88 datasets found
  1. a

    Parcel Shapefile

    • data-ecgis.opendata.arcgis.com
    • home-ecgis.hub.arcgis.com
    • +1more
    Updated Aug 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). Parcel Shapefile [Dataset]. https://data-ecgis.opendata.arcgis.com/datasets/494eb27635154a979d88f4bd83783dd1
    Explore at:
    Dataset updated
    Aug 10, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This shapefile contains tax parcel polygons for Eaton County, Michigan, USA. Because tax parcel information changes daily, this shapefile contains only geometry, the parcel identifier and a URL link to the current information for each parcel. Parcel geometries are not survey-grade and should not be used to make important decisions like where to build a structure or install a fence. In their current form, they are only useful in spatial terms for getting an inexact idea of where a parcel is located. If you need to know exactly where a property line falls, please consult a certified land surveyor. Parcel geometries will be updated either annually or bi-annually. New splits and combinations are typically not visible in the parcel geometry until changes become official via Board of Review in the following April.

  2. a

    Hydrography Shapefile Lines - Statewide

    • gis-odnr.opendata.arcgis.com
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ohio Department of Natural Resources (2024). Hydrography Shapefile Lines - Statewide [Dataset]. https://gis-odnr.opendata.arcgis.com/datasets/hydrography-shapefile-lines-statewide
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    Ohio Department of Natural Resources
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Download .zipThis is a statewide digital version of the Hydrography layer of the published USGS 1:24OOO-scale topographic map series. It was created from DLG files of each scanned 7.5-minute quad map, using custom ARC/INFO software routines which did the following steps: convert from DLG format to coverage format project from UTM to StatePlane map projection rubbersheet map sheet corners to exact computed quad-corner coordinates run semi-automated Edgematching procedure which joins hydrography lines along the quad edges, using distance-offset (maximum of 100 feet) and attribute-match criteria to determine which lines to join. merge the individual quad coverages and dissolve the quad-edge lines Processing was done using Double Precision coordinates and math, with processing tolerance (Fuzzy) of 1 foot.

    In the Database/Dataset Section the items CMAJOR and CMINOR represent coded pairs and are documented together. Up to five pairs in the pat and four pairs in the aat may be present. These will be appear in the tables as CMAJOR1 CMINOR1 CMAJOR2 CMINOR2, etc.

    The layer has been provided in both shape file and coverage format. In the case of the shape file separate shape files are provided for point, line, and polygon data. In the coverage format the line and polygon data is combined in one coverage. The shape files will be the choice of most users due to speed of drawing issues. Those users desiring to manipulate the original data may want to use the coverage format. All shapefiles have been combined for simplicities sake into one self extracting zip file which expands to about 500 megabytes. However, the value listed in the file size parameter of the metadata represents only the size of the particular shapefile being documented. Also it should be noted that the coverages contain redefined items which of necessity had to be split into separate items or omitted in the shape files because this option isn't available in shapefiles.

    This layer documentation is for the Shapefile which includes line features.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov

  3. d

    500 Cities: City Boundaries

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

  4. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A59bae29350865fc2ca6d4c4d3f5995a2a51b7b0ebb9cc8414122cf46a63846c0
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  5. d

    Queensland geology and structural framework - GIS data July 2012

    • data.gov.au
    • researchdata.edu.au
    • +2more
    zip
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Queensland geology and structural framework - GIS data July 2012 [Dataset]. https://data.gov.au/data/dataset/69da6301-04c1-4993-93c1-4673f3e22762
    Explore at:
    zip(427576964)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows:

    This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application.

    The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale.

    In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info.

    The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics).

    For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info.

    Dataset History

    Details on the source data can be found in the xml file associated with data layer.

    Data in this release

    *ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology

    *ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework

    *ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology

    *Georeferenced Queensland geology map, gravity and magnetic images

    *Queensland geology map, structural framework and schematic diagram PDF files

    *Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94

    Accessing the data

    Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites").

