Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.
Facebook
Twitter
According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.
One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.
Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.
The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.
As the AI training dataset market continues to evolve, the role of Perception Dataset Management Platforms is becoming increasingly crucial. These platforms are designed to handle the complexities of managing large-scale datasets, ensuring that data is not only collected and stored efficiently but also annotated and curated to meet the specific needs of AI models. By providing tools for data organization, quality control, and collaboration, these platforms enable organizations to streamline their data management processes and enhance the overall quality of their AI training datasets. This is particularly important as the demand for diverse and high-quality datasets grows, driven by the expanding scope of AI applications across various industries.
From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological
Facebook
TwitterThis is a test collection for passage and document retrieval, produced in the TREC 2023 Deep Learning track. The Deep Learning Track studies information retrieval in a large training data regime. This is the case where the number of training queries with at least one positive label is at least in the tens of thousands, if not hundreds of thousands or more. This corresponds to real-world scenarios such as training based on click logs and training based on labels from shallow pools (such as the pooling in the TREC Million Query Track or the evaluation of search engines based on early precision).Certain machine learning based methods, such as methods based on deep learning are known to require very large datasets for training. Lack of such large scale datasets has been a limitation for developing such methods for common information retrieval tasks, such as document ranking. The Deep Learning Track organized in the previous years aimed at providing large scale datasets to TREC, and create a focused research effort with a rigorous blind evaluation of ranker for the passage ranking and document ranking tasks.Similar to the previous years, one of the main goals of the track in 2022 is to study what methods work best when a large amount of training data is available. For example, do the same methods that work on small data also work on large data? How much do methods improve when given more training data? What external data and models can be brought in to bear in this scenario, and how useful is it to combine full supervision with other forms of supervision?The collection contains 12 million web pages, 138 million passages from those web pages, search queries, and relevance judgments for the queries.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.
One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.
Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.
The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.
As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.
Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.
The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.
Image data is critical for computer vision application
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are lots of datasets available for different machine learning tasks like NLP, Computer vision etc. However I couldn't find any dataset which catered to the domain of software testing. This is one area which has lots of potential for application of Machine Learning techniques specially deep-learning.
This was the reason I wanted such a dataset to exist. So, I made one.
New version [28th Nov'20]- Uploaded testing related questions and related details from stack-overflow. These are query results which were collected from stack-overflow by using stack-overflow's query viewer. The result set of this query contained posts which had the words "testing web pages".
New version[27th Nov'20] - Created a csv file containing pairs of test case titles and test case description.
This dataset is very tiny (approximately 200 rows of data). I have collected sample test cases from around the web and created a text file which contains all the test cases that I have collected. This text file has sections and under each section there are numbered rows of test cases.
I would like to thank websites like guru99.com, softwaretestinghelp.com and many other such websites which host great many sample test cases. These were the source for the test cases in this dataset.
My Inspiration to create this dataset was the scarcity of examples showcasing the implementation of machine learning on the domain of software testing. I would like to see if this dataset can be used to answer questions similar to the following--> * Finding semantic similarity between different test cases ranging across products and applications. * Automating the elimination of duplicate test cases in a test case repository. * Cana recommendation system be built for suggesting domain specific test cases to software testers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Project Machine Learning is a dataset for object detection tasks - it contains Deteksi Rempah Rempah annotations for 1,270 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is prepared and intended as a data source for development of a stress analysis method based on machine learning. It consists of finite element stress analyses of randomly generated mechanical structures. The dataset contains more than 270,794 pairs of stress analyses images (von Mises stress) of randomly generated 2D structures with predefined thickness and material properties. All the structures are fixed at their bottom edges and loaded with gravity force only. See PREVIEW directory with some examples. The zip file contains all the files in the dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the ongoing energy transition, power grids are evolving fast. They operate more and more often close to their technical limit, under more and more volatile conditions. Fast, essentially real-time computational approaches to evaluate their operational safety, stability and reliability are therefore highly desirable. Machine Learning methods have been advocated to solve this challenge, however they are heavy consumers of training and testing data, while historical operational data for real-world power grids are hard if not impossible to access.
This dataset contains long time series for production, consumption, and line flows, amounting to 20 years of data with a time resolution of one hour, for several thousands of loads and several hundreds of generators of various types representing the ultra-high-voltage transmission grid of continental Europe. The synthetic time series have been statistically validated agains real-world data.
The algorithm is described in a Nature Scientific Data paper. It relies on the PanTaGruEl model of the European transmission network -- the admittance of its lines as well as the location, type and capacity of its power generators -- and aggregated data gathered from the ENTSO-E transparency platform, such as power consumption aggregated at the national level.
