20 datasets found
  1. d

    Data from: Introduction to Planetary Image Analysis and Geologic Mapping in...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  2. Digital Geologic-GIS Map of the North Cascades National Park Complex and...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the North Cascades National Park Complex and Vicinity, Washington (NPS, GRD, GRI, NOCA, LACH, ROLA, NOCA digital map) adapted from U.S. Geological Survey Data Series maps by Tabor, Booth, Vance and Ford (2006), Tabor, Haugerud, Hildreth and Brown (2006), and Washington Division of Geology and Earth Resources Open File Report maps by Bunning (1992), Dragovich and Norman (1995), Stoffel and McGroder (1990) and Washington Division of Geology and Earth Resources Staff (2008) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-north-cascades-national-park-complex-and-vicinity-washingt
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    North Cascades, Cascade Range
    Description

    The Digital Geologic-GIS Map of the North Cascades National Park Complex and Vicinity, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (noca_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (noca_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (noca_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (noca_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (noca_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (noca_geology_metadata_faq.pdf). Please read the noca_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Washington Division of Geology and Earth Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (noca_geology_metadata.txt or noca_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. Geology of North America

    • hub.arcgis.com
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Geology of North America [Dataset]. https://hub.arcgis.com/maps/esri::geology-of-north-america
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer maps the geology of North America, Central America, and portions of the Pacific and Atlantic Oceans symbolized by geologic time. The data used to create this layer was the Geology Units layer described in the publication: Garrity, C.P., and Soller, D.R., 2009, Database of the Geologic Map of North America; adapted from the map by J.C. Reed, Jr. and others (2005): U.S. Geological Survey Data Series 424 The field used for symbolgy (Esri Symbology) was created from the Maximum Age field. Time prefixes were removed and other changes made to the values to simplify the symbology. Colors were taken from the Geologic Society of America's Geologic Time Scale.Prior to publication geometry errors were repaired and the data were projected into Web Mercator.Dataset SummaryPhenomenon Mapped: GeologyCoordinate System: Web Mercator Auxiliary SphereExtent: North America, Central America, and portions of the Pacific and Atlantic OceansVisible Scale: All ScalesSource: Database of the Geologic Map of North AmericaPublication Date: 2009AttributesAttributes included in this layer include:Rock TypeLithologyMinimum AgeMaximum AgeUnit UncertaintyAge UncertaintyMap NotesWhat can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  4. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  5. a

    Flowlines

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2024). Flowlines [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/datasets/flowlines
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    *This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  6. National Hydrography Dataset Plus High Resolution

    • oregonwaterdata.org
    • dangermondpreserve-tnc.hub.arcgis.com
    • +1more
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://www.oregonwaterdata.org/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  7. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  8. Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado (NPS,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado (NPS, GRD, GRI, GRSA, GRSA digital map) adapted from a U.S. Geological Survey Scientific Investigations Map by Madole, VanSistine and Romig (2016) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-great-sand-dunes-national-park-colorado-nps-grd-gri-grsa-grsa-
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Colorado
    Description

    The Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (grsa_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (grsa_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grsa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grsa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (grsa_geology_metadata_faq.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (grsa_geology_metadata.txt or grsa_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:35,000 and United States National Map Accuracy Standards features are within (horizontally) 17.8 meters or 58.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. v

    Mines and Prospects of Idaho

    • anrgeodata.vermont.gov
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2025). Mines and Prospects of Idaho [Dataset]. https://anrgeodata.vermont.gov/content/8657bdc29f50474b8180cd3526c1826c
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    Idaho Geological Survey's publication in the Digital Database series DD-1: Database of the Mines and Prospects of Idaho (version 1.2025) is a relational database of Idaho mines and prospects locations and attributes compatible with Access 2000, SQL Server, and ArcGIS Pro. Also published on ArcGIS Online as an interactive web map application. Mines table was used to create spatial point feature classes (shapefile, geodatabase feature classes, KMZ) included in the downloadable data package for this release. All related data in other tables. Mines contains information on over 9,400 known sites of mineral extraction and exploration activities in Idaho. This inventory and supplemental files, documents, videos, and other media and derivative resources are valuable research tools. Available sources have been used to compile and correct these data including published and unpublished reference materials. Every effort has been made to make the database complete and accurate; however, any additions or corrections should be directed to the Idaho Geological Survey. Periodic revisions of this database will be issued as new information is added.