    Metadata

    Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders.

    Disclaimer

    The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites.

    Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination.

    The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason.

    The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way.

    WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties.

    Please view the 'readme.html' and 'licence.html' file for further, more complete information

    Dataset Citation

    Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.

  6. c

    Environmental Justice 2022 Set

    • geodata.ct.gov
    • data.ct.gov
    • +5more
    Updated May 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2023). Environmental Justice 2022 Set [Dataset]. https://geodata.ct.gov/maps/5ee667d1ac304fb3830f193a8179ffe0
    Explore at:
    Dataset updated
    May 23, 2023
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Environmental Justice Block Groups 2022 was created from Connecticut block group boundary data located in the Census Bureau's 2020 TIGER/Line Shapefiles. The poverty data used to determine which block groups qualified as EJ communities (see CT State statute 22a-20a) was based on the Census Bureau's 2020 ACS 5-year estimate. This poverty data was joined with the block group boundaries in ArcPro. Block groups in which the percent of the population below 200% of the federal poverty level was greater than or equal to 30.0 were selected and the resulting selection was exported as a new shapefile. The block groups were then clipped so that only those block groups outside of distressed municipalities were displayed. Maintenance – This layer will be updated annually and will coincide with the annual distressed municipalities update (around August/September). The latest ACS 5-year estimate data should be used to update this layer. Environmental Justice Distressed Municipalities 2020 was created from Connecticut town boundary data located in the Census Bureau's 2020 TIGER/Line Shapefiles (County Subdivisions).

    From this shapefile, "select by attribute" was used to select the distressed municipalities by town name (note: the list of 2022 distressed municipalities was provided by the CT Department of Economic and Community Development). The selection was then exported a new shapefile. The “Union” tool was used to unite the new shapefile with tribal lands (American Indian Area Geography) boundary data from the 2020 TIGER/Line files. In the resulting layer, the tribal lands were deleted so only the distressed municipalities remained. Maintenance – This layer will be updated annually when the DECD produces its new list of distressed municipalities (around August/September).

    Note: A distressed municipality, as designated by the Connecticut Department of Economic and Community Development, includes municipalities that no longer meet the threshold requirements but are still in a 5-year grace period. (See definition at CGS Sec. 32-9p(b).) Fitting into that grace period, eight towns continue to be eligible for distressed municipality benefits because they dropped off the list within the last five years. Those are Enfield, Killingly, Naugatuck, Plymouth, New Haven, Preston, Stratford, and Voluntown.

  7. Geospatial data for the Vegetation Mapping Inventory Project of Vicksburg...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Vicksburg National Military Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-vicksburg-national-militar
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Vicksburg
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We used ERDAS Imagine ® Professional 9.2, ENVI ® 4.5, and ArcGIS ® 9.3 with Arc Workstation to develop the vegetation spatial database. Existing GIS datasets that we used to provide mapping information include a NPS park boundary shapefile for VICK (including a 100 meter buffer boundary around the Louisiana Circle, South Fort, and Navy Circle satellite units), a land cover shapefile created by the NWRC (Rangoonwala et al. 2007), and the National Elevation Dataset (NED) (used as the source of the 10-meter elevation model and derived streams, slope, and hillshade). To make the entire spatial data set consistent with NPSVI policies to map only to park boundaries, we clipped the vegetation in and around the previously buffered areas around the Louisiana Circle, South Fort, and Navy Circle satellite unit NPS boundaries. We also added to the spatial database vegetation polygons for the previously omitted Grant’s Canal satellite unit by heads-up digitizing this area from a National Agricultural Information Program (NAIP) image.