The network information is encoded in the file europe_network.json. It is given in PowerModels format, which it itself derived from MatPower and compatible with PandaPower. The network features 7822 power lines and 553 transformers connecting 4097 buses, to which are attached 815 generators of various types.
The time series forming the core of this dataset are given in CSV format. Each CSV file is a table with 8736 rows, one for each hourly time step of a 364-day year. All years are truncated to exactly 52 weeks of 7 days, and start on a Monday (the load profiles are typically different during weekdays and weekends). The number of columns depends on the type of table: there are 4097 columns in load files, 815 for generators, and 8375 for lines (including transformers). Each column is described by a header corresponding to the element identifier in the network file. All values are given in per-unit, both in the model file and in the tables, i.e. they are multiples of a base unit taken to be 100 MW.
There are 20 tables of each type, labeled with a reference year (2016 to 2020) and an index (1 to 4), zipped into archive files arranged by year. This amount to a total of 20 years of synthetic data. When using loads, generators, and lines profiles together, it is important to use the same label: for instance, the files loads_2020_1.csv, gens_2020_1.csv, and lines_2020_1.csv represent a same year of the dataset, whereas gens_2020_2.csv is unrelated (it actually shares some features, such as nuclear profiles, but it is based on a dispatch with distinct loads).
The time series can be used without a reference to the network file, simply using all or a selection of columns of the CSV files, depending on the needs. We show below how to select series from a particular country, or how to aggregate hourly time steps into days or weeks. These examples use Python and the data analyis library pandas, but other frameworks can be used as well (Matlab, Julia). Since all the yearly time series are periodic, it is always possible to define a coherent time window modulo the length of the series.
This example illustrates how to select generation data for Switzerland in Python. This can be done without parsing the network file, but using instead gens_by_country.csv, which contains a list of all generators for any country in the network. We start by importing the pandas library, and read the column of the file corresponding to Switzerland (country code CH):
import pandas as pd
CH_gens = pd.read_csv('gens_by_country.csv', usecols=['CH'], dtype=str)
The object created in this way is Dataframe with some null values (not all countries have the same number of generators). It can be turned into a list with:
CH_gens_list = CH_gens.dropna().squeeze().to_list()
Finally, we can import all the time series of Swiss generators from a given data table with
pd.read_csv('gens_2016_1.csv', usecols=CH_gens_list)
The same procedure can be applied to loads using the list contained in the file loads_by_country.csv.
This second example shows how to change the time resolution of the series. Suppose that we are interested in all the loads from a given table, which are given by default with a one-hour resolution:
hourly_loads = pd.read_csv('loads_2018_3.csv')
To get a daily average of the loads, we can use:
daily_loads = hourly_loads.groupby([t // 24 for t in range(24 * 364)]).mean()
This results in series of length 364. To average further over entire weeks and get series of length 52, we use:
weekly_loads = hourly_loads.groupby([t // (24 * 7) for t in range(24 * 364)]).mean()
The code used to generate the dataset is freely available at https://github.com/GeeeHesso/PowerData. It consists in two packages and several documentation notebooks. The first package, written in Python, provides functions to handle the data and to generate synthetic series based on historical data. The second package, written in Julia, is used to perform the optimal power flow. The documentation in the form of Jupyter notebooks contains numerous examples on how to use both packages. The entire workflow used to create this dataset is also provided, starting from raw ENTSO-E data files and ending with the synthetic dataset given in the repository.
This work was supported by the Cyber-Defence Campus of armasuisse and by an internal research grant of the Engineering and Architecture domain of HES-SO.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Machine learning in Java : helpful techniques to design, build, and deploy powerful machine learning applications in Java. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset created for machine learning and deep learning training and teaching purposes.
Can for instance be used for classification, regression, and forecasting tasks.
Complex enough to demonstrate realistic issues such as overfitting and unbalanced data, while still remaining intuitively accessible.
ORIGINAL DATA TAKEN FROM:
EUROPEAN CLIMATE ASSESSMENT & DATASET (ECA&D), file created on 22-04-2021
THESE DATA CAN BE USED FREELY PROVIDED THAT THE FOLLOWING SOURCE IS ACKNOWLEDGED:
Klein Tank, A.M.G. and Coauthors, 2002. Daily dataset of 20th-century surface
air temperature and precipitation series for the European Climate Assessment.
Int. J. of Climatol., 22, 1441-1453.
Data and metadata available at http://www.ecad.eu
For more information see metadata.txt file.