  10. c

    Data from: Inventory of rock avalanches in the central Chugach Mountains,...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Inventory of rock avalanches in the central Chugach Mountains, northern Prince William Sound, Alaska, 1984-2024 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/inventory-of-rock-avalanches-in-the-central-chugach-mountains-northern-prince-william-1984
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Chugach Census Area, Chugach Mountains, Prince William Sound, Alaska
    Description

    In the Prince William Sound region of Alaska, recent glacier retreat started in the mid-1800s and began to accelerate in the mid-2000s in response to warming air temperatures (Maraldo and others, 2020). Prince William Sound is surrounded by the central Chugach Mountains and consists of numerous ocean-terminating glaciers, with rapid deglaciation increasingly exposing oversteepened bedrock walls of fiords. Deglaciation may accelerate the occurrence of rapidly moving rock avalanches (RAs), which have the potential to generate tsunamis and adversely impact maritime vessels, marine activities, and coastal infrastructure and populations in the Prince William Sound region. RAs have been documented in the Chugach Mountains in the past (Post, 1967; McSaveney, 1978; Uhlmann and others, 2013), but a time series of RAs in the Chugach Mountains is not currently available. A systematic inventory of RAs in the Chugach is needed as a baseline to evaluate any future changes in RA frequency, magnitude, and mobility. This data release presents a comprehensive historical inventory of RAs in a 4600 km2 area of the Prince William Sound. The inventory was generated from: (1) visual inspection of 30-m resolution Landsat satellite images collected between July 1984 and August 2024; and (2) the use of an automated image classification script (Google earth Engine supRaglAciaL Debris INput dEtector (GERALDINE, Smith and others, 2020)) designed to detect new rock-on-snow events from repeat Landsat images from the same time period. RAs were visually identified and mapped in a Geographic Information System (GIS) from the near-infrared (NIR) band of Landsat satellite images. This band provides significant contrast between rock and snow to detect newly deposited rock debris. A total of 252 Landsat images were visually examined, with more images available in recent years compared to earlier years (Figure 1). Calendar year 1984 was the first year when 30-m resolution Landsat data were available, and thus provided a historical starting point from which RAs could be detected with consistent certainty. By 2017, higher resolution (<5-m) daily Planet satellite images became consistently available and were used to better constrain RA timing and extent. Figure 1. Diagram showing the number of usable Landsat images per year. This inventory reveals 118 RAs ranging in size from 0.1 km2 to 2.3 km2. All of these RAs occurred during the months of May through September (Figure 2). The data release includes three GIS feature classes (polygons, points, and polylines), each with its own attribute information. The polygon feature class contains the entire extent of individual RAs and does not differentiate the source and deposit areas. The point feature class contains headscarp and toe locations, and the polyline feature class contains curvilinear RA travel distance lines that connect the headscarp and toe points. Additional attribute information includes the following: _location of headscarp and toe points, date of earliest identified occurrence, if and when the RA was sequestered into the glacier, presence and delineation confidence levels (see Table 1 for definition of A, B, and C confidence levels), identification method (visual inspection versus automated detection), image platform, satellite, estimated cloud cover, if the RA is lobate, image ID, image year, image band, affected area in km2, length, height, length/height, height/length, notes, minimum and maximum elevation, aspect at the headscarp point, slope at the headscarp point, and geology at the headscarp point. Topographic information was derived from 5-m interferometric synthetic aperture radar (IfSAR) Digital Elevation Models (DEMs) that were downloaded from the USGS National Elevation Dataset website (U.S. Geological Survey, 2015) and were mosaicked together in ArcGIS Pro. The aspect and slope layers were generated from the downloaded 5-m DEM with the “Aspect” and “Slope” tools in ArcGIS Pro. Aspect and slope at the headscarp mid-point were then recorded in the attribute table. A shapefile of Alaska state geology was downloaded from Wilson and others (2015) and was used to determine the geology at the headscarp _location. The 118 identified RAs have the following confidence level breakdown for presence: 66 are A-level, 51 are B-level, and 1 is C-level. The 118 identified RAs have the following confidence level breakdown for delineation: 39 are A-level and 79 are B-level. Please see the provided attribute table spreadsheet for more detailed information. Figure 2. Diagram showing seasonal timing of mapped rock avalanches. Table 1. Rock avalanche presence and delineation confidence levels Category Grade Justification Presence A Feature is clearly visible in one or more satellite images. B Feature is clearly visible in one or more satellite images but has low contrast with the surroundings and may be surficial debris from rock fall, rather than from a rock avalanche. C Feature presence is possible but uncertain due to poor quality of imagery (e.g., heavy cloud cover or shadows) or lack of multiple views. Delineation A Exact outline of the feature from headscarp to toe is clear. B General shape of the feature is clear but the exact headscarp or toe _location is unclear (e.g., due to clouds or shadows). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. References Maraldo, D.R., 2020, Accelerated retreat of coastal glaciers in the Western Prince William Sound, Alaska: Arctic, Antarctic, and Alpine Research, v. 52, p. 617-634, https://doi.org/10.1080/15230430.2020.1837715 McSaveney, M.J., 1978, Sherman glacier rock avalanche, Alaska, U.S.A. in Voight, B., ed., Rockslides and Avalanches, Developments in Geotechnical Engineering, Amsterdam, Elsevier, v. 14, p. 197–258. Post, A., 1967, Effects of the March 1964 Alaska earthquake on glaciers: U.S. Geological Survey Professional Paper 544-D, Reston, Virgina, p. 42, https://pubs.usgs.gov/pp/0544d/ Smith, W. D., Dunning, S. A., Brough, S., Ross, N., and Telling, J., 2020, GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): A new tool for identifying and monitoring supraglacial landslide inputs: Earth Surface Dynamics, v. 8, p. 1053-1065, https://doi.org/10.5194/esurf-8-1053-2020 Uhlmann, M., Korup, O., Huggel, C., Fischer, L., and Kargel, J. S., 2013, Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska: Earth Surface Processes and Landforms, v. 38, p. 675–682, https://doi.org/10.1002/esp.3311 U.S. Geological Survey, 2015, USGS NED Digital Surface Model AK IFSAR-Cell37 2010 TIFF 2015: U.S. Geological Survey, https://elevation.alaska.gov/#60.67183:-147.68372:8 Wilson, F.H., Hults, C.P., Mull, C.G, and Karl, S.M, compilers, 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet p. 196, 2 sheets, scale 1:1,584,000, https://pubs.usgs.gov/publication/sim3340

