11 datasets found
  1. USA NLCD Land Cover

    • mapping-trout.opendata.arcgis.com
    • opendata.rcmrd.org
    • +9more
    Updated Jun 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA NLCD Land Cover [Dataset]. https://mapping-trout.opendata.arcgis.com/datasets/3ccf118ed80748909eb85c6d262b426f
    Explore at:
    Dataset updated
    Jun 6, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or

  2. d

    Data from: Clearing your Desk! Software and Data Services for Collaborative...

    • dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton (2021). Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis [Dataset]. https://dataone.org/datasets/sha256%3A348683249e397738f56d481edaa7a200abf4f7c1043a95c4efd14ca4b2273991
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    David Tarboton
    Description

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to or the know-how to take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the upload, storage, and sharing of a broad class of hydrologic data including time series, geographic features and raster datasets, multidimensional space-time data, and other structured collections of data. Web service tools and a Python client library provide researchers with access to HPC resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This presentation will illustrate the use of web based data and computation services from both the browser and desktop client software. These web-based services implement the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation, generation of hydrology-based terrain information, and preparation of hydrologic model inputs. They allow users to develop scripts on their desktop computer that call analytical functions that are executed completely in the cloud, on HPC resources using input datasets stored in the cloud, without installing specialized software, learning how to use HPC, or transferring large datasets back to the user's desktop. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

    Slides for AGU 2015 presentation IN51C-03, December 18, 2015

  3. Z

    Data and Software Archive for "Likely community transmission of COVID-19...

    • data.niaid.nih.gov
    Updated Jul 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eliseos J Mucaki; Ben C Shirley; Peter K Rogan (2022). Data and Software Archive for "Likely community transmission of COVID-19 infections between neighboring, persistent hotspots in Ontario, Canada" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5585811
    Explore at:
    Dataset updated
    Jul 19, 2022
    Dataset provided by
    CytoGnomix Inc.
    Western University, CytoGnomix Inc.
    Authors
    Eliseos J Mucaki; Ben C Shirley; Peter K Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ontario, Canada
    Description

    This is the Zenodo archive for the manuscript "Likely community transmission of COVID-19 infections between neighboring, persistent hotspots in Ontario, Canada" (Mucaki EJ, Shirley BC and Rogan PK. F1000Research 2021, 10:1312, DOI: 10.12688/f1000research.75891.1). This study aimed to produce community-level geo-spatial mapping of patterns and clusters of symptoms, and of confirmed COVID-19 cases, in near real-time in order to support decision-making. This was accomplished by area-to-area geostatistical analysis, space-time integration, and spatial interpolation of COVID-19 positive individuals. This archive will contain data and image files from this study, which were too numerous to be included in the manuscript for this study. It also provides all program files pertaining to the Geostatistical Epidemiology Toolbox (Geostatistical analysis software package to be used in ArcGIS), as well as all other scripts described in this manuscript and other software developed (cluster, outlier, streak identification and pairing)..

    We also provide a guide which provides a general description of the contents of the four sections in this archive (Documentation_for_Sections_of_Zenodo_Archive.docx). If you have any intent to utilize the data provided in Section 3, we greatly advise you to review this document as it describes the output of all geostatistical analyses performed in this study in detail.

    Data Files:

    Section 1. "Section_1.Tables_S1_S7.Figures_S1_S11.zip"

    This section contains all additional tables and figures described in the manuscript "Likely community transmission of COVID-19 infections between neighboring, persistent hotspots in Ontario, Canada". Additional tables S1 to S7 are presented in an Excel document. These 7 tables provide summary statistics of various geostatistical tests described in the study (“Section 1 – Tables S1-S4”) and lists all identified single and paired high-case cluster streaks (“Section 1 – Tables S5-S7”). This section also contains 11 additional figures referred to in the manuscript (“Section 1 – Figures S1-S11”) both individually and within a Word document which describes them.

    Section 2. "Section_2.Localized_Hotspot_Lists.zip"

    All localized hotspots (identified through kriging analysis) were catalogued for each municipality evaluated (Hamilton, Kitchener/Waterloo, London, Ottawa, Toronto, Windsor/Essex). These files indicate the FSA in which the hotspot was identified, the date in which it was identified (utilizing 3-day case data at the postal code level), the amount of cases which occurred within the FSA within these 3 dates, the range of cases interpolated by kriging analysis (between 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-50, >50), and whether or not the FSA was deemed a hotspot by Gi* relative to the rest of Ontario on any of the three dates evaluated. Please see Section 4 for map images of these localized hotspots.

    Section 3. "Section_3.All-Data_Files.Kriging_GiStar_Local_and_GlobalMorans.2020_2021"

    Section 3 – All output files from the geostatistical tests performed in this study are provided in this section. This includes the output from Ontario-wide FSA-level Gi* and Cluster and Outlier analyses, and PC-level Cluster and Outlier, Spatial Autocorrelation, and kriging analysis of 6 municipal regions. It also includes kriging analysis of 7 other municipal regions adjacent to Toronto (Ajax, Brampton, Markham, Mississauga, Pickering, Richmond Hill and Vaughan). This section also provides data files from our analyses of stratified case data (by age, gender, and at-risk condition). All coordinates presented in these data files are given in “PCS_Lambert_Conformal_Conic” format. Case values between 1-5 were masked (appear as “NA”).

    Section 4. "Section_4.All_Map_Images_of_Geostat_Analyses.zip"

    Sets of image files which map the results of our geostatistical analyses onto a map of Ontario or within the municipalities evaluated (Hamilton, Kitchener/Waterloo, London, Ottawa, Toronto, Windsor/Essex) are provided. This includes: Kriging analysis (PC-level), Local Moran's I cluster and outlier analysis (FSA and PC-level), normal and space-time Gi* analysis, and all images for all analyses performed on stratified data (by age, gender and at-risk condition). Kriging contour maps are also included for 7 other municipal regions adjacent to Toronto (Ajax, Brampton, Markham, Mississauga, Pickering, Richmond Hill and Vaughan).

