44 datasets found
  1. e

    1st quartile of the equivalised disposable administrative income of lone men...

    • data.europa.eu
    csv, json
    Updated Jun 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IWEPS (2024). 1st quartile of the equivalised disposable administrative income of lone men under 65 [Dataset]. https://data.europa.eu/data/datasets/831110-22
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jun 22, 2024
    Dataset authored and provided by
    IWEPS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Administrative disposable income is a third pillar of the income statistics that Statbel publishes, alongside "\2" and poverty indicators based on "\2", and allows answering other types of questions than SILC and tax statistics.

    SILC uses "\2" at the household level as a concept of income, cumulating the incomes of all household members. In the next step, this disposable income is converted into equivalised disposable income to take into account the composition of the household. Based on the SILC, at-risk-of-poverty figures are published up to the provincial level. However, the sample size does not allow for analyses at a more detailed geographical level. However, statistics based on tax revenues are available up to the level of the statistical sector, but are limited to taxable income in the context of personal income tax returns. Non-taxable income is not taken into account and there is also no correction according to the composition of the household.

    The variable "administrative equivalised disposable income" responds to a growing demand for income and poverty figures at the communal level. It uses an income concept based on administrative sources that tries to correspond as much as possible to that of SILC. For the population as a whole, both taxable and non-taxable income are taken into account. They are added together for all members of the household in order to obtain an administrative disposable income for the household. After adjusting for the composition of the household, the variable "administrative equivalised disposable income" is established. This can be used to calculate income and poverty figures at the communal level.

    Indicators are not disseminated for an entity and a category when there are at least 15% of people whose equivalent administrative disposable income is missing or when there are less than 100 people with a valid income.

    More information on the page "\2" of Statbel

  2. f

    Multivariable regression analyses showing changes in outcomes (and 95%...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan M. Williams; Richard M. Martin; George Davey Smith; K. G. M. M. Alberti; Yoav Ben-Shlomo; Anne McCarthy (2023). Multivariable regression analyses showing changes in outcomes (and 95% confidence intervals) at follow-up (23–27 y) per quartile of formula/cow's milk intake at 10 days, 6 weeks and 3 months during infancy*. [Dataset]. http://doi.org/10.1371/journal.pone.0034161.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Dylan M. Williams; Richard M. Martin; George Davey Smith; K. G. M. M. Alberti; Yoav Ben-Shlomo; Anne McCarthy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Model 1: adjusted for age at follow-up, gender, intervention group.Model 2: as model 1 plus adjustment for z-score of birth weight, father's social class, lifetime smoking, alcohol intake and exercise.1Insulin Sensitivity Index whilst fasting = 104/(I0×G0).2Corrected Insulin Response at 30 minutes = 100×I30/(G30×(G30−70).†Outcomes were natural-log transformed, and coefficients and confidence intervals represent a change in ratio of geometric means per quartile of formula/cows' milk intake.*Reference category is those in the lowest quartile of infant formula/cow's milk intake, amongst those who received infant formula/cow's milk.

  3. f

    Cost predictions at quartile measures of quality: Summed events measure of...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hartmann, Christine W.; Snow, A. Lynn; Carey, Kathleen; Zhao, Shibei (2018). Cost predictions at quartile measures of quality: Summed events measure of quality. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000684276
    Explore at:
    Dataset updated
    Sep 19, 2018
    Authors
    Hartmann, Christine W.; Snow, A. Lynn; Carey, Kathleen; Zhao, Shibei
    Description

    Cost predictions at quartile measures of quality: Summed events measure of quality.

  4. COVID-19 Vaccine Progress Dashboard Data by ZIP Code

    • data.ca.gov
    • data.chhs.ca.gov
    • +1more
    csv, xlsx, zip
    Updated Nov 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Vaccine Progress Dashboard Data by ZIP Code [Dataset]. https://data.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code
    Explore at:
    csv, zip, xlsxAvailable download formats
    Dataset updated
    Nov 30, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.

    Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables.

    Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021.

    This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data.

    This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score.

    This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4.

    The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting.

    These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.

    For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.