  8. Geospatial data for the Vegetation Mapping Inventory Project of Indiana...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Indiana Dunes National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-indiana-dunes-national-lak
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  9. Geospatial data for the Vegetation Mapping Inventory Project of Minute Man...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Minute Man National Historical Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-minute-man-national-histor
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. James W. Sewall Company developed a complete GIS coverage for the park and revised the preliminary vegetation map classes to better match the results from the cluster analysis and NMS ordination. Polygons representing vegetation stands were digitized on-screen in ArcGIS 8.3, and later in ArcMap 9.1 and 9.2, using lines drawn on the acetate overlays, base layers of 1:8,000 CIR aerial photography, orthorectified photo composite image, and plot location and data. The minimum map unit used was 0.5 ha (1.24 ac). Stereo pairs were used to double check stand signatures during the digitizing process. Photo interpretation and polygon digitization extended outside the NPS boundary, especially where vegetation units were arbitrarily truncated by the boundary. Each polygon was attributed with the name of a vegetation map class or an Anderson Level II land use category based on plot data, field observations, aerial photography signatures, and topographic maps. Data fields identifying the USNVC association inclusions within the vegetation map class were attributed to the vegetation polygons in the shapefile. The GIS coverages and shapefiles were projected to Universal Transverse Mercator (UTM) Zone 19 North American Datum 1983 (NAD83). FGDC compliant metadata (FGDC 1998a) were created with the NPS-MP ESRI extension and included with the vegetation map shapefile. A photointerpretation key to the map classes for the 2006 draft vegetation map is included as Appendix A. The composite vegetation coverage was clipped to the NPS 2002 MIMA boundary shapefile for accuracy assessment (AA). After the 2006 vegetation map was completed, the thematic accuracy of this map was assessed.

  10. Range: Pasture (Feature Layer)

    • agdatacommons.nal.usda.gov
    • datadiscoverystudio.org
    • +4more
    bin
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Range: Pasture (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Range_Pasture_Feature_Layer_/25973101
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

  11. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  12. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  13. d

    Shapefile of European countries

    • data.dtu.dk
    png
    Updated Jul 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian Sevdari; Drin Marmullaku (2023). Shapefile of European countries [Dataset]. http://doi.org/10.11583/DTU.23686383.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Jul 17, 2023
    Dataset provided by
    Technical University of Denmark
    Authors
    Kristian Sevdari; Drin Marmullaku
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    This file contains European countries in a shapefile format that can be used in python, R or matlab. The file has been created by Drin Marmullaku based on GADM version 4.1 (https://gadm.org/) and distributed according to their license (https://gadm.org/license.html).

    Please cite as: Sevdari, Kristian; Marmullaku, Drin (2023). Shapefile of European countries. Technical University of Denmark. Dataset. https://doi.org/10.11583/DTU.23686383 This dataset is distributed under a CCBY-NC-SA 4.0 license

    Using the data to create maps for publishing of academic research articles is allowed. Thus you can use the maps you made with GADM data for figures in articles published by PLoS, Springer Nature, Elsevier, MDPI, etc. You are allowed (but not required) to publish these articles (and the maps they contain) under an open license such as CC-BY as is the case with PLoS journals and may be the case with other open access articles. Data for the following countries is covered by a a different license Austria: Creative Commons Attribution-ShareAlike 2.0 (source: Government of Austria)

  14. f

    fegn2021 shapefile for ArcGISPro

    • geodata.fnai.org
    • hub.arcgis.com
    • +2more
    Updated Sep 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cossppgis (2021). fegn2021 shapefile for ArcGISPro [Dataset]. https://geodata.fnai.org/content/832b16d8f6504ea7bc80665861c0932a
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Cossppgis
    Area covered
    Description