  11. U

    Adair 438NW - Harriman 123NE: groundwater well locations from 7.5-minute...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Jan 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Hourigan; Devin Moore (2025). Adair 438NW - Harriman 123NE: groundwater well locations from 7.5-minute quadrangle maps [Dataset]. http://doi.org/10.5066/P1ZDZZ6P
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Amy Hourigan; Devin Moore
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2025
    Description

    The state of Tennessee is divided into 805 individual 7.5-minute topographic quadrangle maps. The Tennessee Department of Environment and Conservation (TDEC) maintains an archive of paper maps that were utilized for estimating groundwater well locations. Each well location was plotted by hand and marked with corresponding water well data. These hand-plotted locations represent the most accurate spatial information for each well but exist solely in paper format. To create the shapefile of the well location data for this data release, individual paper maps were scanned and georeferenced. From these georeferenced map images (GRI), the hand-plotted well locations were digitized into a shapefile of point data using ArcGIS Pro. The shapefile is contained in "TN_waterwell.zip," which contains locations for 8,826 points from the first 200 7.5-minute quadrangles in Tennessee (sorted alphabetically) from Adair 438NW through Harriman 123NE. While some spring locations are included in this da ...

  12. a

    USA NLCD Impervious Surface Time Series - copy

    • uidaho.hub.arcgis.com
    Updated Sep 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA NLCD Impervious Surface Time Series - copy [Dataset]. https://uidaho.hub.arcgis.com/datasets/9799f7e251164afa8135249e5f2f1e54
    Explore at:
    Dataset updated
    Sep 29, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. The layer is organized into a time series with years 2001, 2006, 2011, and 2016, for the lower 48 conterminous US states. This information may be used in conjunction with the USA NLCD Land Cover layer. Time SeriesBy default, this service will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every five years, in 2001, 2006, 2011, and 2016. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are not included in the time series. No new data were created for these areas since the last time MRLC updated the NLCD imperviousness layer. The older service USA NLCD Impervious Surface 2011 includes a portion of Alaska around Anchorage, but there is as yet no time series available for this part of Alaska.Dataset SummaryPhenomenon Mapped: The proportion of the landscape that is impervious to waterUnits: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area ConicExtent: Contiguous United StatesSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: 2019ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  13. USA Coal Fields