    Software:

    This Zenodo archive also provides all program files pertaining to the Geostatistical Epidemiology Toolbox (Geostatistical analysis software package to be used in ArcGIS), as well as all other scripts described in this manuscript. This geostatistical toolbox was developed by CytoGnomix Inc., London ON, Canada and is distributed freely under the terms of the GNU General Public License v3.0. It can be easily modified to accommodate other Canadian provinces and, with some additional effort, other countries.

    This distribution of the Geostatistical Epidemiology Toolbox does not include postal code (PC) boundary files (which are required for some of the tools included in the toolbox). The PC boundary shapefiles used to test the toolbox were obtained from DMTI (https://www.dmtispatial.com/canmap/) through the Scholar's Geoportal at the University of Western Ontario (http://geo2.scholarsportal.info/). The distribution of these files (through sharing, sale, donation, transfer, or exchange) is strictly prohibited. However, any equivalent PC boundary shape file should suffice, provided it contains polygon boundaries representing postal code regions (see guide for more details).

    Software File 1. "Software.GeostatisticalEpidemiologyToolbox.zip"

    The Geostatistical Epidemiology Toolbox is a set of custom Python-based geoprocessing tools which function as any built-in tool in the ArcGIS system. This toolbox implements data preprocessing, geostatistical analysis and post-processing software developed to evaluate the distribution and progression of COVID-19 cases in Canada. The purpose of developing this toolbox is to allow external users without programming knowledge to utilize the software scripts which generated our analyses and was intended to be used to evaluate Canadian datasets. While the toolbox was developed for evaluating the distribution of COVID-19, it could be utilized for other purposes.

    The toolbox was developed to evaluate statistically significant distributions of COVID-19 case data at Canadian Forward Sortation Area (FSA) and Postal Code-level in the province of Ontario utilizing geostatistical tools available through the ArcGIS system. These tools include: 1) Standard Gi* analysis (finds areas where cases are significantly spatially clustered), 2) spacetime based Gi* analysis (finds areas where cases are both spatially and temporally clustered), 3) cluster and outlier analysis (determines if high case regions are an regional outlier or part of a case cluster), 4) spatial autocorrelation (determines the cases in a region are clustered overall) and, 5) Empirical Bayesian Kriging analysis (creates contour maps which define the interpolation of COVID-19 cases in measured and unmeasured areas). Post-processing tools are included that import these all of the preceding results into the ArcGIS system and automatically generate PNG images.

    This archive also includes a guide ("UserManual_GeostatisticalEpidemiologyToolbox_CytoGnomix.pdf") which describes in detail how to set up the toolbox, how to format input case data, and how to use each tool (describing both the relevant input parameters and the structure of the resultant output files).

    Software File 2: “Software.Additional_Programs_for_Cluster_Outlier_Streak_Idendification_and_Pairing.zip"

    In the manuscript associated with this archive, Perl scripts were utilized to evaluate postal code-level Cluster and Outlier analysis to identify significantly, highly clustered postal codes over consecutive periods (i.e., high-case cluster “streaks”). The identified streaks are then paired to those in close proximity, based on the neighbors of each postal code from PC centroid data ("paired streaks"). Multinomial logistic regression models were then derived in the R programming language to measure the correlation between the number of cases reported in each paired streak, the interval of time separating each streak, and the physical distance between the two postal codes. Here, we provide the 3 Perl scripts and the R markdown file which perform these tasks:

    “Ontario_City_Closest_Postal_Code_Identification.pl”

    Using an input file with postal code coordinates (by centroid), this program identifies the nearest neighbors to all postal codes for a given municipal region (the name of this region is entered on the command line). Postal code centroids were calculated in ArcGIS using the “Calculate Geometry” function against DMTI postal code boundary files (not provided). Input from other sources could be used, however, as long as the input includes a list of coordinates with a unique label associated with a particular municipality.

    The output of this program (for the same municipal region being evaluated) is required for the following two Perl scripts:

    “Local_Morans_Analysis.Recurrent_Clustered_PC_Identifier.pl”

    This program uses the output of postal code-level Cluster and Outlier analysis for a municipality (these files are available in a second Zenodo archive: doi.org/10.5281/zenodo.5585812) and the output from “Ontario_City_Closest_Postal_Code_Identification.pl” (for the same municipal region) as input to identify high-case clustered postal codes that occur consecutively over a course of several dates (referred to as high-case cluster “streaks”). The script allows for a single day in which the PC was either not clustered or did not meet the minimum case count threshold of ≥ 6 cases within the 3-day sliding window (i.e. if