  5. Gender, Age, and Emotion Detection from Voice

    • kaggle.com
    zip
    Updated May 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohit Zaman (2021). Gender, Age, and Emotion Detection from Voice [Dataset]. https://www.kaggle.com/rohitzaman/gender-age-and-emotion-detection-from-voice
    Explore at:
    zip(967820 bytes)Available download formats
    Dataset updated
    May 29, 2021
    Authors
    Rohit Zaman
    Description

    Context

    Our target was to predict gender, age and emotion from audio. We found audio labeled datasets on Mozilla and RAVDESS. So by using R programming language 20 statistical features were extracted and then after adding the labels these datasets were formed. Audio files were collected from "Mozilla Common Voice" and “Ryerson AudioVisual Database of Emotional Speech and Song (RAVDESS)”.

    Content

    Datasets contains 20 feature columns and 1 column for denoting the label. The 20 statistical features were extracted through the Frequency Spectrum Analysis using R programming Language. They are: 1) meanfreq - The mean frequency (in kHz) is a pitch measure, that assesses the center of the distribution of power across frequencies. 2) sd - The standard deviation of frequency is a statistical measure that describes a dataset’s dispersion relative to its mean and is calculated as the variance’s square root. 3) median - The median frequency (in kHz) is the middle number in the sorted, ascending, or descending list of numbers. 4) Q25 - The first quartile (in kHz), referred to as Q1, is the median of the lower half of the data set. This means that about 25 percent of the data set numbers are below Q1, and about 75 percent are above Q1. 5) Q75 - The third quartile (in kHz), referred to as Q3, is the central point between the median and the highest distributions. 6) IQR - The interquartile range (in kHz) is a measure of statistical dispersion, equal to the difference between 75th and 25th percentiles or between upper and lower quartiles. 7) skew - The skewness is the degree of distortion from the normal distribution. It measures the lack of symmetry in the data distribution. 8) kurt - The kurtosis is a statistical measure that determines how much the tails of distribution vary from the tails of a normal distribution. It is actually the measure of outliers present in the data distribution. 9) sp.ent - The spectral entropy is a measure of signal irregularity that sums up the normalized signal’s spectral power. 10) sfm - The spectral flatness or tonality coefficient, also known as Wiener entropy, is a measure used for digital signal processing to characterize an audio spectrum. Spectral flatness is usually measured in decibels, which, instead of being noise-like, offers a way to calculate how tone-like a sound is. 11) mode - The mode frequency is the most frequently observed value in a data set. 12) centroid - The spectral centroid is a metric used to describe a spectrum in digital signal processing. It means where the spectrum’s center of mass is centered. 13) meanfun - The meanfun is the average of the fundamental frequency measured across the acoustic signal. 14) minfun - The minfun is the minimum fundamental frequency measured across the acoustic signal 15) maxfun - The maxfun is the maximum fundamental frequency measured across the acoustic signal. 16) meandom - The meandom is the average of dominant frequency measured across the acoustic signal. 17) mindom - The mindom is the minimum of dominant frequency measured across the acoustic signal. 18) maxdom - The maxdom is the maximum of dominant frequency measured across the acoustic signal 19) dfrange - The dfrange is the range of dominant frequency measured across the acoustic signal. 20) modindx - the modindx is the modulation index, which calculates the degree of frequency modulation expressed numerically as the ratio of the frequency deviation to the frequency of the modulating signal for a pure tone modulation.

    Acknowledgements

    Gender and Age Audio Data Souce: Link: https://commonvoice.mozilla.org/en Emotion Audio Data Souce: Link : https://smartlaboratory.org/ravdess/

  6. s

    Northern Ireland Annual Descriptive House Price Statistics (Electoral Ward...

