Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:
Hierarchical geomorphological mapping in mountainous areas. 2021. Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Journal of Maps
This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In order to use the Romanian color standard for soil type map legends, a dataset of ESRI ArcMap-10 files, consisting of a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), four different .lyr files, and three different .style files (https://desktop.arcgis.com/en/arcmap/10.3/map/ : saving-layers-and-layer-packages, about-creating-new-symbols, what-are-symbols-and-styles-), have been prepared. The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil types from the standard legend.
This legend contains 67 standard items: 63 proper colors (different color hues, each of them having, generally, 2 - 4 degrees of lightness and/or chroma, four shades of grey, and white color), and four hatching patterns on white background. The “color difference DE*ab” between any two legend colors, calculated with the color perceptually-uniform model CIELAB, is greater than 10 units, thus ensuring acceptably-distinguishable colors in the legend. The 67 standard items are assigned to 60 main soils existing in Romania, four main nonsoils, and three special cases of unsurveyed land. The soils are specified in terms of the current Romanian system of soil taxonomy, SRTS-2012+, and of the international system WRB-2014.
The four different .lyr files presented here are: legend_soilcode_srts_wrb.lyr, legend_soilcode_wrb.lyr, legend_colorcode_srts_wrb.lyr, and legend_colorcode_wrb.lyr. The first two of them are built using as value field the “Soil_codes” field, and as labels (explanation texts) the “Soil_name” field (storing the soil types according to SRTS/WRB classification), respectively, the “WRB” field (the soil type according to WRB classification), while the last two .lyr files are built using as value field the “color_code” field (storing the color codes) and as labels the soil name in SRTS and WRB, respectively, in WRB classification.
In order to exemplify how the legend is displayed, two .jpg files are also presented: legend_soil_srts_wrb.jpg and legend_color_wrb.jpg. The first displays the legend (symbols and labels) according to the SRTS classification order, the second according to the WRB classification.
The three different .style files presented here are: soil_symbols.style, wrb_codes.style, and color_codes.style. They use as name the soil acronym in SRTS classification, soil acronym in WRB classification, and, respectively, the color code.
The presented file set may be used to directly implement the Romanian color standard in digital soil type map legends, or may be adjusted/modified to other specific requirements.
Facebook
TwitterView of Channelization data represents roadway paint lines, curbs, and other markings that delineate traffic lanes, bike routes, bus zones, etc. which are critical for public safety.Common Data Layer: Common data layer created from a read only view from this feature layer. It is owned by SDOT Transportation account and will be made available in Open Data.Refresh Cycle: None, Dynamic via AutoCAD updatesChannelization data consists of the following layers:Vertical ElementsLane WidthsPanel MarkingsLongitudinal MarkingsTransverse MarkingsLegend and SymbolsGeneral Background
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.
Facebook
TwitterThis dataset contains soil type and soil classification, by area.
This dataset is harvested on a weekly basis from Allegheny County’s GIS data portal. The full metadata record for this dataset can also be found on Allegheny County's GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the "Explore button (and choosing the "Go to resource" option) to the right of the "ArcGIS Open Dataset" text below.
Category: Environment
Department: Geographic Information Systems Group; Department of Administrative Services
Development Notes: This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey.
Related Documents: Data Dictionary for SOIL_CODE, https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/pennsylvania/PA003/0/legends.pdf (the last page includes the soil legend for this dataset)
Facebook
Twitterhttps://lris.scinfo.org.nz/license/attribution-4-0-international/https://lris.scinfo.org.nz/license/attribution-4-0-international/
ArcGIS layer file for LCDB - this may be used most reliably if you load the downloaded data into ArcGIS, right click and select properties, make sure symbology is set to categorical and then click on the folder to import the symbology from this file. You'll need to make sure the symbology is using the correct field (Class_2023).