  4. USA Annual NLCD Land Cover

    • hub.arcgis.com
    • sal-urichmond.hub.arcgis.com
    • +1more
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2025). USA Annual NLCD Land Cover [Dataset]. https://hub.arcgis.com/datasets/32e2ccc6416746a9a72b4d216813f84f
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Beta Notice: This item is currently in beta and is intended for early access, testing, and feedback. It is not recommended for production use, as functionality and content are subject to change without notice.Land cover describes general characteristics of the Earth's surface. The USA Annual NLCD land cover layer represents the predominant surface state within the mapping year with respect to broad categories of artificial or natural surface cover. This annual time-enabled service of the National Land Cover Database groups land cover into 16 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Bodies of water, permanent ice and snow, and barren lands are also identified. Confidence in the value of each pixel is not even. Use the USA NLCD Land Cover Confidence 1985-2024 layer to determine the confidence value for each pixel.Annual NLCD Product User Guide: https://www.usgs.gov/centers/eros/science/annual-nlcd-science-product-user-guideDataset SummaryPhenomenon Mapped: Land Cover of the Conterminous USAGeographic Extent: Conterminous USA (lower 48 states + DC)Mosaic Projection: Albers Equal Area Conic, on WGS84 spheroid (AEA_WGS84)Data Coordinate System: Albers Equal Area Conic, on WGS84 spheroid (AEA_WGS84)Cell Size: 30-mPixel Type: 8-bit unsigned integerSource Type: ThematicTime Extent: Annually 1985-2024Analysis: Optimized for AnalysisSource: National Land Cover Database, Multi-Resolution Land Characteristics ConsortiumData Vintage: Version 1.1, June 2025 Publication Date: June 2025The Annual National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service. The NLCD is part of the NGDA and is considered the authoritative land cover product from the U.S. federal government. What can you do with this layer?Identify land cover classes during the years 1985-2024.Analyze land cover classes in a particular year 1985-2024.Disable the time series, then overlay with transparency and the multiply blend mode over basemaps and relief to stain basemaps with color, giving the basemap economic context. Useful for operational layers such as business locations.Play the time series as an animation to visualize and understand land cover changes over four decades.Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series.Annual NLCD vs Legacy NLCDAnnual NLCD and the Legacy NLCD layers are significantly different. A table below shows differences in features between the two datasets. Annual NLCD Legacy NLCDRelease FrequencyYearlyEvery 2-3 YearsNumber of land cover classes1616, plus 4 additional for AlaskaYears includedYearly, from 1985 to 20242001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, 2021Production MethodInvolves three types of deep learning models integrated into a novel geospatial artificial intelligence (AI) solution to process, encode, and map land cover using Landsat timeseries imagery & curated sets of land cover training dataNLCD utilizes supervised classification algorithms, particularly decision trees, to classify Landsat satellite imagery. Training data includes high-resolution orthophotography, local datasets, field-collected points, and Forest Inventory Analysis data.The Annual NLCD layer uses an Albers projection optimized for the lower 48 states. The Legacy NLCD includes Alaska, Hawaii, and Puerto Rico, and thus a North America Albers projection was used in that layer to minimize distortion around its wider geography and facilitate comparison. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. Processing TemplatesSaturated Renderer for Visualization and Analysis - This renderer has the same symbols as the Esri cartographic renderer, but the colors are extra saturated, giving the map user rich color to use when transparency and/or blend modes may be applied to the layer. This renderer is useful for land cover over a basemap or relief. This is the default. Esri Cartographic Renderer for Visualization and Analysis - Land cover drawn with Esri symbols that are desaturated.MRLC Cartographic Renderer for Visualization and Analysis - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Simplified Renderer for Visualization and Analysis - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some analyses, applications or maps.Isolate Developed Areas for Visualization and Analysis - Cartographic renderer which only displays the four developed classes (21, 22, 23, 24), developed open space plus low, medium, and high intensity development classes.Isolate Forested Areas for Visualization and Analysis - Cartographic renderer which only displays the three forest classes (41, 42, 43), deciduous, coniferous, and mixed forest.Isolate (single NLCD class) for Visualization and Analysis - Isolates a single class in the NLCD.USA Annual NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate is periodically saturated with or covered with water.95. Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation accounts for greater than 80% of vegetative cover and the soil or substrate is periodically saturated with or covered with water.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  5. a

    Observer

    • city-of-lawrenceville-arcgis-hub-lville.hub.arcgis.com
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2023). Observer [Dataset]. https://city-of-lawrenceville-arcgis-hub-lville.hub.arcgis.com/items/ea748614925248288af048d421b4a72f
    Explore at:
    Dataset updated
    Jun 15, 2023
    Dataset authored and provided by
    esri_en
    Description

    Use the Observer template to display a scene with a dynamic scoreboard that shows basic statistics (count, sum, average, minimum, and maximum) for specified fields. As users navigate the scene, values update in the scoreboard to summarize data for features in the current extent. Displaying statistics facilitates interpreting the scene in which 3D symbols can sometimes obscure features as the scene is viewed from different perspectives. Examples: View the impacts of flooding on underground assets, such as pipelines. Summarize construction status, costs, or lease availability while viewing the development of buildings in a city. Compare the structural and financial impacts from an environmental event in an area of interest while visualizing the data. Data requirements The Observer template requires a web scene. A scene layer must have an associated feature layer to show its statistics in the scoreboard. Key app capabilities Scoreboard summary - Displays statistics to summarize the data in the scene for specified layers and fields. Provide a label for each and choose a position and style for the scoreboard. You can float the scoreboard over the map or pin it to the edge of the app so the scoreboard fully spans the app. When the scoreboard is on the side, the toolbar of map tools is automatically moved to the opposite side. Display preset slides - Zoom and pan the map to a collection of preset extents that are saved in the scene like bookmarks. Measurement tools - Provide tools that measure distance and area and find and convert coordinates. Daylight animation - Animates the change in daylight over time with options for users to adjust sun position by date and time and turn shadows on or off. Attribute filter - Configure map filter options that are available to app users. Time filter - Filter features in the map based on time. The map layers must be time enabled. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

  6. a

    Great Bay Estuary Eelgrass - 2015

    • hub.arcgis.com
    • nhgeodata.unh.edu
    • +2more
    Updated Nov 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Hampshire GRANIT GIS Clearinghouse (2020). Great Bay Estuary Eelgrass - 2015 [Dataset]. https://hub.arcgis.com/datasets/de32b83ba59643db91efb9585b8aecd1
    Explore at:
    Dataset updated
    Nov 19, 2020
    Dataset authored and provided by
    New Hampshire GRANIT GIS Clearinghouse
    Area covered
    Description

    The dataset was developed to monitor the distribution of eelgrass within the Great Bay Estuary over time. The surveys have been completed yearly since 1986 to track trends over time. A quality assurance project plan is available at: https://scholars.unh.edu/prep/350The dataset shows the locations where eelgrass was observed in the Great Bay Estuary based on low-altitude aerial surveillance. The study area includes the following waterbodies: Great Bay, the mouth of the Squamscott River, the tidal portion of the Lamprey River, the tidal portion of the Oyster River, the tidal portion of the Bellamy River, the Piscataqua River and Portsmouth Harbor and its associated creeks. Aerial photographs are taken of the study area at 3000 feet at low spring tide with roughly 60% overlap on a calm day without preceding rain events and when the sun is at a low angle to minimize reflection (between 7 am and 10 am). Photographs are taken in late summer, usually late August or early September, depending on tides and weather, to reflect the maximum eelgrass annual biomass. 35 mm film (ASA 200) or a digital camera is used to acquire the images. Typically 300 images are needed to cover the entire Great Bay Estuary. The orientation of the photographs is near-vertical. This is a slight deviation from the NOAA Coastal Change Analysis Program protocol, but follows a published method (Short and Burdick, 1986). The photographs, in the form of 35mm slides or digital computer images, are projected on a screen and the eelgrass images are transferred to a base map. These maps are then digitized using GIS software. The eelgrass habitat mapped from the aerial imagery is verified using the ground truthing data by placing the ground-truthing locations onto the digital image using GIS software. Ground-truthing is done from a small boat during the same season as the photographs are taken. Ground-truth observations are made at low tide. Samples are collected with an eelgrass sampling hook. Positions are determined using GPS. The ground-truth surveys assess 10-20% of the eelgrass beds mapped in the estuary. The aerial survey is completed yearly. The first survey in the series was completed in 1986.