    • ckan.publishing.service.gov.uk
    Updated Feb 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Northern Ireland Annual Descriptive House Price Statistics (Electoral Ward Level) - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/northern-ireland-annual-descriptive-house-price-statistics-electoral-ward-level
    Explore at:
    Dataset updated
    Feb 29, 2020
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Ireland, Northern Ireland
    Description

    Annual descriptive price statistics for each calendar year 2005 – 2024 for 462 electoral wards within 11 Local Government Districts. The statistics include: • Minimum sale price • Lower quartile sale price • Median sale price • Simple Mean sale price • Upper Quartile sale price • Maximum sale price • Number of verified sales Prices are available where at least 30 sales were recorded in the area within the calendar year which could be included in the regression model i.e. the following sales are excluded: • Non Arms-Length sales • sales of properties where the habitable space are less than 30m2 or greater than 1000m2 • sales less than £20,000. Annual median or simple mean prices should not be used to calculate the property price change over time. The quality (where quality refers to the combination of all characteristics of a residential property, both physical and locational) of the properties that are sold may differ from one time period to another. For example, sales in one quarter could be disproportionately skewed towards low-quality properties, therefore producing a biased estimate of average price. The median and simple mean prices are not ‘standardised’ and so the varying mix of properties sold in each quarter could give a false impression of the actual change in prices. In order to calculate the pure property price change over time it is necessary to compare like with like, and this can only be achieved if the ‘characteristics-mix’ of properties traded is standardised. To calculate pure property change over time please use the standardised prices in the NI House Price Index Detailed Statistics file.

  7. Z

    Data set - Measured in a context : making sense of open access book data

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ronald Snijder (2023). Data set - Measured in a context : making sense of open access book data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7799222
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    OAPEN Foundation
    Authors
    Ronald Snijder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For more than a decade, open access book platforms have been distributing titles in order to maximise their impact. Each platform offers some form of usage data, showcasing the success of their offering. However, the numbers alone are not sufficient to convey how well a book is actually performing.

    Our data set is consists of 18,014 books and chapters. The selected titles have been added to the OAPEN Library collection before 1 January 2022, and the usage data of twelve months (January to December 2022) has been captured. During that period, this collection of books and chapters has been downloaded more than 10 million times. Each title has been linked to one broad subject and the title’s language has been coded as either English, German or other languages.

    The titles are rated using the TOANI score.

    The acronym stands for Transparent Open Access Normalised Index. The transparency is based on the application of clear regulations, and by making all data used visible. The data is normalised, by using a common scale for the complete collection of an open access book platform. Additionally, there are only three possible values to score the titles: average, less than average and more than average. This index is set up to provide a clear and simple answer to the question whether an open access book has made an impact. It is not meant to give a sense of false accuracy; the complexities surrounding this issue cannot be measured in several decimal places.

    The TOANI score is based on the following principles:

    Select only titles that have been available for at least 12 months;

    Use the usage data of the same 12 months period for the whole collection;

    Each title is assigned one – high level – subject;

    Each title is assigned one language;

    All titles are grouped based on subject and language;

    The groups should consists of at least 100 titles;

    The following data must be made available for each title:

    Platform

    Total number of titles in the group

    Subject

    Language

    Period used for the measurement

    Minimum value, maximum value, median, first and third quartile of the platform’s usage data

    Based on the previous, titles are classified as:

    “Less than average” – First quartile; 25 % of the titles

    “Average” – Second and third quartile; 50% of the titles

    “More than average” – Fourth quartile; 25 % of the titles

  8. s

    Northern Ireland Annual Descriptive House Price Statistics (LGD Level) -...

    • ckan.publishing.service.gov.uk
    Updated Feb 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Northern Ireland Annual Descriptive House Price Statistics (LGD Level) - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/northern-ireland-annual-descriptive-house-price-statistics-lgd-level
    Explore at:
    Dataset updated
    Feb 22, 2020
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Ireland, Northern Ireland
    Description

