Facebook
TwitterThis web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterThis dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThis map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.
Counties shown in this dataset as having free and open public geospatial data (with or without a policy) are: Aitkin, Anoka, Becker, Beltrami, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Grant, Hennepin, Hubbard, Isanti, Itasca, Kittson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Meeker, Mille Lacs, Morrison, Mower, Norman, Olmsted, Otter Tail, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Scott, Sherburne, St. Louis, Stearns, Steele, Stevens, Traverse, Wabasha, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.
To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization
To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: https://www.mngeo.state.mn.us/county_contacts.html
Facebook
TwitterThe final aim for this practical is to create a 3D model to visualise how a flood depth of 1m might impact buildings within areas at risk from a 1 in 200 year flood event in Fife. These areas are defined by The Scottish Environment Protection Agency (SEPA) as medium flood risk areas. By the end of the exercises in this practical you should be able to use Arc Online Apps to create a 3D model that looks like this and highlights the buildings within the medium flood risk areas -The learning objectives for making this model are as follows:Be able to open and navigate in the Map ViewerBe able to find and add suitable data into Map ViewerBe able to create datasets that allow you to perform visual analysis to understand why areas may have been identified as flood risk areasBe able to build a query to identify and extract building data for buildings within the medium flood risk areasBe able to use Scene Viewer to put this all together in a 3D model that allows you visualise this data
Facebook
TwitterThis specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.
How Do We Create Polygons?
-All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery, satellite data, and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct highly detailed polygons. This meticulous process ensures maximum accuracy and consistency. -We verify our polygons through multiple quality assurance checks, focusing on accuracy, relevance, and completeness.
What's More?
-Custom Polygon Creation: Our team can build polygons for any location or category based on your requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard GIS formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.
Unlock the Power of POI and Geospatial Data
With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market and location analyses to identify growth opportunities. -Pinpoint the ideal locations for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute location-based marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.
Why Choose LocationsXYZ?
LocationsXYZ is trusted by leading brands to unlock actionable business insights with our accurate and comprehensive spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI datasets. Request your free sample today and explore how we can help accelerate your business growth.
Facebook
TwitterThis dataset represents the cadastral maps created by the Geomatics branch in support of real property acquisitions within the Department of Water Resources. The geographic extent of each map frame was created after using all the spatial attributes available in each map to appropriately georeference it and create the extents from the outer frame of the map. The maps were digitally scanned from the original paper format that were archived after moving to the new resources building. As new maps are created by the branch for real property acquisition services, they will be georeference, attributed and updated into this dataset. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.6, dated September 27, 2023. DWR makes no warranties or guarantees either expressed or implied as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Original internal source projection for this dataset was Teale Albers/NAD83. For copies of data in the original projection, please contact DWR. Comments, problems, improvements, updates, or suggestions should be forwarded to gis@water.ca.gov as available and appropriate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map packages for use in ArcGIS Pro or ArcMap containing three-tiered geomorphological data and geographical datasets such as rivers and hillshading. Datasets were used to generate figures for publication: Hierarchical geomorphological mapping in mountainous areas. 2021. Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Journal of Maps. All data is in MGI Austria GK West projected coordinate system (EPSG: 31254) and was clipped to the study area.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.
Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Facebook
TwitterStatistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
Facebook
TwitterThe Right of Way Map Footprint is a GIS data set created to represent the outer footprint or extent of a right of way map (including footprints for both Vector (CAD) and Raster Images). The purpose is to aid the user in more rapidly identifying the desired map for a specific area of interest relative to other maps, roads, landmarks, etc. This data set is developed and maintained on a statewide basis. It does not include geo-referenced representations of right of way maps themselves.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Building structures include parking garages, ruins, monuments, and buildings under construction along with residential, commercial, industrial, apartment, townhouses, duplexes, etc. Buildings equal to or larger than 9.29 square meters (100 square feet) are captured. Buildings are delineated around the roof line showing the building "footprint." Roof breaks and rooflines, such as between individual residences in row houses or separate spaces in office structures, are captured to partition building footprints. This includes capturing all sheds, garages, or other non-addressable buildings over 100 square feet throughout the city. Atriums, courtyards, and other “holes” in buildings created as part of demarcating the building outline are not part of the building capture. This includes construction trailers greater than 100 square feet. Memorials are delineated around a roof line showing the building "footprint."Bleachers are delineated around the base of connected sets of bleachers. Parking Garages are delineated at the perimeter of the parking garage including ramps. Parking garages sharing a common boundary with linear features must have the common segment captured once. A parking garage is only attributed as such if there is rooftop parking. Not all rooftop parking is a parking garage, however. There are structures that only have rooftop parking but serve as a business. Those are captured as buildings. Fountains are delineated around the base of fountain structures.