Facebook
TwitterThe California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
For the latest Land Use Legend, 2022-DWR-Standard-Land-Use-Legend-Remote-Sensing-Version.pdf, please see the Data and Resources section below.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The WHSA vegetation map was developed using a combined strategy of automated digital image classification and direct analog image interpretation of aerial photography and satellite imagery. Initially, the aerial photography and satellite imagery were processed and entered into a GIS along with ancillary spatial layers. A working map legend of ecologically based vegetation map units was developed using the vegetation classification described in the report as the foundation. The intent was to develop map units that targeted the plant-association level wherever possible within the constraints of image quality, information content, and resolution. With the provisional legend and ground-control points provided by the field-plot data (the same data used to develop the vegetation classification), a combination of heads-up screen digitizing of polygons based on image interpretation and supervised image classifications were conducted. The outcome was a vegetation map composed of a suite of map units defined by plant associations and represented by sets of mapped polygons with similar spectral and site characteristics.
Facebook
TwitterThe California Energy Commission (CEC) Electric Transmission Line geospatial data layer has been created to illustrate electric transmission in California. When used in association with the other energy related geospatial data layers, viewers can analyze the geographic relationships with the electric transmission across the state. The transmission line data is used to:1. Support the CEC Transmission Planning; 2. Support the CEC electric system analysis in California;3. Enhance electric transmission communication among California electric stakeholders ;4. Support CEC's illustrations of electric infrastructureData Dictionary:Object ID: a unique, not null integer field used to uniquely identify rows in tables in a geodatabase.Name: abbreviated transmission line owner and transmission line capacity in kilovolts (kV).kV: transmission line capacity in kilovolts (kV), data structure is a text string.kV (Sort): transmission line capacity in kilovolts (kV), data structure is a numeric double.Owner: abbreviated transmission line owner name.Status - last reported operational, proposed, closed, or unknown status of the transmission line.Circuit - notes if the transmission line segment is a Single, double, or triple circuit. Null values are unknown. Type - OH is overhead transmission lines, UG is underground, UW is underwater, null values are unknown.Legend - a summarized categories of transmission line owner and transmission capacity value in kilowatts (kV) for map legend purposes.Length (Mile) - the length of the transmission line segment in miles.Length (Feet) - the length of the transmission line segment in feet.TLine Name - the name of the transmission line segment reported to the California Energy CommissionSource - the data source used by California Energy Commission.CommentsCreatorCreator DateLast EditorLast Editor DateGlobalIDShape_LengthShape
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values
Facebook
TwitterThis dataset contains soil type and soil classification, by area.
If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (https://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (https://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below.
Category: Environment
Organization: Allegheny County
Department: Geographic Information Systems Group; Department of Information Technology
Temporal Coverage: 2000
Data Notes:
Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot
Development Notes: This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey
Other: none
Related Document(s): https://nrcs.app.box.com/s/if2z8n756yrdx7d6il0e1c60i7cathjy/file/982654700807 - this includes the soil legend for this dataset.
Frequency - Data Change: As needed
Frequency - Publishing: As needed
Data Steward Name: Eli Thomas
Data Steward Email: gishelp@alleghenycounty.us
Facebook
TwitterInteractive GIS Mapping Tool – Urgent Drinking Water Needs (UDWN) Web Map in California
Use Constraints:
This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current status of Urgent Drinking Water Needs project locations. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use. The Urgent Drinking Water Needs map does not provide the locations of individual households that were provided funding through grant agreements with non-profit organizations.
Description:
This map displays Urgent Drinking Water Needs due to drought, contamination, or other eligible emergencies. This includes projects approved for funding from July 1, 2014 to November 18, 2022, including both active and completed projects. The data comes from the State Water Resources Control Board (SWRCB) Cleanup and Abatement Account’s (CAA) project database and was exported on November 18, 2022. The map contains four layers: UDWN_Projects, UDWN_Summary_by_county, CA_Assembly_Districts_WEB, and CA_Senate_Districts_WEB.
The attributes for each project in the UDWN_Projects layer include the recipient of grant funding (grantee), community served, type of project, grant amount, funding program, date the project was approved, date the project was completed, Disadvantaged Community status, Small Disadvantaged Community status, the public water system number, status of the project (Active or Completed), and the state fiscal year in which the project was approved.
