https://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.
Xverum’s AI & ML Training Data provides one of the most extensive datasets available for AI and machine learning applications, featuring 800M B2B profiles with 100+ attributes. This dataset is designed to enable AI developers, data scientists, and businesses to train robust and accurate ML models. From natural language processing (NLP) to predictive analytics, our data empowers a wide range of industries and use cases with unparalleled scale, depth, and quality.
What Makes Our Data Unique?
Scale and Coverage: - A global dataset encompassing 800M B2B profiles from a wide array of industries and geographies. - Includes coverage across the Americas, Europe, Asia, and other key markets, ensuring worldwide representation.
Rich Attributes for Training Models: - Over 100 fields of detailed information, including company details, job roles, geographic data, industry categories, past experiences, and behavioral insights. - Tailored for training models in NLP, recommendation systems, and predictive algorithms.
Compliance and Quality: - Fully GDPR and CCPA compliant, providing secure and ethically sourced data. - Extensive data cleaning and validation processes ensure reliability and accuracy.
Annotation-Ready: - Pre-structured and formatted datasets that are easily ingestible into AI workflows. - Ideal for supervised learning with tagging options such as entities, sentiment, or categories.
How Is the Data Sourced? - Publicly available information gathered through advanced, GDPR-compliant web aggregation techniques. - Proprietary enrichment pipelines that validate, clean, and structure raw data into high-quality datasets. This approach ensures we deliver comprehensive, up-to-date, and actionable data for machine learning training.
Primary Use Cases and Verticals
Natural Language Processing (NLP): Train models for named entity recognition (NER), text classification, sentiment analysis, and conversational AI. Ideal for chatbots, language models, and content categorization.
Predictive Analytics and Recommendation Systems: Enable personalized marketing campaigns by predicting buyer behavior. Build smarter recommendation engines for ecommerce and content platforms.
B2B Lead Generation and Market Insights: Create models that identify high-value leads using enriched company and contact information. Develop AI systems that track trends and provide strategic insights for businesses.
HR and Talent Acquisition AI: Optimize talent-matching algorithms using structured job descriptions and candidate profiles. Build AI-powered platforms for recruitment analytics.
How This Product Fits Into Xverum’s Broader Data Offering Xverum is a leading provider of structured, high-quality web datasets. While we specialize in B2B profiles and company data, we also offer complementary datasets tailored for specific verticals, including ecommerce product data, job listings, and customer reviews. The AI Training Data is a natural extension of our core capabilities, bridging the gap between structured data and machine learning workflows. By providing annotation-ready datasets, real-time API access, and customization options, we ensure our clients can seamlessly integrate our data into their AI development processes.
Why Choose Xverum? - Experience and Expertise: A trusted name in structured web data with a proven track record. - Flexibility: Datasets can be tailored for any AI/ML application. - Scalability: With 800M profiles and more being added, you’ll always have access to fresh, up-to-date data. - Compliance: We prioritize data ethics and security, ensuring all data adheres to GDPR and other legal frameworks.
Ready to supercharge your AI and ML projects? Explore Xverum’s AI Training Data to unlock the potential of 800M global B2B profiles. Whether you’re building a chatbot, predictive algorithm, or next-gen AI application, our data is here to help.
Contact us for sample datasets or to discuss your specific needs.
According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.
One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.
Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.
The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.
As the AI training dataset market continues to evolve, the role of Perception Dataset Management Platforms is becoming increasingly crucial. These platforms are designed to handle the complexities of managing large-scale datasets, ensuring that data is not only collected and stored efficiently but also annotated and curated to meet the specific needs of AI models. By providing tools for data organization, quality control, and collaboration, these platforms enable organizations to streamline their data management processes and enhance the overall quality of their AI training datasets. This is particularly important as the demand for diverse and high-quality datasets grows, driven by the expanding scope of AI applications across various industries.
From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are lots of datasets available for different machine learning tasks like NLP, Computer vision etc. However I couldn't find any dataset which catered to the domain of software testing. This is one area which has lots of potential for application of Machine Learning techniques specially deep-learning.