    Annual descriptive price statistics for each calendar year 2005 – 2024 for 11 Local Government Districts in Northern Ireland. The statistics include: • Minimum sale price • Lower quartile sale price • Median sale price • Simple Mean sale price • Upper Quartile sale price • Maximum sale price • Number of verified sales Prices are available where at least 30 sales were recorded in the area within the calendar year which could be included in the regression model i.e. the following sales are excluded: • Non Arms-Length sales • sales of properties where the habitable space are less than 30m2 or greater than 1000m2 • sales less than £20,000. Annual median or simple mean prices should not be used to calculate the property price change over time. The quality (where quality refers to the combination of all characteristics of a residential property, both physical and locational) of the properties that are sold may differ from one time period to another. For example, sales in one quarter could be disproportionately skewed towards low-quality properties, therefore producing a biased estimate of average price. The median and simple mean prices are not ‘standardised’ and so the varying mix of properties sold in each quarter could give a false impression of the actual change in prices. In order to calculate the pure property price change over time it is necessary to compare like with like, and this can only be achieved if the ‘characteristics-mix’ of properties traded is standardised. To calculate pure property change over time please use the standardised prices in the NI House Price Index Detailed Statistics file.

  9. B

    2016 Census of Canada - Housing Suitability and Shelter-cost-to-income Ratio...

    • borealisdata.ca
    Updated Apr 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). 2016 Census of Canada - Housing Suitability and Shelter-cost-to-income Ratio by Status of Primary Household Maintainer for BC CSDs [custom tabulation] [Dataset]. http://doi.org/10.5683/SP2/6OEKPA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 9, 2021
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    British Columbia, Canada
    Description

    This dataset includes one dataset which was custom ordered from Statistics Canada.The table includes information on housing suitability and shelter-cost-to-income ratio by number of bedrooms, housing tenure, status of primary household maintainer, household type, and income quartile ranges for census subdivisions in British Columbia. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and variables: Geography: Non-reserve CSDs in British Columbia - 299 geographies The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. All the geographies requested for this tabulation have been cleared for the release of income data and have a GNR under 50%. Housing Tenure Including Presence of Mortgage (5) 1. Total – Private non-band non-farm off-reserve households with an income greater than zero by housing tenure 2. Households who own 3. With a mortgage1 4. Without a mortgage 5. Households who rent Note: 1) Presence of mortgage - Refers to whether the owner households reported mortgage or loan payments for their dwelling. 2015 Before-tax Household Income Quartile Ranges (5) 1. Total – Private households by quartile ranges1, 2, 3 2. Count of households under or at quartile 1 3. Count of households between quartile 1 and quartile 2 (median) (including at quartile 2) 4. Count of households between quartile 2 (median) and quartile 3 (including at quartile 3) 5. Count of households over quartile 3 Notes: 1) A private household will be assigned to a quartile range depending on its CSD-level location and depending on its tenure (owned and rented). Quartile ranges for owned households in a specific CSD are delimited by the 2015 before-tax income quartiles of owned households with an income greater than zero and residing in non-farm off-reserve dwellings in that CSD. Quartile ranges for rented households in a specific CSD are delimited by the 2015 before-tax income quartiles of rented households with an income greater than zero and residing in non-farm off-reserve dwellings in that CSD. 2) For the income quartiles dollar values (the delimiters) please refer to Table 1. 3) Quartiles 1 to 3 are suppressed if the number of actual records used in the calculation (not rounded or weighted) is less than 16. For cases in which the renters’ quartiles or the owners’ quartiles (figures from Table 1) of a CSD are suppressed the CSD is assigned to a quartile range depending on the provincial renters’ or owners’ quartile figures. Number of Bedrooms (Unit Size) (6) 1. Total – Private households by number of bedrooms1 2. 0 bedrooms (Bachelor/Studio) 3. 1 bedroom 4. 2 bedrooms 5. 3 bedrooms 6. 4 bedrooms Note: 1) Dwellings with 5 bedrooms or more included in the total count only. Housing Suitability (6) 1. Total - Housing suitability 2. Suitable 3. Not suitable 4. One bedroom shortfall 5. Two bedroom shortfall 6. Three or more bedroom shortfall Note: 1) 'Housing suitability' refers to whether a private household is living in suitable accommodations according to the National Occupancy Standard (NOS); that is, whether the dwelling has enough bedrooms for the size and composition of the household. A household is deemed to be living in suitable accommodations if its dwelling has enough bedrooms, as calculated using the NOS. 'Housing suitability' assesses the required number of bedrooms for a household based on the age, sex, and relationships among household members. An alternative variable, 'persons per room,' considers all rooms in a private dwelling and the number of household members. Housing suitability and the National Occupancy Standard (NOS) on which it is based were developed by Canada Mortgage and Housing Corporation (CMHC) through consultations with provincial housing agencies. Shelter-cost-to-income-ratio (4) 1. Total – Private non-band non-farm off-reserve households with an income greater than zero 2. Spending less than 30% of households total income on shelter costs 3. Spending 30% or more of households total income on shelter costs 4. Spending 50% or more of households total income on shelter costs Note: 'Shelter-cost-to-income...