    Florida Ecological Greenways Network 2021 (layer name fegn2021_polygon): This vector layer was created from the original raster grid version (fegn2021) created by the University of Florida Center for Landscape Conservation Planning to provide an ecological component to the Statewide Greenways System plan developed by the Department of Environmental Protection, Office of Greenways and Trails (OGT). The FEGN guides OGT ecological greenway conservation efforts and promotes public awareness of the need for and benefits of a statewide ecological greenways network. It is also used as the primary data layer to inform the Florida Forever and other state and regional land acquisition programs regarding the location of the most important wildlife and ecological corridors and large, intact landscapes in the state. The FEGN identifies areas of opportunity for protecting a statewide network of ecological hubs (large areas of ecological significance) and linkages designed to maintain large landscape-scale ecological functions including priority species habitat and ecosystem services throughout the state. Inclusion in the FEGN means the area is either part of a large landscape-scale “hub”, or an ecological corridor connecting two or more hubs. Hubs indicate core landscapes that are large enough to maintain populations of wide-ranging or fragmentation-sensitive species including black bear or panther and areas that are more likely to support functional ecosystem services. Highest priorities indicate the most significant hubs and corridors in relation to completing a functionally connected statewide ecological network, but all priority levels have conservation value. FEGN Priorities 1, 2, and 3 are the most important for protecting a ecologically functional connected statewide network of public and private conservation lands, and these three priority levels (P1, P2, and P3) are now called the Florida Wildlife Corridor as per the Florida Wildlife Corridor legislation passed and signed into law by the Florida Legislature and Governor and 2021, which makes protection of these wildlife and ecological hubs and corridors a high priority as part of a strategic plan for Florida’s future. To accomplish this goal, we need robust state, federal, and local conservation land protection program funding for Florida Forever, Rural and Family Lands Protection Program, Natural Resources Conservation Service easements and incentives, federal Land and Waters Conservation Fund, payments for ecosystem services, etc.For more information http://conservation.dcp.ufl.edu/fegnproject/

  15. d

    Coral reef fish species survey data GIS from the Florida Keys National...

    • catalog.data.gov
    • search.dataone.org
    • +3more
    Updated Jun 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). Coral reef fish species survey data GIS from the Florida Keys National Marine Sanctuary (NCEI Accession 0001394) [Dataset]. https://catalog.data.gov/dataset/coral-reef-fish-species-survey-data-gis-from-the-florida-keys-national-marine-sanctuary-ncei-ac
    Explore at:
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    Florida Keys National Marine Sanctuary, Florida Keys, Florida
    Description

    This data set consists of an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The dataset contains information about 5 classes of coral reefs, 216 fish species, and 6 benthic habitat.

  16. f

    Geomorphology model (ArcGIS Pro version), input datasets and legend...

    • uvaauas.figshare.com
    • data.niaid.nih.gov
    zip
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Geomorphology model (ArcGIS Pro version), input datasets and legend symbology files [Dataset]. http://doi.org/10.21942/uva.13693702.v20
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.

  17. e

    GIS Shapefile, Assessments and Taxation Database, MD Property View 2003,...

    • portal.edirepository.org
    zip
    Updated Aug 28, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neil-Dunne (2017). GIS Shapefile, Assessments and Taxation Database, MD Property View 2003, Baltimore City [Dataset]. http://doi.org/10.6073/pasta/86fb7facb36e1cadb10ad3f9b4791ca3
    Explore at:
    zip(94759 kilobyte)Available download formats
    Dataset updated
    Aug 28, 2017
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2007 - Dec 31, 2015
    Area covered
    Description

    This layer is a high-resolution tree canopy change-detection layer for Baltimore City, MD. It contains three tree-canopy classes for the period 2007-2015: (1) No Change; (2) Gain; and (3) Loss. It was created by extracting tree canopy from existing high-resolution land-cover maps for 2007 and 2015 and then comparing the mapped trees directly. Tree canopy that existed during both time periods was assigned to the No Change category while trees removed by development, storms, or disease were assigned to the Loss class. Trees planted during the interval were assigned to the Gain category, as were the edges of existing trees that expanded noticeably. Direct comparison was possible because both the 2007 and 2015 maps were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset will be subjected to manual review and correction. 2006 LiDAR and 2014 LiDAR data was also used to assist in tree canopy change.