  7. a

    SR-9 Base Map

    • uplan.hub.arcgis.com
    Updated Jun 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UPlan Map Center (2022). SR-9 Base Map [Dataset]. https://uplan.hub.arcgis.com/maps/c2d3301a7bb942dca86ff42410424094
    Explore at:
    Dataset updated
    Jun 16, 2022
    Dataset authored and provided by
    UPlan Map Center
    Area covered
    Description

    Purpose:This map provides striping, signing and design proposals for the SR-9 Reconstruction (Rockville to ZNP) study. The SR-9 Reconstruction (Rockville to ZNP) study is a corridor study of a highway-widening project near Zion National Park, with slides explaining the purpose and process of the project, images of historic structures, frequently asked questions, and interactive maps showing the proposed impacts. This study was conducted by HW Lochner in 2018 and was transferred ownership to UDOT in June 2022. Kayde Roberts was the Project Manager for this project. Go Live Date:2018 Project PIN: 11515 ePM Project Name:SR-9 Reconstruction (Rockville to ZNP) Owner: Bracken Davis (udotgisr4@utah.gov) Update Interval:This data is not updated. It is a static report of the study. Data Input Method:HW Lochner created the storymap and data at the time this report. Support Layers:11515_curb_gutter feature layer 11515_easement_lines feature layer 11515_ROW_lines feature layer 11515_slope_features feature layer 11515_striping feature layer Sign Messages_pg feature layer SR09_project_extent feature layer SR9 Design polygons feature layerAssociated Apps:SR-9 Map Journal storymap Expected Life of Data:This data has no expected expiration date.

  8. a

    CEOSS Water Portal

    • water-amerigeoss.opendata.arcgis.com
    • geoglows.amerigeoss.org
    • +3more
    Updated Oct 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). CEOSS Water Portal [Dataset]. https://water-amerigeoss.opendata.arcgis.com/items/400a946a1fab45c78bfe5f8dc65cce84
    Explore at:
    Dataset updated
    Oct 23, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Water PortalThe CEOS Water Portal ConceptPurposeThe goal of the CEOS Water Portal Project is to provide assistance to scientists and general users (or non-researchers) from the water domain in the development of data services associated with data integration and distribution.ScopeThe CEOS Water Portal is built around several key concepts:The Water Portal will make different types of datasets (satellite, in-situ, and model output) from various water communities accessible.Portal users will include researchers in the hydrological domain as well as operational workers in water-related fields, such as river administrators.The portal is connected to each data center using a standard interface protocol for real-time retrieval of the catalog and the data. (Part of the catalog is collected and stored in the portal locally.)User registration and sharing of use cases/research summaries is encouraged.CEOS Water Portal Data Partners include the National Aeronautics & Space Administration (NASA) and the National Oceanic & Atmospheric Administration (NOAA).Access the CEOS Water Portal.New Water Portal Architecture BackgroundFor several years in 2000s, WGISS Test Facility for CEOP (WTF-CEOP) project was tackled by the lead of JAXA to meet the demand of CEOP user community to develop the data integration services. With the fulfillment of the task, the project ended in 2009.The WTF-CEOP successfully having demonstrated the advantages of data integration for CEOP, the request for enhanced services for water communities was motivated by Dr.Toshio Koike, the lead scientist of CEOP, to push the data integration forward and improve the accessibility to the hydrological data, or water relevant data in broader sense, which are distributed globally.JAXA has taken the roll to expand the“WTF-CEOP” prototype system into “CEOS Water Portal ”, in which more variety of datasets and features are explored. Another essential element is that of the use by not only scientists but also by non-researchers who are dealing with those data in their daily work, such as river administrators etc.The lead organization representing the CEOS WGISS agencies in the CEOS Water Portal Project is JAXA, with participation by NASA and NOAA. Other WGISS members and WGISS affiliates may join at a future date. The project lead is Satoko Miura, JAXA. ServicesTake a look at the Water Portal Presentation slides presented at recent WGISS meetings and WGISS meeting minutes or download the Water Portal Implementation Plan for more information.DateMeeting TitlePresentation SlidesMinutesSep 29, 2015WGISS-40pdfpdfMay 13, 2015WGISS-39pdfpdfOct 01, 2014WGISS-38pdfpdfApr 17, 2014WGISS-37pdf-1, pdf-2pdfSep 17, 2013WGISS-36pdf-1, pdf-2pdfMay 9, 2013WGISS-35pdf-1, pdf-2pdfSep 25, 2012WGISS-34pdfpdfApr 25, 2012WGISS-33pdfpdfFeb 24, 2012IGWCO 8thpdfpdfSep 27, 2011WGISS-32pdfpdfJun 16, 2011WGISS-31pdfpdf Communication and CoordinationPortal development will continue through the end of March, 2016, at which point it becomes fully operational from April, 2016 onward.Planned enhancements to the Portal include architecture renovation, which is to be complete by the end of March, 2015. The new architecture focuses on leveraging an open source catalog broker software (GI-cat) as well as outside catalog servers (or brokers), which will greatly simplify the total architecture and reduce the labor of catalog management without sacrificing service quality for users.For more information, feel free to contact Satoko Miura (Japan Aerospace Exploration Agency, JAXA).Source: http://ceos.org/ourwork/workinggroups/wgiss/past-activities/water-portal/