  10. NY State Community Health Indicators

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). NY State Community Health Indicators [Dataset]. https://www.kaggle.com/datasets/thedevastator/ny-state-community-health-indicators
    Explore at:
    zip(51836 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    Area covered
    New York
    Description

    NY State Community Health Indicators

    Obesity and Diabetes Related Indicators 2008–2012

    By Health Data New York [source]

    About this dataset

    This dataset contains New York State county-level data on obesity and diabetes related indicators from 2008 - 2012. It includes information about counties' population health status, such as the number of events, percentage/rate, 95% confidence interval, measured units and more. Analyzing this data provides insight into how communities across New York State are impacted by these diseases and how we can work together to create healthier living environments for everyone. This dataset is released under a Terms of Service license agreement – make sure to read through and understand the details if you plan to use it in any research or commercial application

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains county-level data on obesity and diabetes related indicators in New York State. As such, it can be used to research indicators related to general health in various counties of the state.

    To use this dataset effectively, first become familiar with the columns included and their meanings: - County Name: The name of the county. (String) - County Code: The code of the county. (Integer) - Region Name: The name of the region. (String) - Indicator Number: The number of the indicator. (Integer) - Total Event Counts: The total number of events related to the indicator.(Integer)
    - Denominator: The denominator used to calculate the percentage/rate.(Integer) - Denominator Note: Any additional notes related to the denominator.(String) - Measure Unit :The unit of measure used for this rate/percentage .(String). - Percentage/Rate :The percentage/rate calculated using denominator and observed count data .(Float). - 95% CI :The 95% confidence interval associated with any defined rate or percentage.(Float). - Data Comments :Any additional comments relevant to this data source or indicator .(String ). - Data Years :Years covered by this particular indicator observation .(String ). - Data Sources :Sources from which we have drawn our data for indicators involving counties from different regions .(Strings). - Quartile :Quartiles are derived when all geographic entities are ranked according to a specific metric score ,and are then cut into quartiles based on speed score =0= bottom quarter; =1= middle two quarters combined; =2= top quarter..(Integer). - Mapping Distribution ;A visual representation that includes mapping details regarding how Indicators relating either disease rates or characteristics are positioned across States, regions and counties as well as any trends plus other pertinent mapping information ,such as health resource availability.(In pair plot form form otherwise text will present an informational string.). Location ;Area where distribution around space occurs..e point feature with a single location ID retrieved from geoplanet proxy service.. (string ).

    Using these columns, you can find out demographic information about your chosen county such as obesity rate and diabetes incidence etc., enabling you better understand its health situation overall. Additionally,this dataset also provides important comparison features such as quartiles rankings

    Research Ideas

    • Analysing the geographic distribution of obesity and diabetes related indicators by county in New York State, in order to identify areas which may require greater levels of intervention and preventative health measures.

    • Evaluating trends over time for different counties to assess whether policies or programs have had an impact on indicators relating to obesity and diabetes within the given area.

    • Using machine learning techniques such as clustering analysis or predictive modelling, to identify patterns within the data which can be used to better inform preventative health interventions across New York State

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: community-health-obesity-and-diabetes-related-indicators-2008-2012-1.csv | Column name | Description | |:-------------------------|:-----------------------------------------------------------------------------------------| | **Count...

  11. House Price Prediction Treated Dataset

    • kaggle.com
    zip
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vinicius Araujo (2024). House Price Prediction Treated Dataset [Dataset]. https://www.kaggle.com/datasets/aravinii/house-price-prediction-treated-dataset
    Explore at:
    zip(286105 bytes)Available download formats
    Dataset updated
    Oct 22, 2024
    Authors
    Vinicius Araujo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍

    Same dataset as "House Sales in King County, USA", but with treated content and with a split version (train-test) allowing direct use in machine learning models.