How to Use the Interactive Mapping Tool:When the map loads, it displays the state of California, UDWN Project locations, and California county boundaries. The “About” tab is located on the left-hand side of the map and displays instructions for using the map. The next tab display pre-set filters, the legend, and a layer list. Clicking on the “Legend” tab in the menu will show the legend of the map. Projects that appear as blue dots are still active, while projects that appear as red dots have already been completed.Note: Layers that show CA Assembly and Senate Districts were created by the Sierra Nevada Conservancy (SNC). These layers must be toggled on in the layers list to be seen. To view information about a specific project, click on a project location. A pop-up box will appear with the following information: (a) county name, (b) community served, (c) type of project, (d) approved funding amount, (e) approval date, and (f) status. To view information about the total funding and number of projects in a county, click within a county boundary and a pop up will appear.Use the pre-set filters to filter projects by status, fiscal year, funding program, county, assembly district, and/or senate district using the drop-down menu. The filters can be toggled on or off using the switches on the right side of the menu. To create a custom filter, click the filter icon at the bottom of the preset filter menu and enter the desired parameters. For one parameter, click “add expression” to create a custom filter. For more than one, click “add set” to create a custom filter.To export and download filtered data, open the Attribute Table located at the bottom of the map, click the “Options” drop down menu, select “Export all to CSV” from the drop-down menu, and download the desired information.
Map Layers:UDWN_Projects – This layer shows all active or completed UDWN projects from July 1, 2014 to November 18, 2022. Active projects are represented with blue dots while completed projects are represented with red dots. The attributes in this layer include what county the project is in, the community served, the type of project, approved funding amount, approval date, and status.UDWN_Summary_by_county – This layer shows the boundary lines for all the counties in California. The attributes in this layer include the total number of projects and total funding approved in that county since July 1, 2014. CA_Assembly_Districts_WEB – This layer shows the boundary lines for all the assembly districts in California. It is owned and maintained by the Sierra Nevada Conservancy (SNC) and boundaries may not be accurate. CA_Senate_Districts_WEB – This layer shows the boundary lines for all the senate districts in California. It is owned and maintained by the Sierra Nevada Conservancy (SNC) and boundaries may not be accurate.
Informational Pop-up Box:County – California county where the project is locatedCommunity Served – California community that is benefiting from UDWN funding Type of Project – Project type, which can include bottled water, consolidation, hauled water, pilot study, POU, pump, tank, treatment, and well Approved Funding Amount – Amount of money in U.S. dollars approved for the projectApproval Date – Date that the project was approved for fundingStatus – Current status of the project (active or closed)Date Created:
Data created on November 18, 2022 and valid up to this date.
Sources:
Urgent Drinking Water Needs data was exported from the CAA Database.
The Sierra Nevada Conservancy (SNC) created the California Senate and Assembly layers.
Points of Contact:
Christina Raynard is the creator and owner of this layer. Christina.raynard@waterboards.ca.gov (State Water Resources Control Board, Division of Financial Assistance)
Terms of Use
No special restrictions or limitations on using the item’s content have been provided.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The vegetation map for Pecos National Historical Park was developed using a combined strategy of automated digital-image classification and direct analog-image interpretation of aerial photography and satellite imagery. Initially, the aerial photography and satellite imagery were processed and entered into a GIS along with ancillary spatial layers. A working legend of ecologically based vegetation map units was developed using the vegetation classification described in Chapter 2 as the foundation. The intent was to develop map units that targeted the plant-association level wherever possible within the constraints of image quality, information content, and resolution. With the provisional legend and ground-control points provided by the field-plot data (the same data used to develop the vegetation classification), a series of automated image segmentation and supervised image classifications were conducted, followed by fine-scale map refinement using direct image interpretation and manual editing. The outcome was a vegetation map composed of a suite of map units defined by plant associations and represented by sets of mapped polygons with similar spectral and physical characteristics
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.