  9. a

    SR-9 Environmental Resources

    • uplan.hub.arcgis.com
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UPlan Map Center (2022). SR-9 Environmental Resources [Dataset]. https://uplan.hub.arcgis.com/maps/9fe8e9154ad2429488efa5f15b7ef644
    Explore at:
    Dataset updated
    Jun 17, 2022
    Dataset authored and provided by
    UPlan Map Center
    Area covered
    Description

    Purpose:Map of the environmental resources (water crossings, normal high water levels, rock gutters, etc) for the SR-9 Reconstruction (Rockville to ZNP) study, which is a corridor study of a highway-widening project near Zion National Park, with slides explaining the purpose and process of the project, images of historic structures, frequently asked questions, and interactive maps showing the proposed impacts. This study was conducted by HW Lochner in 2018 and was transferred ownership to UDOT in June 2022. Kayde Roberts was the Project Manager for this project. Go Live Date:2018 Project PIN: 11515 ePM Project Name:SR-9 Reconstruction (Rockville to ZNP) Owner: Bracken Davis (udotgisr4@utah.gov) Update Interval:This data is not updated. It is a static report of the study. Data Input Method:HW Lochner created the storymap and data at the time this report. Support Layers:SR09_eligible_historic_Merge feature layer SR09_UDOT_mileposts_miles feature layer SR09_UDOT_mileposts_tenths feature layer SR09_municipal_bdys feature layer SR09_project_extent feature layer SR09_ownership_public feature layerSR09_WOUS_crossings feature layer SR09_WOUS_high_waterline feature layer Associated Apps:SR-9 Environmental Resources web mapping applicationSR-9 Map Journal storymap Expected Life of Data:This data has no expected expiration date.

  10. a

    California Fire Perimeters (all)