    We have 14 columns in the dataset, as it follows:

    • date: Date of the home sale
    • price: Price of each home sold
    • bedrooms: Number of bedrooms
    • bathrooms: Number of bathrooms
    • living_in_m2: Square meters of the apartments interior living space
    • nice_view: A flag that indicates the view's quality of a property
    • perfect_condition: A flag that indicates the maximum index of the apartment condition
    • grade: An index from 1 to 5, where 1 falls short of quality level and 5 have a high quality level of construction and design
    • has_basement: A flag indicating whether or not a property has a basement
    • renovated: A flag if the property was renovated
    • has_lavatory: Check for the presence of these incomplete/secondary bathrooms (bathtub, sink, toilet)
    • single_floor: A flag indicating whether the property had only one floor
    • month: The month of the home sale
    • quartile_zone: A quartile distribution index of the most expensive zip codes, where 1 means less expansive and 4 most expansive.
  12. Pay - male and female employees - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Mar 11, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2016). Pay - male and female employees - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/pay-male-and-female-employees-cbc
    Explore at:
    Dataset updated
    Mar 11, 2016
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Gender pay gap reporting is due to be introduced nationally for all employers from 2017. This shows a snapshot of the Council as at March 2016. All staff are included in the calculation for the mean and median hourly earnings. The quartile salary information shows the amount of men and women in each quartile. This is the range from the lowest paid employee to the highest paid employee split into 4 equal parts.

  13. g

    COVID-19 Vaccine Progress Dashboard Data by ZIP Code | gimi9.com

    • gimi9.com
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COVID-19 Vaccine Progress Dashboard Data by ZIP Code | gimi9.com [Dataset]. https://gimi9.com/dataset/california_covid-19-vaccine-progress-dashboard-data-by-zip-code/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Description

    Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses. Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables. Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021. This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data. This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score. This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4. The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting. These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons. For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.

  14. r

    ABS - Index of Household Advantage and Disadvantage (IHAD) (SA3) 2016

    • researchdata.edu.au
    null
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of the Commonwealth of Australia - Australian Bureau of Statistics (2023). ABS - Index of Household Advantage and Disadvantage (IHAD) (SA3) 2016 [Dataset]. https://researchdata.edu.au/abs-index-household-sa3-2016/2748639
    Explore at:
    nullAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    Australian Urban Research Infrastructure Network (AURIN)
    Authors
    Government of the Commonwealth of Australia - Australian Bureau of Statistics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset presents information from 2016 at the household level; the percentage of households within each Index of Household Advantage and Disadvantage (IHAD) quartile for Statistical Area Level 3 (SA3) 2016 boundaries.

    The IHAD is an experimental analytical index developed by the Australian Bureau of Statistics (ABS) that provides a summary measure of relative socio-economic advantage and disadvantage for households. It utilises information from the 2016 Census of Population and Housing.

    IHAD quartiles: All households are ordered from lowest to highest disadvantage, the lowest 25% of households are given a quartile number of 1, the next lowest 25% of households are given a quartile number of 2 and so on, up to the highest 25% of households which are given a quartile number of 4. This means that households are divided up into four groups, depending on their score.

    This data is ABS data (catalogue number: 4198.0) used with permission from the Australian Bureau of Statistics.

    For more information please visit the Australian Bureau of Statistics.

    Please note:

    • AURIN has generated this dataset through aggregating the original SA1 level data (with calculated number of households/quartile) to SA3 level.

    • The number of occupied private dwellings, and number of households in each of the IHAD quartiles for each SA3 were calculated by aggregating the values of each of those specified columns from the SA1 dataset. Percentages of households in each of the IHAD quartiles were calculated for each SA3 from these aggregated totals.

    • A household is defined as one or more persons, at least one of whom is at least 15 years of age, usually resident in the same private dwelling. All occupants of a dwelling form a household. For Census purposes, the total number of households is equal to the total number of occupied private dwellings (Census of Population and Housing: Census Dictionary, 2016 cat. no. 2901.0).