The Python code used to create the weather prediction dataset from the ECA&D data can be found on GitHub: https://github.com/florian-huber/weather_prediction_dataset
(this repository also contains Jupyter notebooks with teaching examples)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Jupyter notebook has also been created where we'll show you how to use this data to train a deep learning model to identify whether an Integrated Vapor Transport map contains an atmosperhic river. it can be found: https://github.com/coecms/CNN-Atmospheric-Rivers/blob/main/CNN_AR_tutorial.ipynb" target="_blank" rel="noopener">CNN_AR_tutorial.ipynb and had been published here:
Mesto, M., Hobeichi, S., & Green, S. (2024). CNN-Atmospheric-Rivers (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.12538779
The data is organised in three folders:
Integrated Vapor Transport maps:
These maps were computed using the magnitude of the vertical integral of northward and eastward water vapour flux variables from ERA5. The IVT values are expressed in units of kg m^-1 s^-1. All the IVT TIFF files were loaded into ArcGIS software and displayed using a colour scheme that allows for the visual identification of atmospheric rivers. Data details:
Atmospheric Rivers in IVT maps:
The annotation tool ‘Label Objects for Deep Learning’ was used to draw polygons to cover the shape of atmospheric rivers on each IVT map. Each polygon was assigned one of two labels: 'Atmospheric Rivers' or 'Ambiguous'. The polygons were drawn based on visual identification of the shape of atmospheric rivers, guided by IVT values close to 500kg m^-1 s^-1 as in Reid et al (2020). The 'Ambiguous' label was assigned to objects that were unclear in their classification as ARs. This ambiguity arose from objects that were shorter, wider, had slightly lower IVT values, or it was hard to tell if they were ARs of tropical cyclones during the early stages of their formation. Data details:
Dataset for deep learning training:
The tool 'Export Training Data for Deep Learning' uses the IVT maps in the 'AR_Global' folder and the shapefiles in the 'IVT_ERA5_2Deg' folder to create labelled tiles for deep learning training. Each tile in the map is assigned a label: 'Atmospheric River', 'Ambiguous', or no label if it doesn’t contain any AR or ambiguous shape. The generated map chips are stored in folder Training_Testing_tiles/ RCNN_Masks_All_Tiles (no 3-10-15)/images, and the labels are provided in the textfile 'map.txt' file in folder Training_Testing_tiles/ RCNN_Masks_All_Tiles (no 3-10-15)/. Data details:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Machine Learning Tutorial is a dataset for object detection tasks - it contains Fruits annotations for 455 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developing data-driven solutions that address real-world problems requires understanding of these problems’ causes and how their interaction affects the outcome–often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design. However, BNs have not been widely adopted by global health professionals, and in real-world applications, confidence in the results of BNs generally remains inadequate. This is partially due to the inability to validate against some ground truth, as the true DAG is not available. This is especially problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we conceptualize and demonstrate an idea of a “Causal Datasheet” that could approximate and document BN performance expectations for a given dataset, aiming to provide confidence and sample size requirements to practitioners. To generate results for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian networks and their associated synthetic datasets to mimic real-world datasets. The results given by well-known structure learning algorithms and a novel implementation of the OrderMCMC method using the Quotient Normalized Maximum Likelihood score were recorded. These results were used to populate the Causal Datasheet, and recommendations could be made dependent on whether expected performance met user-defined thresholds. We present our experience in the creation of Causal Datasheets to aid analysis decisions at different stages of the research process. First, one was deployed to help determine the appropriate sample size of a planned study of sexual and reproductive health in Madhya Pradesh, India. Second, a datasheet was created to estimate the performance of an existing maternal health survey we conducted in Uttar Pradesh, India. Third, we validated generated performance estimates and investigated current limitations on the well-known ALARM dataset. Our experience demonstrates the utility of the Causal Datasheet, which can help global health practitioners gain more confidence when applying BNs.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset is an enhanced version of the popular Mall Customers dataset, created to provide a richer and more realistic resource for practicing data science and machine learning. The original dataset contained only basic demographic details (age, gender, income) and a spending score. While useful for simple clustering, it lacked the variety of features needed for deeper analytics.
To address this, we have extended the dataset with synthetic but logically consistent features such as:
Age Group (binned categories for demographic analysis)
Estimated Savings (derived from income and spending patterns)
Credit Score (influenced by income and spending behavior)
Loyalty Years (approximate measure of customer relationship length)
Preferred Category (simulated shopping preference: Luxury, Budget, Fashion, Electronics)
These enhancements make the dataset more versatile for tasks like clustering, classification, regression, and customer segmentation.
The inspiration behind this dataset is to bridge the gap between a toy dataset and real-world business data. By including features commonly used in retail, marketing, and financial analytics, this dataset provides learners with an opportunity to:
Practice unsupervised learning (customer segmentation, market basket analysis).
Apply supervised learning (predicting credit score, category preference, or savings).
Explore feature engineering and visualization techniques for business insights.