    • uscssi.hub.arcgis.com
    • gis.data.cnra.ca.gov
    • +4more
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2024). California Fire Perimeters (all) [Dataset]. https://uscssi.hub.arcgis.com/maps/USCSSI::california-fire-perimeters-all-1
    Explore at:
    Dataset updated
    Nov 26, 2024
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Version InformationThe data is updated annually with fire perimeters from the previous calendar year.Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. A duplicate 2020 Erbes fire was removed. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. There were 2,132 perimeters that received updated attribution, the bulk of which had IRWIN IDs added. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update.If you would like a full briefing on these adjustments, please contact the data steward, Kim Wallin (kimberly.wallin@fire.ca.gov), CAL FIRE FRAP._CAL FIRE (including contract counties), USDA Forest Service Region 5, USDI Bureau of Land Management & National Park Service, and other agencies jointly maintain a fire perimeter GIS layer for public and private lands throughout the state. The data covers fires back to 1878. Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 damaged/ destroyed residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres._Discrepancies between wildfire perimeter data and CAL FIRE Redbook Large Damaging FiresLarge Damaging fires in California were first defined by the CAL FIRE Redbook, and has changed over time, and differs from the definition initially used to define wildfires required to be submitted for the initial compilation of this digital fire perimeter data. In contrast, the definition of fires whose perimeter should be collected has changed once in the approximately 30 years the data has been in existence. Below are descriptions of changes in data collection criteria used when compiling these two datasets. To facilitate comparison, this metadata includes a summary, by year, of fires in the Redbook, that do not appear in this fire perimeter dataset. It is followed by an enumeration of each “Redbook” fire missing from the spatial data. Wildfire Perimeter criteria:~1991: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three residence or one commercial structure or does $300,000 worth of damage 2002: 10 acres timber, 50 acres brush, 300 acres grass, damages or destroys three or more structures, or does $300,000 worth of damage~2010: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three or more structures (doesn’t include out building, sheds, chicken coops, etc.)Large and Damaging Redbook Fire data criteria:1979: Fires of a minimum of 300 acres that burn at least: 30 acres timber or 300 acres brush, or 1500 acres woodland or grass1981: 1979 criteria plus fires that took ,3000 hours of California Department of Forestry and Fire Protection personnel time to suppress1992: 1981 criteria plus 1500 acres agricultural products, or destroys three residence or one commercial structure or does $300,000 damage1993: 1992 criteria but “three or more structures destroyed” replaces “destroys three residence or one commercial structure” and the 3,000 hours of California Department of Forestry personnel time to suppress is removed2006: 300 acres or larger and burned at least: 30 acres of timber, or 300 acres of brush, or 1,500 acres of woodland, or 1,500 acres of grass, or 1,500 acres of agricultural products, or 3 or more structures destroyed, or $300,000 or more dollar damage loss.2008: 300 acres and largerYear# of Missing Large and Damaging Redbook Fires197922198013198115198261983319842019855219861219875619882319898199091991219921619931719942219959199615199791998101999720004200152002162003520042200512006112007320084320093201022011020124201322014720151020162201711201862019220203202102022020230Total488Enumeration of fires in the Redbook that are missing from Fire Perimeter data. Three letter unit code follows fire name.1979-Sylvandale (HUU), Kiefer (AEU), Taylor(TUU), Parker#2(TCU), PGE#10, Crocker(SLU), Silver Spur (SLU), Parkhill (SLU), Tar Springs #2 (SLU), Langdon (SCU), Truelson (RRU), Bautista (RRU), Crocker (SLU), Spanish Ranch (SLU), Parkhill (SLU), Oak Springs(BDU), Ruddell (BDF), Santa Ana (BDU), Asst. #61 (MVU), Bernardo (MVU), Otay #20 1980– Lightning series (SKU), Lavida (RRU), Mission Creek (RRU), Horse (RRU), Providence (RRU), Almond (BDU), Dam (BDU), Jones (BDU), Sycamore (BDU), Lightning (MVU), Assist 73, 85, 138 (MVU)1981– Basalt (LNU), Lightning #25(LMU), Likely (MNF), USFS#5 (SNF), Round Valley (TUU), St. Elmo (KRN), Buchanan (TCU), Murietta (RRU), Goetz (RRU), Morongo #29 (RRU), Rancho (RRU), Euclid (BDU), Oat Mt. (LAC & VNC), Outside Origin #1 (MVU), Moreno (MVU)1982- Duzen (SRF), Rave (LMU), Sheep’s trail (KRN), Jury (KRN), Village (RRU), Yuma (BDF)1983- Lightning #4 (FKU), Kern Co. #13, #18 (KRN)1984-Bidwell (BTU), BLM D 284,337, PNF #115, Mill Creek (TGU), China hat (MMU), fey ranch, Kern Co #10, 25,26,27, Woodrow (KRN), Salt springs, Quartz (TCU), Bonanza (BEU), Pasquel (SBC), Orco asst. (ORC), Canel (local), Rattlesnake (BDF)1985- Hidden Valley, Magic (LNU), Bald Mt. (LNU), Iron Peak (MEU), Murrer (LMU), Rock Creek (BTU), USFS #29, 33, Bluenose, Amador, 8 mile (AEU), Backbone, Panoche, Los Gatos series, Panoche (FKU), Stan #7, Falls #2 (MMU), USFS #5 (TUU), Grizzley, Gann (TCU), Bumb, Piney Creek, HUNTER LIGGETT ASST#2, Pine, Lowes, Seco, Gorda-rat, Cherry (BEU), Las pilitas, Hwy 58 #2 (SLO), Lexington, Finley (SCU), Onions, Owens (BDU), Cabazon, Gavalin, Orco, Skinner, Shell, Pala (RRU), South Mt., Wheeler, Black Mt., Ferndale, (VNC), Archibald, Parsons, Pioneer (BDU), Decker, Gleason(LAC), Gopher, Roblar, Assist #38 (MVU)1986– Knopki (SRF), USFS #10 (NEU), Galvin (RRU), Powerline (RRU), Scout, Inscription (BDU), Intake (BDF), Assist #42 (MVU), Lightning series (FKU), Yosemite #1 (YNP), USFS Asst. (BEU), Dutch Kern #30 (KRN)1987- Peach (RRU), Ave 32 (TUU), Conover (RRU), Eagle #1 (LNU), State 767 aka Bull (RRU), Denny (TUU), Dog Bar (NEU), Crank (LMU), White Deer (FKU), Briceburg (LMU), Post (RRU), Antelope (RRU), Cougar-I (SKU), Pilitas (SLU) Freaner (SHU), Fouts Complex (LNU), Slides (TGU), French (BTU), Clark (PNF), Fay/Top (SQF), Under, Flume, Bear Wallow, Gulch, Bear-1, Trinity, Jessie, friendly, Cold, Tule, Strause, China/Chance, Bear, Backbone, Doe, (SHF) Travis Complex, Blake, Longwood (SRF), River-II, Jarrell, Stanislaus Complex 14k (STF), Big, Palmer, Indian (TNF) Branham (BLM), Paul, Snag (NPS), Sycamore, Trail, Stallion Spring, Middle (KRN), SLU-864 1988- Hwy 175 (LNU), Rumsey (LNU), Shell Creek (MEU), PG&E #19 (LNU), Fields (BTU), BLM 4516, 417 (LMU), Campbell (LNF), Burney (SHF), USFS #41 (SHF), Trinity (USFS #32), State #837 (RRU), State (RRU), State (350 acres), RRU), State #1807, Orange Co. Asst (RRU), State #1825 (RRU), State #2025, Spoor (BDU), State (MVU), Tonzi (AEU), Kern co #7,9 (KRN), Stent (TCU), 1989– Rock (Plumas), Feather (LMU), Olivas (BDU), State 1116 (RRU), Concorida (RRU), Prado (RRU), Black Mt. (MVU), Vail (CNF)1990– Shipman (HUU), Lightning 379 (LMU), Mud, Dye (TGU), State 914 (RRU), Shultz (Yorba) (BDU), Bingo Rincon #3 (MVU), Dehesa #2 (MVU), SLU 1626 (SLU)1991- Church (HUU), Kutras (SHF)1992– Lincoln, Fawn (NEU), Clover, fountain (SHU), state, state 891, state, state (RRU), Aberdeen (BDU), Wildcat, Rincon (MVU), Cleveland (AEU), Dry Creek (MMU), Arroyo Seco, Slick Rock (BEU), STF #135 (TCU)1993– Hoisington (HUU), PG&E #27 (with an undetermined cause, lol), Hall (TGU), state, assist, local (RRU), Stoddard, Opal Mt., Mill Creek (BDU), Otay #18, Assist/ Old coach (MVU), Eagle (CNF), Chevron USA, Sycamore (FKU), Guerrero, Duck1994– Schindel Escape (SHU), blank (PNF), lightning #58 (LMU), Bridge (NEU), Barkley (BTU), Lightning #66 (LMU), Local (RRU), Assist #22 & #79 (SLU), Branch (SLO), Piute (BDU), Assist/ Opal#2 (BDU), Local, State, State (RRU), Gilman fire 7/24 (RRU), Highway #74 (RRU), San Felipe, Assist #42, Scissors #2 (MVU), Assist/ Opal#2 (BDU), Complex (BDF), Spanish (SBC)1995-State 1983 acres, Lost Lake, State # 1030, State (1335 acres), State (5000 acres), Jenny, City (BDU), Marron #4, Asist #51 (SLO/VNC)1996- Modoc NF 707 (Ambrose), Borrego (MVU), Assist #16 (SLU), Deep Creek (BDU), Weber (BDU), State (Wesley) 500 acres (RRU), Weaver (MMU), Wasioja (SBC/LPF), Gale (FKU), FKU 15832 (FKU), State (Wesley) 500 acres, Cabazon (RRU), State Assist (aka Bee) (RRU), Borrego, Otay #269 (MVU), Slaughter house (MVU), Oak Flat (TUU)1997- Lightning #70 (LMU), Jackrabbit (RRU), Fernandez (TUU), Assist 84 (Military AFV) (SLU), Metz #4 (BEU), Copperhead (BEU), Millstream, Correia (MMU), Fernandez (TUU)1998- Worden, Swift, PG&E 39 (MMU), Chariot, Featherstone, Wildcat, Emery, Deluz (MVU), Cajalco Santiago (RRU)1999- Musty #2,3 (BTU), Border # 95 (MVU), Andrews,