    • IHAD output has been confidentialised to meet ABS requirements. In line with standard ABS procedures to minimise the risk of identifying individuals, a technique has been applied to randomly adjust cell values of the output tables. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals.

  15. f

    Baseline (visit 1) characteristics of ARIC participants according to...

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen P. Juraschek; Ghanshyam Palamaner Subash Shantha; Audrey Y. Chu; Edgar R. Miller III; Eliseo Guallar; Ron C. Hoogeveen; Christie M. Ballantyne; Frederick L. Brancati; Maria Inês Schmidt; James S. Pankow; J. Hunter Young (2023). Baseline (visit 1) characteristics of ARIC participants according to quartiles of plasma lactate. [Dataset]. http://doi.org/10.1371/journal.pone.0055113.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Stephen P. Juraschek; Ghanshyam Palamaner Subash Shantha; Audrey Y. Chu; Edgar R. Miller III; Eliseo Guallar; Ron C. Hoogeveen; Christie M. Ballantyne; Frederick L. Brancati; Maria Inês Schmidt; James S. Pankow; J. Hunter Young
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The ranges of the plasma lactate quartiles were determined using specimens from the weighted random cohort sample.†Represents the maximum number of participants in each category. Actual number may vary due to missing data.‡Plasma lactate mg/dL may be converted to mmol/L by multiplying by 0.111.§P-trend evaluated with linear or logistic regression using the median lactate value for each quartile as an ordinal variable.∧There were no participants with coronary heart disease in quartile 1. SE not calculated due to small sample size.*Represents geometric mean and interquartile range.Note: LDL represents low density lipoprotein. HDL represents high density lipoprotein.

  16. f

    The means and standard errors of the Framingham estimate of 10-year CHD risk...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Nov 10, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jang, Tae-Won; Kim, Hyoung-Ryoul; Myong, Jun-Pyo; Koo, Jung-Wan; Lee, Hye Eun (2014). The means and standard errors of the Framingham estimate of 10-year CHD risk by age and heavy metal quartile. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001215895
    Explore at:
    Dataset updated
    Nov 10, 2014
    Authors
    Jang, Tae-Won; Kim, Hyoung-Ryoul; Myong, Jun-Pyo; Koo, Jung-Wan; Lee, Hye Eun
    Area covered
    Framingham
    Description

    All values were accounted for in study weights.The means and standard errors of the Framingham estimate of 10-year CHD risk by age and heavy metal quartile.

  17. m

    Data set for: Identification of Sindhi cows that are susceptible or...

    • data.mendeley.com
    Updated Jul 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cecilia Miraballes (2019). Data set for: Identification of Sindhi cows that are susceptible or resistant to Haematobia irritans [Dataset]. http://doi.org/10.17632/pwsgz5hp6p.2
    Explore at:
    Dataset updated
    Jul 17, 2019
    Authors
    Cecilia Miraballes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The objective was to identify horn fly-susceptible and horn fly-resistant animals in a Sindhi herd by two different methods. The number of horn flies on 25 adult cows from a Sindhi herd was counted every 14 days. As it was an open herd, the trial period was divided into three stages based on cow composition, with the same cows maintained within each period: 2011-2012 (36 biweekly observations); 2012-2013 (26 biweekly observations); and 2013-2014 (22 biweekly observations). Only ten cows were present in the herd throughout the entire period from 2011-2014 (84 biweekly observations). The variables evaluated were the number of horn flies on the cows, the sampling date and a binary variable for rainy or dry season. Descriptive statistics were calculated, including the median, the interquartile range, and the minimum and maximum number of horn flies, for each observation day. For the present analysis, fly-susceptible cows were identified as those for which the infestation of flies appeared in the upper quartile for more than 50% of the weeks and in the lower quartile for less than 20% of the weeks. In contrast, fly-resistant cows were defined as those for which the fly counts appeared in the lower quartile for more than 50% of the weeks and in the upper quartile for less than 20% of the weeks. To identify resistant and susceptible cows for the best linear unbiased predictions analysis, three repeated measures linear mixed models (one for each period) were constructed with cow as a random effect intercept. The response variable was the log ten transformed counts of horn flies per cow, and the explanatory variable were the observation date and season. As the trail took place in a semiarid region with two seasons well stablished the season was evaluated monthly as a binary outcome, considering a rainy season if it rained more or equal than 50mm or dry season if the rain was less than 50mm. The Standardized residuals and the BLUPs of the random effects were obtained and assessed for normality, heteroscedasticity and outlying observations. Each cow’s BLUPs were plotted against the average quantile rank values that were determined as the difference between the number of weeks in the high-risk quartile group and the number of weeks in the low risk quartile group, averaged by the total number of weeks in each of the observation periods. A linear model fit for the values of BLUPS against the average rank values and the correlation between the two methods was tested using Spearman’s correlation coefficient. The animal effect values (BLUPs) were evaluated by percentiles, with 0 representing the lowest counts (or more resistant cows) and 10 representing the highest counts (or more susceptible cows). These BLUPs represented only the effect of cow and not the effect of day, season or other unmeasured counfounders.