Whether you are a beginner exploring K-means clustering or an advanced practitioner testing classification models, this dataset offers a well-rounded playground for experimentation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
Facebook
TwitterThis dataset features over 330,000 high-quality interior design images sourced from photographers worldwide. Designed to support AI and machine learning applications, it provides a richly varied and extensively annotated collection of indoor environment visuals.
Key Features: 1. Comprehensive Metadata: the dataset includes full EXIF data, detailing camera settings such as aperture, ISO, shutter speed, and focal length. Each image is pre-annotated with object and scene detection metadata, making it ideal for tasks such as room classification, furniture detection, and spatial layout analysis. Popularity metrics, derived from engagement on our proprietary platform, are also included.
Unique Sourcing Capabilities: the images are collected through a proprietary gamified platform for photographers. Competitions centered on interior design themes ensure a steady stream of fresh, high-quality submissions. Custom datasets can be sourced on-demand within 72 hours to fulfill specific requests, such as particular room types, design styles, or furnishings.
Global Diversity: photographs have been sourced from contributors in over 100 countries, covering a wide spectrum of architectural styles, cultural aesthetics, and functional spaces. The images include homes, offices, restaurants, studios, and public interiors—ranging from minimalist and modern to classic and eclectic designs.
High-Quality Imagery: the dataset includes standard to ultra-high-definition images that capture fine interior details. Both professionally staged and candid real-life spaces are included, offering versatility for training AI across design evaluation, object detection, and environmental understanding.
Popularity Scores: each image is assigned a popularity score based on its performance in GuruShots competitions. This provides valuable insights into global aesthetic trends, helping AI models learn user preferences, design appeal, and stylistic relevance.
AI-Ready Design: the dataset is optimized for machine learning tasks such as interior scene recognition, style transfer, virtual staging, and layout generation. It integrates smoothly with popular AI development environments and tools.
Licensing & Compliance: the dataset fully complies with data privacy regulations and includes transparent licensing suitable for commercial and academic use.
Use Cases: 1. Training AI for interior design recommendation engines and virtual staging tools. 2. Enhancing smart home applications and spatial recognition systems. 3. Powering AR/VR platforms for virtual tours, furniture placement, and room redesign. 4. Supporting architectural visualization, decor style transfer, and real estate marketing.
This dataset offers a comprehensive, high-quality resource tailored for AI-driven innovation in design, real estate, and spatial computing. Customizations are available upon request. Contact us to learn more!
Facebook
TwitterThe following dataset has been used for the paper entitled "Design Analytics for Mobile Learning: Scaling up theClassification of Learning Designs based onCognitive and Contextual Elements".
Abstract
This research was triggered by the identified need in literature for large-scale studies about the kind of designs that teachers create for Mobile Learning (m-learning). These studies require analyses of large datasets of learning designs. The common approach followed by researchers when analysing designs has been to manually classify them following high-level pedagogically-guided coding strategies, which demands extensive work. Therefore, the first goal of this paper is to explore the use of Supervised Machine Learning (SML) to automatically classify the textual content of m-learning designs, through pedagogically-relevant classifications, such as the cognitive level demanded by students to carry out specific designed tasks, the phases of inquiry learning represented in the designs, or the role that the situated environment has in them. As not all the SML models are transparent, while often researchers need to understand the behaviour behind them, the second goal of this paper considers the trade-off between models’ performance and interpretability in the context of design analytics for m-learning. To achieve these goals we compiled a dataset of designs deployed through two tools, Avastusrada and Smartzoos. With it, we trained and compared different models and feature extraction techniques. We further optimized andcompared the best-performing and most interpretable algorithms (EstBERT and Logistic Regression) to consider the second goal through an illustrative case. We found that SML can reliably classify designs, with accuracy>0.86and Cohen’s kappa>0.69.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Data generation in machine learning involves creating or manipulating data to train and evaluate machine learning models. The purpose of data generation is to provide diverse and representative examples that cover a wide range of scenarios, ensuring the model's robustness and generalization. Data augmentation techniques involve applying various transformations to existing data samples to create new ones. These transformations include: random rotations, translations, scaling, flips, and more. Augmentation helps in increasing the dataset size, introducing natural variations, and improving model performance by making it more invariant to specific transformations. The dataset contains GENERATED USA passports, which are replicas of official passports but with randomly generated details, such as name, date of birth etc. The primary intention of generating these fake passports is to demonstrate the structure and content of a typical passport document and to train the neural network to identify this type of document. Generated passports can assist in conducting research without accessing or compromising real user data that is often sensitive and subject to privacy regulations. Synthetic data generation allows researchers to develop and refine models using simulated passport data without risking privacy leaks.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.