    • sal-urichmond.hub.arcgis.com
    Updated May 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Coal Fields [Dataset]. https://sal-urichmond.hub.arcgis.com/datasets/esri::usa-coal-fields
    Explore at:
    Dataset updated
    May 3, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer displays coal fields of the Conterminous United States from the U.S. Coal Resources and Reserves Assessment Project by the U.S. Geological Survey (USGS) Energy Resources Program.Dataset SummaryPhenomenon Mapped: Coal Fields of the United StatesCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Conterminous United StatesVisible Scale: All ScalesSource: National Coal Resource AssessmentPublication Date: 2013East, J.A., 2013, Coal fields of the conterminous United States—National Coal Resource Assessment updated version: U.S. Geological Survey Open-File Report 2012–1205, one sheet, scale 1:5,000,000, available at https://pubs.usgs.gov/of/2012/1205/. What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  14. World Terrestrial Ecosystems Pro Package

    • ai-climate-hackathon-global-community.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). World Terrestrial Ecosystems Pro Package [Dataset]. https://ai-climate-hackathon-global-community.hub.arcgis.com/content/3bfa1aa4cd9844d5a0922540210da25b
    Explore at:
    Dataset updated
    Jan 28, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World
    Description

    World Terrestrial Ecosystems are areas of climate, landform and land cover that form the basic components of terrestrial ecosystem structure. This map is the first-of-its-kind effort to characterize and map global terrestrial ecosystems at a much finer spatial resolution (250 m) than existing ecoregionalizations, and a much finer thematic resolution than existing global land cover products.This pro package was updated on February 26, 2024 to distinguish between Boreal and Polar climate regions in the terrestrial ecosystems. This map is important because the ecologically relevant distinctions are authoritatively defined and modeled using globally consistent objectively derived data.World Terrestrial Ecosystems map was produced by adopting and modifying the Intergovernmental Panel on Climate Change (IPCC) approach on the definition of Terrestrial Ecosystems and development of standardized (default) global climate regions using the values of environmental moisture regime and temperature regime. We then combined the values of Global Climate Regions, Landforms and matrix-forming vegetation assemblage or land use, using the ArcGIS Combine tool (Spatial Analyst) to produce World Ecosystems Dataset. This combination resulted of 431 World Ecosystems classes.In this ArcGIS Pro Package you will see three sources of authoritative information:The World Climate Regions, which establish the macroclimate regimeWorld Landforms, which modify the macroclimates into mesoclimates and microclimatesWorld Vegetation/Land Cover, which identify the major plant formations occurring in a place in response to the climate and landforms.This map allows you to query of any 250 m pixel on the land surface of the Earth, and returns the values of all the input parameters and the name of the World Terrestrial Ecosystem at that location.Each combination was assigned a color using an algorithm that blended traditional color schemes for each of the four components. Values for each of the four input layers are listed in the table below. Every point in this map is symbolized by a combination of values for each of these fields.This layer provides access to a cached map service created by Esri in partnership with U.S. Geological Survey's Climate and Land Use Change Program and The Nature Conservancy. The work from this collaboration is documented in the publication:Sayre et al. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems - Global Ecology and Conservation. You can access and view World Terrestrial Ecosystems Image File. You can access and have an high-level understanding of this dataset from the Introduction to World Terrestrial Ecosystems Story Map.

  15. a

    Flowlines NHD Plus High Resolution Souris River Basin

    • hub.arcgis.com
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Joint Commission of Canada and the U.S. (2025). Flowlines NHD Plus High Resolution Souris River Basin [Dataset]. https://hub.arcgis.com/content/f28aa32a6e74487f967eb1a5b144ab4b
    Explore at:
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    International Joint Commission of Canada and the U.S.
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution. Dataset Summary Phenomenon Mapped: Surface waters and related features of the United States and associated territories Geographic Extent: Shared Drainage Basins- Canada and the U.S. Projection: Web Mercator Auxiliary Sphere  Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000 Source: USGS Update Frequency: Annual Publication Date: July 2022 This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema. Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values. What can you do with this layer? Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro. ArcGIS Online Add this layer to a map in the map viewer. The layer or a map containing it can be used in an application.  Change the layer’s transparency and set its visibility range Open the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table. Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbology Add labels and set their properties Customize the pop-up Use as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data. ArcGIS Pro Add this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the data Open table and make interactive selections with the map Modify the pop-ups Apply Definition Queries to create sub-sets of the layer This layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  16. Landsat 8-9 Normalized Difference Vegetation Index (NDVI) Colorized