  18. e

    GIS Shapefile - GIS Shapefile, Cadastral_Planimetric, Building Footprints,...

    • portal.edirepository.org
    zip
    Updated Dec 31, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neil-Dunne; Morgan Grove (2009). GIS Shapefile - GIS Shapefile, Cadastral_Planimetric, Building Footprints, Baltimore City [Dataset]. http://doi.org/10.6073/pasta/5a522f4dfdc54212ecb51cef4a7f23cf
    Explore at:
    zip(22475 kilobyte)Available download formats
    Dataset updated
    Dec 31, 2009
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neil-Dunne; Morgan Grove
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    Buildings_BACI

       File Geodatabase Feature Class
    
    
       Thumbnail Not Available
    
       Tags
    
       Buildings, structures, ruins, storage tanks, silos, water towers, Baltimore City Planimetric, Biophysical Resources, Land, Socio-Economic Resources, Capital
    
    
    
    
       Summary
    
    
       This data was created as a landbase feature as part of the planimetric data.
    
    
       Description
    
    
       This dataset represents photogrammetrically captured Building footprints => 100sq. ft. including storage tanks, silos, water towers, power plants, substations, and structures under construction and ruins. Feature capture rules:
    
    
       Buildings - Outline edge of roofline. All buildings shall be captured as polygons. In commercial areas especially, it is important that the plotted building represent the face of the building where it meets the sidewalk. Polygons shall be created for the outer boundary of the building when a partywall exists. Does not include sheds and small temporary structures. Attached garages shall be represented as part of the building structure. Large structures such as stadiums shall also be represented.
    
       Structures under construction or demolition - Delineate the rooflines of all buildings under construction as interpreted from aerial photography. If roofline is not visible compile visible foundation or walls
    
       Ruins - Delineate old overgrown areas of old structures that have been demolished or are in disrepair. Original data will be reclassified to define as separate subtype.
    
       Storage tanks, silos, and water towers - Outlines of all storage tanks, silos and water towers. . Original data will be reclassified to define as separate subtype.
    
       Power plants and substations - Outline of power plant and substation structure. . Original data will be reclassified to define as separate subtype.
    
    
       Credits
    
       There are no credits for this item.
    
    
       Use limitations
    
    
       Every reasonable effort has been made to ensure the accuracy of these data. The City of Baltimore, Maryland makes no representations nor warranties, either express or implied, regarding the accuracy of this information or its suitability for any particular purpose whatsoever. The data is licensed "as is" and the City of Baltimore will not be liable for its use or misuse by any party. Reliance of these data is at the risk of the user.
    
    
       Extent
    
    
    
       West -76.714715  East -76.525355 
    
       North 39.375162  South 39.193953 
    
    
    
    
       Scale Range
    
       There is no scale range for this item.
    