This was the reason I wanted such a dataset to exist. So, I made one.
New version [28th Nov'20]- Uploaded testing related questions and related details from stack-overflow. These are query results which were collected from stack-overflow by using stack-overflow's query viewer. The result set of this query contained posts which had the words "testing web pages".
New version[27th Nov'20] - Created a csv file containing pairs of test case titles and test case description.
This dataset is very tiny (approximately 200 rows of data). I have collected sample test cases from around the web and created a text file which contains all the test cases that I have collected. This text file has sections and under each section there are numbered rows of test cases.
I would like to thank websites like guru99.com, softwaretestinghelp.com and many other such websites which host great many sample test cases. These were the source for the test cases in this dataset.
My Inspiration to create this dataset was the scarcity of examples showcasing the implementation of machine learning on the domain of software testing. I would like to see if this dataset can be used to answer questions similar to the following--> * Finding semantic similarity between different test cases ranging across products and applications. * Automating the elimination of duplicate test cases in a test case repository. * Cana recommendation system be built for suggesting domain specific test cases to software testers.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.
One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.
Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.
The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.
As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.
Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.
The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.
Image data is critical for computer vision application
This is a test collection for passage and document retrieval, produced in the TREC 2023 Deep Learning track. The Deep Learning Track studies information retrieval in a large training data regime. This is the case where the number of training queries with at least one positive label is at least in the tens of thousands, if not hundreds of thousands or more. This corresponds to real-world scenarios such as training based on click logs and training based on labels from shallow pools (such as the pooling in the TREC Million Query Track or the evaluation of search engines based on early precision).Certain machine learning based methods, such as methods based on deep learning are known to require very large datasets for training. Lack of such large scale datasets has been a limitation for developing such methods for common information retrieval tasks, such as document ranking. The Deep Learning Track organized in the previous years aimed at providing large scale datasets to TREC, and create a focused research effort with a rigorous blind evaluation of ranker for the passage ranking and document ranking tasks.Similar to the previous years, one of the main goals of the track in 2022 is to study what methods work best when a large amount of training data is available. For example, do the same methods that work on small data also work on large data? How much do methods improve when given more training data? What external data and models can be brought in to bear in this scenario, and how useful is it to combine full supervision with other forms of supervision?The collection contains 12 million web pages, 138 million passages from those web pages, search queries, and relevance judgments for the queries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Project Machine Learning is a dataset for object detection tasks - it contains Deteksi Rempah Rempah annotations for 1,270 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is prepared and intended as a data source for development of a stress analysis method based on machine learning. It consists of finite element stress analyses of randomly generated mechanical structures. The dataset contains more than 270,794 pairs of stress analyses images (von Mises stress) of randomly generated 2D structures with predefined thickness and material properties. All the structures are fixed at their bottom edges and loaded with gravity force only. See PREVIEW directory with some examples. The zip file contains all the files in the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the Gaussian 16 output files for the dataset of aza-Michael addition reactions used in the publication "Fast Identification of Reactions with Desired Barriers by Reformulating Machine Learning Activation Energies". The structures of the methylamine nucleophile, the 1000 Michael acceptor electrophiles and their 1000 transition states were all optimised at the wB97X-D/def2-TZVP level of theory with the IEFPCM(water) implicit solvent model. Before optimisation all Michael acceptors and transition states were conformationally searched using the MMFF force field in Schrödinger's MacroModel software and the lowest energy conformer was selected for DFT calculation. This dataset also contains the Gaussian 16 output files for the SVWN/def2-SVP single-point energy calculations on the dihydrogen activation catalyst and transition state structures.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A company has a fleet of devices transmitting daily sensor readings. They would like to create a predictive maintenance solution to proactively identify when maintenance should be performed. This approach promises cost savings over routine or time based preventive maintenance, because tasks are performed only when warranted.
The task is to build a predictive model using machine learning to predict the probability of a device failure. When building this model, be sure to minimize false positives and false negatives. The column you are trying to Predict is called failure with binary value 0 for non-failure and 1 for failure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Machine Learning Tutorial is a dataset for object detection tasks - it contains Fruits annotations for 455 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.
Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico
The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This upload contains slices 1 – 1,000 from the data collection described in
Maximilian B. Kiss, Sophia B. Coban, K. Joost Batenburg, Tristan van Leeuwen, and Felix Lucka “"2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning", Sci Data 10, 576 (2023) or arXiv:2306.05907 (2023)
Abstract:
"Recent research in computational imaging largely focuses on developing machine learning (ML) techniques for image reconstruction, which requires large-scale training datasets consisting of measurement data and ground-truth images. However, suitable experimental datasets for X-ray Computed Tomography (CT) are scarce, and methods are often developed and evaluated only on simulated data. We fill this gap by providing the community with a versatile, open 2D fan-beam CT dataset suitable for developing ML techniques for a range of image reconstruction tasks. To acquire it, we designed a sophisticated, semi-automatic scan procedure that utilizes a highly-flexible laboratory X-ray CT setup. A diverse mix of samples with high natural variability in shape and density was scanned slice-by-slice (5000 slices in total) with high angular and spatial resolution and three different beam characteristics: A high-fidelity, a low-dose and a beam-hardening-inflicted mode. In addition, 750 out-of-distribution slices were scanned with sample and beam variations to accommodate robustness and segmentation tasks. We provide raw projection data, reference reconstructions and segmentations based on an open-source data processing pipeline."
The data collection has been acquired using a highly flexible, programmable and custom-built X-ray CT scanner, the FleX-ray scanner, developed by TESCAN-XRE NV, located in the FleX-ray Lab at the Centrum Wiskunde & Informatica (CWI) in Amsterdam, Netherlands. It consists of a cone-beam microfocus X-ray point source (limited to 90 kV and 90 W) that projects polychromatic X-rays onto a 14-bit CMOS (complementary metal-oxide semiconductor) flat panel detector with CsI(Tl) scintillator (Dexella 1512NDT) and 1536-by-1944 pixels, \(74.8\mu m^2\) each. To create a 2D dataset, a fan-beam geometry was mimicked by only reading out the central row of the detector. Between source and detector there is a rotation stage, upon which samples can be mounted. The machine components (i.e., the source, the detector panel, and the rotation stage) are mounted on translation belts that allow the moving of the components independently from one another.
Please refer to the paper for all further technical details.
The complete dataset can be found via the following links: 1-1000, 1001-2000, 2001-3000, 3001-4000, 4001-5000, OOD.
The reference reconstructions and segmentations can be found via the following links: 1-1000, 1001-2000, 2001-3000, 3001-4000, 4001-5000, OOD.
The corresponding Python scripts for loading, pre-processing, reconstructing and segmenting the projection data in the way described in the paper can be found on github. A machine-readable file with the used scanning parameters and instrument data for each acquisition mode as well as a script loading it can be found on the GitHub repository as well.
Note: It is advisable to use the graphical user interface when decompressing the .zip archives. If you experience a zipbomb error when unzipping the file on a Linux system rerun the command with the UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE environment variable by setting in your .bashrc “export UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE”.
For more information or guidance in using the data collection, please get in touch with
Maximilian.Kiss [at] cwi.nl
Felix.Lucka [at] cwi.nl
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset created for machine learning and deep learning training and teaching purposes.
Can for instance be used for classification, regression, and forecasting tasks.
Complex enough to demonstrate realistic issues such as overfitting and unbalanced data, while still remaining intuitively accessible.
ORIGINAL DATA TAKEN FROM:
EUROPEAN CLIMATE ASSESSMENT & DATASET (ECA&D), file created on 22-04-2021
THESE DATA CAN BE USED FREELY PROVIDED THAT THE FOLLOWING SOURCE IS ACKNOWLEDGED:
Klein Tank, A.M.G. and Coauthors, 2002. Daily dataset of 20th-century surface
air temperature and precipitation series for the European Climate Assessment.
Int. J. of Climatol., 22, 1441-1453.
Data and metadata available at http://www.ecad.eu
For more information see metadata.txt file.
