store operations, and external factors such as marketing spend and location foot traffic.
Number of Customers Per Day
Average Order Value ($)
Operating Hours Per Day
Number of Employees
Marketing Spend Per Day ($)
Location Foot Traffic (people/hour)
The dataset spans a wide variety of operational scenarios, from small neighborhood coffee shops with limited traffic to larger, high-traffic locations with extensive marketing budgets. This variety allows for exploring different predictive modeling strategies. Key insights that can be derived from the data include:
The dataset offers a wide range of applications, especially in predictive analytics, business optimization, and forecasting:
For coffee shop owners, managers, and analysts in the food and beverage industry, this dataset provides an essential tool for refining daily operations and boosting profitability. Insights gained from this data can help:
This dataset is also ideal for aspiring data scientists and machine learning practitioners looking to apply their skills to real-world business problems in the food and beverage sector.
The Coffee Shop Revenue Prediction Dataset is a versatile and comprehensive resource for understanding the dynamics of daily sales performance in coffee shops. With a focus on key operational factors, it is perfect for building predictive models, ...
Facebook
TwitterThese are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains global tidal variables in form of GeoTIFF raster layers generated by Vestbo et al (2018). The raster layers were generated using the Finite Element Solution oceanographic model (FES2012), provided by Noveltis, Legos and CLS Space Oceanography Division and distributed by AVISO+ (http://www.aviso.altimetry.fr). FES2012 includes overall 32 tidal constituents distributed on 1/16° grids (amplitude and phase), corresponding to 3.75 arc-minutes.
The dataset contains the following five raster layers, plus the algorithm for calling the FES program (written in C).
(1) Annual average cycle amplitude in cm. (2) Maximum annual cycle amplitude in cm. (3) Annual standard deviation of cycle amplitude in cm. (4) Annual average duration of tidal cycles in hours. (5) Annual number of cycles.
A detailed description of the data generation procedure is provided in the original paper (Vestbo et al 2018). References: Vestbo S, Obst M, Quevedo-Fernandez F, Intanai I, Funch P (2018). Present and Potential Future Distributions of Asian Horseshoe Crabs Determine Areas for Conservation. Frontiers in Marine Science. doi: 10.3389/fmars.2018.00164 https://www.frontiersin.org/articles/10.3389/fmars.2018.00164/abstract
The dataset contains the following five raster layers, plus the algorithm for calling the FES program (written in C): (1) Annual average cycle amplitude in cm (2) Maximum annual cycle amplitude in cm (3) Annual standard deviation of cycle amplitude in cm (4) Annual average duration of tidal cycles in hours (5) Annual number of cycles
Facebook
TwitterRaw data to calculate rate of adaptationRaw dataset for rate of adaptation calculations (Figure 1) and related statistics.dataall.csvR code to analyze raw data for rate of adaptationCompetition Analysis.RRaw data to calculate effective population sizesdatacount.csvR code to analayze effective population sizesR code used to analyze effective population sizes; Figure 2Cell Count Ne.RR code to determine our best estimate of the dominance coefficient in each environmentR code to produce figures 3, S4, S5 -- what is the best estimate of dominance? Note, competition and effective population size R code must be run first in the same session.what is h.R
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
For each image, we provide a pixel-wise instance segmentation for all separable neurons.
Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
The segmentation mask for each neuron is stored in a separate channel.
The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9conda activate flylight-env
pip install zarr
import zarrraw = zarr.open(seg = zarr.open(
# optional:import numpy as npraw_np = np.array(raw)
Zarr arrays are read lazily on-demand.
Many functions that expect numpy arrays also work with zarr arrays.
Optionally, the arrays can also explicitly be converted to numpy arrays.
We recommend to use napari to view the image data.
pip install "napari[all]"
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)for idx, gt in enumerate(gts): viewer.add_labels( gt, rendering='translucent', blending='additive', name=f'gt_{idx}')viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')napari.run()
python view_data.py
For more information on our selected metrics and formal definitions please see our paper.
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
For detailed information on the methods and the quantitative results please see our paper.
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe,
title = {FISBe: A real-world benchmark dataset for instance
segmentation of long-range thin filamentous structures},
author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
year = 2024,
eprint = {2404.00130},
archivePrefix ={arXiv},
primaryClass = {cs.CV}
}
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
discussions.
P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
This work was co-funded by Helmholtz Imaging.
There have been no changes to the dataset so far.
All future change will be listed on the changelog page.
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
Facebook
TwitterA low cost, short range quantum key distribution system/Figure 11-16
Facebook
TwitterBiomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
This mmWave Datasets are used for activity verification. It contains two datasets. The first dataset (FA Dataset) contains 14 common daily activities. This second one (EA Dataset) contains 5 kinds of eating activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.
Format: .png format
Section 1: Device Configuration
Section 2: Data Format
We provide our mmWave data in heatmaps for the two datasets. The data file is in the png format. The details are shown in the following:
FA Dataset
EA Dataset
Section 3: Experimental Setup
FA Dataset
EA Dataset
Section 4: Data Description
|
Folder Name |
Activity Type |
Folder Name | Activity Type |
|
FA1 |
Crunches |
FA8 |
Squats |
|
FA2 |
Elbow plank and reach |
FA9 |
Burpees |
|
FA3 |
Leg raise |
FA10 |
Chest squeezes |
|
FA4 |
Lunges |
FA11 |
High knees |
|
FA5 |
Mountain climber |
FA12 |
Side leg raise |
|
FA6 |
Punches |
FA13 |
Side to side chops |
|
FA7 |
Push ups |
FA14 |
Turning kicks |
|
Folder Name |
Activity Type |
|
EA1 |
Eating with chopsticks |
|
EA2 |
Eating with fork |
|
EA3 |
Eating with bare hand |
|
EA4 |
Eating with fork&knife |
|
EA5 |
Eating with spoon |
Section 5: Raw Data and Data Processing Algorithms
Section 6: Citations
If your paper is related to our works, please cite our papers as follows.
https://ieeexplore.ieee.org/document/9868878/
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.
Bibtex:
@inproceedings{xie2022mmfit,
title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},
pages={1--10},
year={2022},
organization={IEEE}
}
https://www.sciencedirect.com/science/article/abs/pii/S2352648321000532
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring." Smart Health 23 (2022): 100236.
Bibtex:
@article{xie2022mmeat,
title={mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
journal={Smart Health},
volume={23},
pages={100236},
year={2022},
publisher={Elsevier}
}
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Grass Range. The dataset can be utilized to gain insights into gender-based income distribution within the Grass Range population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range median household income by race. You can refer the same here
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
AbstractHome range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive dataset of GPS locations from 369 individuals representing 27 species distributed across 5 continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function (AKDE), Silverman's rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ($\hat{N}_\mathrm{area}$) to quantify the information content of each dataset. We found that AKDE 95\% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the holdout sets by AKDE 95\% (or 50\%) estimates was 95.3\% (or 50.1\%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing $\hat{N}_\mathrm{area}$. To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small $\hat{N}_\mathrm{area}$. While 72\% of the 369 empirical datasets had \textgreater1000 total observations, only 4\% had an $\hat{N}_\mathrm{area}$ \textgreater1000, where 30\% had an $\hat{N}_\mathrm{area}$ \textless30. In this frequently encountered scenario of small $\hat{N}_\mathrm{area}$, AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data. Usage notesEmpirical GPS tracking dataAnonymised, empirical tracking data used to estimate home range areas based on various home range estimators.Anonymised_Data.zip
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
INSPIRE Priority Data Set (Compliant) - Species range