  18. f

    Basic characteristics of participants according to quartiles of RBC count in...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Dec 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xu, Luzhou; Dai, Xinyi; Zhou, Guowei (2022). Basic characteristics of participants according to quartiles of RBC count in males. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000388449
    Explore at:
    Dataset updated
    Dec 27, 2022
    Authors
    Xu, Luzhou; Dai, Xinyi; Zhou, Guowei
    Description

    Basic characteristics of participants according to quartiles of RBC count in males.

  19. Use of Internet services and technologies by age group and household income...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Oct 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2019). Use of Internet services and technologies by age group and household income quartile [Dataset]. http://doi.org/10.25318/2210011301-eng
    Explore at:
    Dataset updated
    Oct 29, 2019
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Percentage of Internet users by selected Internet service and technology, such as; home Internet access, use of smart home devices, use of smartphones, use of social networking accounts, use or purchase of streaming services, use of government services online and online shopping.

  20. 2024 American Community Survey: B25057 | Lower Contract Rent Quartile...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B25057 | Lower Contract Rent Quartile (Dollars) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B25057?q=Loper+Johnny+M+Attorney
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Lower Contract Rent Quartile (Dollars).Table ID.ACSDT1Y2024.B25057.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and est...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
IWEPS (2024). 1st quartile of the equivalised disposable administrative income of lone men under 65 [Dataset]. https://data.europa.eu/data/datasets/831110-22

1st quartile of the equivalised disposable administrative income of lone men under 65

Explore at:
csv, jsonAvailable download formats
Dataset updated
Jun 22, 2024
Dataset authored and provided by
IWEPS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Administrative disposable income is a third pillar of the income statistics that Statbel publishes, alongside "\2" and poverty indicators based on "\2", and allows answering other types of questions than SILC and tax statistics.

SILC uses "\2" at the household level as a concept of income, cumulating the incomes of all household members. In the next step, this disposable income is converted into equivalised disposable income to take into account the composition of the household. Based on the SILC, at-risk-of-poverty figures are published up to the provincial level. However, the sample size does not allow for analyses at a more detailed geographical level. However, statistics based on tax revenues are available up to the level of the statistical sector, but are limited to taxable income in the context of personal income tax returns. Non-taxable income is not taken into account and there is also no correction according to the composition of the household.

The variable "administrative equivalised disposable income" responds to a growing demand for income and poverty figures at the communal level. It uses an income concept based on administrative sources that tries to correspond as much as possible to that of SILC. For the population as a whole, both taxable and non-taxable income are taken into account. They are added together for all members of the household in order to obtain an administrative disposable income for the household. After adjusting for the composition of the household, the variable "administrative equivalised disposable income" is established. This can be used to calculate income and poverty figures at the communal level.

Indicators are not disseminated for an entity and a category when there are at least 15% of people whose equivalent administrative disposable income is missing or when there are less than 100 people with a valid income.

More information on the page "\2" of Statbel

Search
Clear search
Close search
Google apps
Main menu