The Python code used to create the weather prediction dataset from the ECA&D data can be found on GitHub: https://github.com/florian-huber/weather_prediction_dataset
(this repository also contains Jupyter notebooks with teaching examples)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book series. It has 1 row and is filtered where the books is Building machine learning systems with Python : master the art of machine learning with Python and build effective machine learning sytems with this intensive hands-on guide. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Natural language processing : Python and NLTK : learning path : learn to build expert NLP and machine learning projects using NLTK and other Python libraries. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
voltage input data derived from Matlab
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset provides a collection of behaviour biometrics data (commonly known as Keyboard, Mouse and Touchscreen (KMT) dynamics). The data was collected for use in a FinTech research project undertaken by academics and researchers at Computer Science Department, Edge Hill University, United Kingdom. The project called CyberSIgnature uses KMT dynamics data to distinguish between legitimate card owners and fraudsters. An application was developed that has a graphical user interface (GUI) similar to a standard online card payment form including fields for card type, name, card number, card verification code (cvc) and expiry date. Then, user KMT dynamics were captured while they entered fictitious card information on the GUI application.
The dataset consists of 1,760 KMT dynamic instances collected over 88 user sessions on the GUI application. Each user session involves 20 iterations of data entry in which the user is assigned a fictitious card information (drawn at random from a pool) to enter 10 times and subsequently presented with 10 additional card information, each to be entered once. The 10 additional card information is drawn from a pool that has been assigned or to be assigned to other users. A KMT data instance is collected during each data entry iteration. Thus, a total of 20 KMT data instances (i.e., 10 legitimate and 10 illegitimate) was collected during each user entry session on the GUI application.
The raw dataset is stored in .json format within 88 separate files. The root folder named behaviour_biometrics_dataset' consists of two sub-folders
raw_kmt_dataset' and `feature_kmt_dataset'; and a Jupyter notebook file (kmt_feature_classificatio.ipynb). Their folder and file content is described below:
-- raw_kmt_dataset': this folder contains 88 files, each named
raw_kmt_user_n.json', where n is a number from 0001 to 0088. Each file contains 20 instances of KMT dynamics data corresponding to a given fictitious card; and the data instances are equally split between legitimate (n = 10) and illegitimate (n = 10) classes. The legitimate class corresponds to KMT dynamics captured from the user that is assigned to the card detail; while the illegitimate class corresponds to KMT dynamics data collected from other users entering the same card detail.
-- feature_kmt_dataset': this folder contains two sub-folders, namely:
feature_kmt_json' and feature_kmt_xlsx'. Each folder contains 88 files (of the relevant format: .json or .xlsx) , each named
feature_kmt_user_n', where n is a number from 0001 to 0088. Each file contains 20 instances of features extracted from the corresponding `raw_kmt_user_n' file including the class labels (legitimate = 1 or illegitimate = 0).
-- `kmt_feature_classification.ipynb': this file contains python code necessary to generate features from the raw KMT files and apply simple machine learning classification task to generate results. The code is designed to run with minimal effort from the user.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Materials informatics is increasingly finding ways to exploit machine learning algorithms. Techniques such as decision trees, ensemble methods, support vector machines, and a variety of neural network architectures are used to predict likely material characteristics and property values. Supplemented with laboratory synthesis, applications of machine learning to compound discovery and characterization represent one of the most promising research directions in materials informatics. A shortcoming of this trend, in its current form, is a lack of standardized materials data sets on which to train, validate, and test model effectiveness. Applied machine learning research depends on benchmark data to make sense of its results. Fixed, predetermined data sets allow for rigorous model assessment and comparison. Machine learning publications that don't refer to benchmarks are often hard to contextualize and reproduce. In this data descriptor article, we present a collection of data sets of different material properties taken from the AFLOW database. We describe them, the procedures that generated them, and their use as potential benchmarks. We provide a compressed ZIP file containing the data sets, and a GitHub repository of associated Python code. Finally, we discuss opportunities for future work incorporating the data sets and creating similar benchmark collections.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.