Facebook
TwitterThe "Map Imager Layer - Administrative Boundaries" is a Map Image Layer of Administrative Boundaries. It has been designed specifically for use in ArcGIS Online (and will not directly work in ArcMap or ArcPro). This data has been modified from the original source data to serve a specific business purpose. This data is for cartographic purposes only.The Administrative Boundaries Data Group contains the following layers: Populated Places (USGS)US Census Urbanized Areas and Urban Clusters (USCB)US Census Minor Civil Divisions (USCB)PLSS Townships (MnDNR, MnGeo)Counties (USCB)American Indian, Alaska Native, Native Hawaiian (AIANNH) Areas (USCB)States (USCB)Countries (MPCA)These datasets have not been optimized for fast display (but rather they maintain their original shape/precision), therefore it is recommend that filtering is used to show only the features of interest. For more information about using filters please see "Work with map layers: Apply Filters": https://doc.arcgis.com/en/arcgis-online/create-maps/apply-filters.htmFor additional information about the Administrative Boundary Dataset please see:United States Census Bureau TIGER/Line Shapefiles and TIGER/Line Files Technical Documentation: https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.htmlUnited States Census Bureau Census Mapping Files: https://www.census.gov/geographies/mapping-files.htmlUnited States Census Bureau TIGER/Line Shapefiles: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html and https://www.census.gov/cgi-bin/geo/shapefiles/index.php
Facebook
TwitterThis abstract contains links to public ArcGIS maps that include locations of carbonate springs and some of their characteristics. Information for accessing and navigating through the maps are included in a PowerPoint presentation IN THE FILE UPLOAD SECTION BELOW. Three separate data sets are included in the maps:
Several base maps are included in the links. The US carbonate map describes and categorizes carbonates (e.g., depth from surface, overlying geology/ice, climate). The carbonate springs map categorizes springs as being urban, specifically within 1000 ft of a road, or rural. The basis for this categorization was that the heat island effect defines urban as within a 1000 ft of a road. There are other methods for defining urban versus rural to consider. Map links and details of the information they contain are listed below.
Map set 1: The WQP map provides three mapping options separated by the parameters available at each spring site. These maps summarize discrete water quality samples, but not data logger availability. Information at each spring provides links for where users can explore further data.
Option 1: WQP data with urban and rural springs labeled, with highlight of springs with or without NWIS data https://www.arcgis.com/home/item.html?id=2ce914ec01f14c20b58146f5d9702d8a
Options 2: WQP data by major ions and a few other solutes https://www.arcgis.com/home/item.html?id=5a114d2ce24c473ca07ef9625cd834b8
Option 3:WQP data by various carbon species https://www.arcgis.com/home/item.html?id=ae406f1bdcd14f78881905c5e0915b96
Map 2: The worldwide carbonate map in the WoKaS data set (citation below) includes a description of carbonate purity and distribution of urban and rural springs, for which discharge data are available: https://www.arcgis.com/apps/mapviewer/index.html?webmap=5ab43fdb2b784acf8bef85b61d0ebcbe.
Reference: Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B. and Auler, A., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1), pp.1-9.
Map 3: Karst and spring data from selected states: This map includes sites that members of the RCN have suggested to our group.
https://uageos.maps.arcgis.com/apps/mapviewer/index.html?webmap=28ed22a14bb749e2b22ece82bf8a8177
This data set is incomplete (as of October 13, 2022 it includes Florida and Missouri). We are looking for more information. You can share data links to additional data by typing them into the hydroshare page created for our group. Then new sites will periodically be added to the map: https://www.hydroshare.org/resource/0cf10e9808fa4c5b9e6a7852323e6b11/
Acknowledgements: These maps were created by Michael Jones, University of Arkansas and Shishir Sarker, University of Kentucky with help from Laura Toran and Francesco Navarro, Temple University.
TIPS FOR NAVIGATING THE MAPS ARE IN THE POWERPOINT DOCUMENT IN THE FILE UPLOAD SECTION BELOW.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature class is a compliation GIS dataset that contains building footprints depicting building shape and location in the state of Oregon. All contributing datasets were compiled into the stateside dataset. Static datasets or infrequently maintained datasets were reviewed for quality. New building footprint data were reviewed and digitized from 2017 and 2018 imagery accessed from the Oregon Statewide Imagery Program.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
Raw DEM and Soils data
Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
ArcGIS Map Packages
Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web
Facebook
TwitterThis web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.