  11. Fire Perimeter Dashboard Feature Layer

    • usfs.hub.arcgis.com
    Updated Oct 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2023). Fire Perimeter Dashboard Feature Layer [Dataset]. https://usfs.hub.arcgis.com/content/45f77b15e02142f78c67f748531b8689
    Explore at:
    Dataset updated
    Oct 20, 2023
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    Area covered
    Description

    Version InformationFirep22_1 was released in April 2023. Three hundred five fires from the 2022 fire season were added to the database (1 from BIA, 8 from BLM, 176 from CAL FIRE, 49 from Contract Counties, 14 from LRA, 8 from NPS, 38 from USFS, and 11 from USFW). The 2021 Dotta (part of Beckwourth Complex), Greenhorn, and Hartman fire perimeters were added. Another 45 fires were added by USFW from 2015-2021. The 1988 Hessel fire was added in LNU. The 2019 Cave fire was replaced with a more detailed perimeter submitted by Santa Barbara County. The 2017 Hudson, 2017 Lake, 2017 Jones, 2017 "37", 2019 Tucker, and 2019 Refuge perimeters were replaced with imagery digitized perimeters from USFW. Attributes were updated for 32 records. One hundred ten perimeters were removed due to duplication or being completely contained outside of California state borders. The field IRWINID was added to provide a unique ID; fires before 2022 are lacking this attribution (with the exception of those added in this publication where possible). The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: 2022 Cable (CAL FIRE, AEU), 2022 All American (BIA, CRA).If you would like a full briefing on these adjustments, please contact the data steward, Kim Wallin (kimberly.wallin@fire.ca.gov), CAL FIRE FRAP._CAL FIRE (including contract counties), USDA Forest Service Region 5, USDI Bureau of Land Management & National Park Service, and other agencies jointly maintain a comprehensive fire perimeter GIS layer for public and private lands throughout the state. The data covers fires back to 1878. Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 damaged/ destroyed residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres. _Discrepancies between wildfire perimeter data and CAL FIRE Redbook Large Damaging FiresLarge Damaging fires in California were first defined by the CAL FIRE Redbook, and has changed over time, and differs from the definition initially used to define wildfires required to be submitted for the initial compilation of this digital fire perimeter data. In contrast, the definition of fires whose perimeter should be collected has changed once in the approximately 30 years the data has been in existence. Below are descriptions of changes in data collection criteria used when compiling these two datasets. To facilitate comparison, this metadata includes a summary, by year, of fires in the Redbook, that do not appear in this fire perimeter dataset. It is followed by an enumeration of each “Redbook” fire missing from the spatial data. Wildfire Perimeter criteria~1991: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three residence or one commercial structure or does $300,000 worth of damage ~2010: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three or more structures (doesn’t include out building, sheds, chicken coops, etc.)Redbook Fire data criteria1979 - Fires of a minimum of 300 acres that burn at least: 30 acres timber or 300 acres brush, or 1500 acres woodland or grass1981 - 1979 criteria plus fires that took ,3000 hours of California Department of Forestry and Fire Protection personnel time to suppress1992 - 1981 criteria plus 1500 acres ag products, or destroys three residence or one commercial structure or does $300,000 damage1993 - 1992 criteria but “three or more structures destroyed” replaces “destroys three residence or one commercial structure” and the 3,000 hours of California Department of Forestry personnel time to suppress is removed2008 - simply 300 acres and larger--------------------------------Year and Number of missing Large Damaging Fires for that yearYear# of Missing “Redbook” Fires19792219801319811519826198331984201985521986121987561988231989819909199121992161993171994221995919961519979199810199972000420015200216200352004220051200611200732008432009320102201102012420132201472015102016220171120186Total483---------------------------------Enumeration of fires in the Redbook that are missing from Fire Perimeter data. Three letter unit code follows fire name.1979-Sylvandale (HUU), Kiefer (AEU), Taylor(TUU), Parker#2(TCU), PGE#10, Crocker(SLU), Silver Spur (SLU), Parkhill (SLU), Tar Springs #2 (SLU), Langdon (SCU), Truelson (RRU), Bautista (RRU), Crocker (SLU), Spanish Ranch (SLU), Parkhill (SLU), Oak Springs(BDU), Ruddell (BDF), Santa Ana (BDU), Asst. #61 (MVU), Bernardo (MVU), Otay #20 1980– Lightning series (SKU), Lavida (RRU), Mission Creek (RRU), Horse (RRU), Providence (RRU), Almond (BDU), Dam (BDU), Jones (BDU), Sycamore (BDU), Lightning (MVU), Assist 73, 85, 138 (MVU)1981– Basalt (LNU), Lightning #25(LMU), Likely (MNF), USFS#5 (SNF), Round Valley (TUU), St. Elmo (KRN), Buchanan (TCU), Murietta (RRU), Goetz (RRU), Morongo #29 (RRU), Rancho (RRU), Euclid (BDU), Oat