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Aug 11, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat 8-9 Normalized Difference Vegetation Index (NDVI) Colorized [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/f6bb66f1c11e467f9a9a859343e27cf8
    Explore at:
    Dataset updated
    Aug 11, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat 8 and 9 imagery rendered on-the-fly as NDVI Colorized for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is NDVI Colorized, calculated as (b5 - b4) / (b5 + b4) with a colormap applied.Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. NDVI Colorized consumes bands 4 and 5.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.

  17. a

    VT Data - Radon Tests by Bedrock Belt

    • geodata1-59998-vcgi.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT-AHS (2024). VT Data - Radon Tests by Bedrock Belt [Dataset]. https://geodata1-59998-vcgi.opendata.arcgis.com/maps/ahs-vt::vt-data-radon-tests-by-bedrock-belt
    Explore at:
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    VT-AHS
    Area covered
    Description

    Data on aggregated radon test results in residential properties from January 1994 to December 2024 within each geological area. View this data in the Department of Health's radon risk map.Radon is a naturally occurring radioactive gas that is estimated to kill 50 Vermonters a year due to lung cancer. Radon can only be detected by testing and buildings with elevated radon levels (≥4 pCi/L (picocuries per Liter)) are found throughout the state. The average level of radon in Vermont homes is 2.4 pCi/L compared with the national average of 1.3 pCi/L. The EPA recommends that homes testing at or above 4 pCi/L be fixed, but as there is no known safe level of radon, the EPA suggests that homes testing between 2-4 pCi/L should also be fixed. This data set contains the Environmental Health Radon program’s radon in-air long term test data from 1994-2024, and the Vermont Department of Health Laboratory’s radon in-air short, medium, and long-term test data for 2020-2024.Bedrock geology influences the amount of radon in air and water. Data is aggregated by bedrock geology type to better understand how geology affects radon in air in residences across the state. For a detailed explanation of the process used to develop the Bedrock zones map see the Read me file on DEC’s Radon page.Data SourceSource data for these maps comes from the highest radon test result ever found at a residence (many residences test more than once). Results are provided by the Radon Program long term test data (1994-2024) and the Vermont Department of Health Laboratory, short, medium, and long term test data (2020-2024). Radon results are aggregated by bedrock geology type based on whether the result was elevated (≥4.0 picocuries per liter (pCi/L)) or not elevated (<4.0 pCi/L).Data LimitationsPrison, institutional residence, and nursing home E911 locations are not included in the aggregation of residences by town or geological area. For areas of low population density or low number of tests, data extremes carry more weight and can distort analytic results. MethodologyRecord level radon in indoor air test results were extracted from the VDH-EH Radon database by Radon Program staff and from the LIMS system at the VDHL by laboratory staff. The Tracking analyst used SAS version 9.4 and ArcGIS Pro version 2.4.1 to process the data. Geocoded data from the Tracking program were used for the Radon Risk Maps. GIS work to populate the final maps was done collaboratively with partners from the Agency of Digital Services using ArcGIS Pro version 2.4.1.The residential data are from the VT Data – E911 Site Locations (address points) where the following were selected from the SITETYPE variable: mobile home, multi-family dwelling, other residential, single-family dwelling, residential farm, seasonal home, commercial with residence, condominium, and camp. The residential data in these maps is aggregated by town and geological area to provide the denominator for calculations.

  18. a

    VT Data - Radon Tests by Town

    • hub.arcgis.com
    • geodata.vermont.gov
    • +1more
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT-AHS (2024). VT Data - Radon Tests by Town [Dataset]. https://hub.arcgis.com/datasets/ahs-vt::vt-data-radon-tests-by-town/about
    Explore at:
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    VT-AHS
    Area covered
    Description