  19. u

    Utah Open Source Places

    • opendata.gis.utah.gov
    • gis-support-utah-em.hub.arcgis.com
    Updated Mar 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2022). Utah Open Source Places [Dataset]. https://opendata.gis.utah.gov/datasets/utah-open-source-places/about
    Explore at:
    Dataset updated
    Mar 18, 2022
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Last update: August 20, 2024OverviewThis point data was generated and filtered from OpenStreetMap and is intended to represent places of interest in the state of Utah. These may include businesses, restaurants, places of worship, airports, parks, schools, event centers, apartment complexes, hotels, car dealerships…almost anything that you can find in OpenStreetMap (OSM). There are over 23,000 features in the original dataset (March 2022) and users can directly contribute to it through openstreetmap.org. This data is updated approximately once every month and will likely continue to grow over time with user activity.Data SourcesThe original bulk set of OSM data for the state of Utah is downloaded from Geofabrik: https://download.geofabrik.de/north-america/us/utah-latest-free.shp.zipAdditional attributes for the Utah features are gathered via the Overpass API using the following query: https://overpass-turbo.eu/s/1geRData Creation ProcessThe Open Source Places layer is created by a Python script that pulls statewide OSM data from a nightly archive provided by Geofabrik (https://www.geofabrik.de/data/download.html). The archive data contains nearly 20 shapefiles, some that are relevant to this dataset and some that aren't. The Open Source Places layer is built by filtering the polygon and point data in those shapefiles down to a single point feature class with specific categories and attributes that UGRC determines would be of widest interest. The polygon features (buildings, areas, complexes, etc.) are converted to points using an internal centroid. Spatial filtering is done as the data from multiple shapefiles is combined into a single layer to minimize the occurrence of duplicate features. (For example, a restaurant can be represented in OSM as both a point of interest and as a building polygon. The spatial filtering helps reduce the chances that both of these features are present in the final dataset.) Additional de-duplication is performed by using the 'block_id' field as a spatial index, to ensure that no two features of the same name exist within a census block. Then, additional fields are created and assigned from UGRC's SGID data (county, city, zip, nearby address, etc.) via point-in-polygon and near analyses. A numeric check is done on the 'name' field to remove features where the name is less than 3 characters long or more than 50% numeric characters. This eliminates several features derived from the buildings layer where the 'name' is simply an apartment complex building number (ex: 3A) or house number (ex: 1612). Finally, additional attributes (osm_addr, opening_hours, phone, website, cuisine, etc.) are pulled from the Overpass API (https://wiki.openstreetmap.org/wiki/Overpass_API) and joined to the filtered data using the 'osm_id' field as the join key.Field Descriptionsaddr_dist - the distance (m) to the nearest UGRC address point within 25 mosm_id - the feature ID in the OSM databasecategory - the feature's data class based on the 4-digit code and tags in the OSM databasename - the name of the feature in the OSM databasecounty - the county the feature is located in (assigned from UGRC's county boundaries)city - the city the feature is located in (assigned from UGRC's municipal boundaries)zip - the zip code of the feature (assigned from UGRC's approximation of zip code boundaries)block_id - the census block the feature is located in (assigned from UGRC's census block boundaries)ugrc_addr - the nearest address (within 25 m) from the UGRC address point databasedisclaimer - a note from UGRC about the ugrc_near_addr fieldlon - the approximate longitude of the feature, calculated in WGS84 EPSG:4326lat - the approximate latitude of the feature, calculated in WGS84 EPSG:4326amenity - the amenity available at the feature (if applicable), often similar to the categorycuisine - the type of food available (if applicable), multiple types are separated by semicolons (;)tourism - the type of tourist location, if applicable (zoo, viewpoint, hotel, attraction, etc.)shop - the type of shop, if applicablewebsite - the feature's website in the OSM database, if availablephone - the feature's phone number(s) in the OSM database, if availableopen_hours - the feature's operating hours in the OSM database, if availableosm_addr - the feature's address in the OSM database, if availableMore information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/society/open-source-places/

  20. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). Parcel Shapefile [Dataset]. https://data-ecgis.opendata.arcgis.com/datasets/494eb27635154a979d88f4bd83783dd1

Parcel Shapefile

Explore at:
250 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 10, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This shapefile contains tax parcel polygons for Eaton County, Michigan, USA. Because tax parcel information changes daily, this shapefile contains only geometry, the parcel identifier and a URL link to the current information for each parcel. Parcel geometries are not survey-grade and should not be used to make important decisions like where to build a structure or install a fence. In their current form, they are only useful in spatial terms for getting an inexact idea of where a parcel is located. If you need to know exactly where a property line falls, please consult a certified land surveyor. Parcel geometries will be updated either annually or bi-annually. New splits and combinations are typically not visible in the parcel geometry until changes become official via Board of Review in the following April.

Search
Clear search
Close search
Google apps
Main menu