Mt. (LAC & VNC), Outside Origin #1 (MVU), Moreno (MVU)1982- Duzen (SRF), Rave (LMU), Sheep’s trail (KRN), Jury (KRN), Village (RRU), Yuma (BDF)1983- Lightning #4 (FKU), Kern Co. #13, #18 (KRN)1984-Bidwell (BTU), BLM D 284,337, PNF #115, Mill Creek (TGU), China hat (MMU), fey ranch, Kern Co #10, 25,26,27, Woodrow (KRN), Salt springs, Quartz (TCU), Bonanza (BEU), Pasquel (SBC), Orco asst. (ORC), Canel (local), Rattlesnake (BDF)1985- Hidden Valley, Magic (LNU), Bald Mt. (LNU), Iron Peak (MEU), Murrer (LMU), Rock Creek (BTU), USFS #29, 33, Bluenose, Amador, 8 mile (AEU), Backbone, Panoche, Los Gatos series, Panoche (FKU), Stan #7, Falls #2 (MMU), USFS #5 (TUU), Grizzley, Gann (TCU), Bumb, Piney Creek, HUNTER LIGGETT ASST#2, Pine, Lowes, Seco, Gorda-rat, Cherry (BEU), Las pilitas, Hwy 58 #2 (SLO), Lexington, Finley (SCU), Onions, Owens (BDU), Cabazon, Gavalin, Orco, Skinner, Shell, Pala (RRU), South Mt., Wheeler, Black Mt., Ferndale, (VNC), Archibald, Parsons, Pioneer (BDU), Decker, Gleason(LAC), Gopher, Roblar, Assist #38 (MVU)1986– Knopki (SRF), USFS #10 (NEU), Galvin (RRU), Powerline (RRU), Scout, Inscription (BDU), Intake (BDF), Assist #42 (MVU), Lightning series (FKU), Yosemite #1 (YNP), USFS Asst. (BEU), Dutch Kern #30 (KRN)1987- Peach (RRU), Ave 32 (TUU), Conover (RRU), Eagle #1 (LNU), State 767 aka Bull (RRU), Denny (TUU), Dog Bar (NEU), Crank (LMU), White Deer (FKU), Briceburg (LMU), Post (RRU), Antelope (RRU), Cougar-I (SKU), Pilitas (SLU) Freaner (SHU), Fouts Complex (LNU), Slides (TGU), French (BTU), Clark (PNF), Fay/Top (SQF), Under, Flume, Bear Wallow, Gulch, Bear-1, Trinity, Jessie, friendly, Cold, Tule, Strause, China/Chance, Bear, Backbone, Doe, (SHF) Travis Complex, Blake, Longwood (SRF), River-II, Jarrell, Stanislaus Complex 14k (STF), Big, Palmer, Indian (TNF) Branham (BLM), Paul, Snag (NPS), Sycamore, Trail, Stallion Spring, Middle (KRN), SLU-864 1988- Hwy 175 (LNU), Rumsey (LNU), Shell Creek (MEU), PG&E #19 (LNU), Fields (BTU), BLM 4516, 417 (LMU), Campbell (LNF), Burney (SHF), USFS #41 (SHF), Trinity (USFS #32), State #837 (RRU), State (RRU), State (350 acres), RRU), State #1807, Orange Co. Asst (RRU), State #1825 (RRU), State #2025, Spoor (BDU), State (MVU), Tonzi (AEU), Kern co #7,9 (KRN), Stent (TCU), 1989– Rock (Plumas), Feather (LMU), Olivas (BDU), State 1116 (RRU), Concorida (RRU), Prado (RRU), Black Mt. (MVU), Vail (CNF)1990– Shipman (HUU), Lightning 379 (LMU), Mud, Dye (TGU), State 914 (RRU), Shultz (Yorba) (BDU), Bingo Rincon #3 (MVU), Dehesa #2 (MVU), SLU 1626 (SLU)1991- Church (HUU), Kutras (SHF) 1992– Lincoln, Fawn (NEU), Clover, fountain (SHU), state, state 891, state, state (RRU), Aberdeen (BDU), Wildcat, Rincon (MVU), Cleveland (AEU), Dry Creek (MMU), Arroyo Seco, Slick Rock (BEU), STF #135 (TCU)1993– Hoisington (HUU), PG&E #27 (with an undetermined cause, lol), Hall (TGU), state, assist, local (RRU), Stoddard, Opal Mt., Mill Creek (BDU), Otay #18, Assist/ Old coach (MVU), Eagle (CNF), Chevron USA, Sycamore (FKU), Guerrero, Duck1994– Schindel Escape (SHU), blank (PNF), lightning #58 (LMU), Bridge (NEU), Barkley (BTU), Lightning #66 (LMU), Local (RRU), Assist #22 & #79 (SLU), Branch (SLO), Piute (BDU), Assist/ Opal#2 (BDU), Local, State, State (RRU), Gilman fire 7/24 (RRU), Highway #74 (RRU), San Felipe, Assist #42, Scissors #2 (MVU), Assist/ Opal#2 (BDU), Complex (BDF), Spanish (SBC)1995-State 1983 acres, Lost Lake, State # 1030, State (1335 acres), State (5000 acres), Jenny, City (BDU), Marron #4, Asist #51 (SLO/VNC)1996- Modoc NF 707 (Ambrose), Borrego (MVU), Assist #16 (SLU), Deep Creek (BDU), Weber (BDU), State (Wesley) 500 acres (RRU), Weaver (MMU), Wasioja (SBC/LPF), Gale (FKU), FKU 15832 (FKU), State (Wesley) 500 acres, Cabazon (RRU), State Assist (aka Bee) (RRU), Borrego, Otay #269 (MVU), Slaughter house (MVU), Oak Flat (TUU)1997- Lightning #70 (LMU), Jackrabbit (RRU), Fernandez (TUU), Assist 84 (Military AFV) (SLU), Metz #4 (BEU), Copperhead (BEU), Millstream, Correia (MMU), Fernandez (TUU)1998- Worden, Swift, PG&E 39 (MMU), Chariot, Featherstone, Wildcat, Emery, Deluz (MVU), Cajalco Santiago (RRU)1999- Musty #2,3 (BTU), Border # 95 (MVU), Andrews, Roadside 9323 (MMU), Lacy (BDU), Range (SCU)2000- Latrobe (AEU), Shell (SLU), Happy Camp (Inyo), Golden Fire (BDU)2001- Pacheco (MMU), Orosco (CNF/MVU), Observation (LNF), Modoc Complex (LMU), Happy Camp Complex (SKU)2002- Nicholas (MMU), Aliso Assist #73 (MVU), Assist, Leona, Williams (BDU), BLM D596, horse complex (LMU), KNF Assist #15 (SKU), Cajalco Evening State 925 (RRU), Airport, Bouquet, Copper, Inyo Complex (BDU)2003- F.K.U. 7076 (LOC) 15k, Local (2) 12k 2k (RRU), MNF 964 Assist (LNU) 3+k2004- F.K.U. 7654, NOD BBT42005- Pine

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2019). USA NLCD Land Cover [Dataset]. https://mapping-trout.opendata.arcgis.com/datasets/3ccf118ed80748909eb85c6d262b426f
Organization logo

USA NLCD Land Cover

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 6, 2019
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
United States,
Description

Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or

Search
Clear search
Close search
Google apps
Main menu