    Data on aggregated radon test results in residential properties from January 1994 to December 2024 within each Vermont municipality. Radon data can inform public health outreach, educate stakeholders and the public, and encourage testing and mitigation. View this data in the Department of Health's radon risk map.Radon is a naturally occurring radioactive gas that is estimated to kill 50 Vermonters a year due to lung cancer. Radon can only be detected by testing and buildings with elevated radon levels (≥4 pCi/L (picocuries per Liter)) are found throughout the state. The average level of radon in Vermont homes is 2.4 pCi/L compared with the national average of 1.3 pCi/L. The EPA recommends that homes testing at or above 4 pCi/L be fixed, but as there is no known safe level of radon, the EPA suggests that homes testing between 2-4 pCi/L should also be fixed.This data set contains the Environmental Health Radon program’s radon in-air long term test data from 1994-2024, and the Vermont Department of Health Laboratory’s radon in-air short, medium, and long-term test data for 2020-2024. Data have been geocoded and aggregated to the town level to display the number and percent of residences tested by town and the number and percent of residences tested that exceed 4 pCi/L by town.Data SourceSource data for these maps comes from the highest radon test result ever found at a residence (many residences test more than once). Results are provided by the Radon Program long term test data (1994-2024) and the Vermont Department of Health Laboratory, short, medium, and long term test data (2020-2024). Radon results are aggregated by town based on whether the result was elevated (≥4.0 pCi/L) or not elevated (<4.0 pCi/L).Data LimitationsPrison, institutional residence, and nursing home E911 locations are not included in the aggregation of residences by town or geological area. For areas of low population density or low number of tests, data extremes carry more weight and can distort analytic results. Therefore, in the Rates of Radon Testing by Town, data for towns with fewer than 7 tested residences are not displayed; and in Elevated Radon Results, data for towns with fewer than 20 tested residences are not displayed.MethodologyRecord level radon in indoor air test results were extracted from the VDH-EH Radon database by Radon Program staff and from the LIMS system at the VDHL by laboratory staff. The Tracking analyst used SAS version 9.4 and ArcGIS Pro version 2.4.1 to process the data. Geocoded data from the Tracking program were used for the Radon Risk Maps. GIS work to populate the final maps was done collaboratively with partners from the Agency of Digital Services using ArcGIS Pro version 2.4.1.The residential data are from the VT Data – E911 Site Locations (address points) where the following were selected from the SITETYPE variable: mobile home, multi-family dwelling, other residential, single-family dwelling, residential farm, seasonal home, commercial with residence, condominium, and camp. The residential data in these maps is aggregated by town and geological area to provide the denominator for calculations.

  19. Multispectral Landsat

    • open-data-pittsylvania.hub.arcgis.com
    • esriaustraliahub.com.au
    • +7more
    Updated Mar 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Multispectral Landsat [Dataset]. https://open-data-pittsylvania.hub.arcgis.com/datasets/d9b466d6a9e647ce8d1dd5fe12eb434b
    Explore at:
    Dataset updated
    Mar 19, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA). Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral Bands

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    1

    Coastal aerosol

    0.43 - 0.45

    30

    2

    Blue

    0.45 - 0.51

    30

    3

    Green

    0.53 - 0.59

    30

    4

    Red

    0.64 - 0.67

    30

    5

    Near Infrared (NIR)

    0.85 - 0.88

    30

    6

    SWIR 1

    1.57 - 1.65

    30

    7

    SWIR 2

    2.11 - 2.29

    30

    8

    Cirrus (in OLI this is band 9)

    1.36 - 1.38

    30

    9

    QA Band (available with Collection 1)*

    NA

    30

    *More about the Quality Assessment BandTIRS Bands

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    10

    TIRS1

    10.60 - 11.19

    100 * (30)

    11

    TIRS2

    11.50 - 12.51

    100 * (30)

    *TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

  20. Landsat 8-9 Bathymetric with DRA

    • hub.arcgis.com
    • imagery-amerigeoss.opendata.arcgis.com
    Updated Aug 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat 8-9 Bathymetric with DRA [Dataset]. https://hub.arcgis.com/datasets/024b8b91c638425a9981fca74702282d
    Explore at:
    Dataset updated
    Aug 11, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat 8 and 9 imagery rendered on-the-fly as Bathymetric with DRA for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Bathymetric (bands 4,3,1) with Dynamic Range Adjustment (DRA), useful in bathymetric mapping applications. Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. Bathymetric with DRA consumes bands 4,3,1.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro

Data from: Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

Related Article
Explore at:
Dataset updated
Nov 20, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

Search
Clear search
Close search
Google apps
Main menu