74 datasets found
  1. c

    Panel Data Preparation and Models for Social Equity of Bridge Management

    • kilthub.cmu.edu
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cari Gandy; Daniel Armanios; Constantine Samaras (2023). Panel Data Preparation and Models for Social Equity of Bridge Management [Dataset]. http://doi.org/10.1184/R1/20643327.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Carnegie Mellon University
    Authors
    Cari Gandy; Daniel Armanios; Constantine Samaras
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository provides code and data used in "Social Equity of Bridge Management" (DOI: 10.1061/JMENEA/MEENG-5265). Both the dataset used in the analysis ("Panel.csv") and the R script to create the dataset ("Panel_Prep.R") are provided. The main results of the paper as well as alternate specifications for the ordered probit with random effects models can be replicated with "Models_OrderedProbit.R". Note that these models take an extensive amount of memory and computational resources. Additionally, we have provided alternate model specifications in the "Robustness" R scripts: binomial probit with random effects, ordered probit without random effects, and Ordinary Least Squares with random effects. An extended version of the supplemental materials is also provided.

  2. m

    Panel dataset on Brazilian fuel demand

    • data.mendeley.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Prolo (2024). Panel dataset on Brazilian fuel demand [Dataset]. http://doi.org/10.17632/hzpwbp7j22.1
    Explore at:
    Dataset updated
    Oct 7, 2024
    Authors
    Sergio Prolo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.

    Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.

    adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.

    regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.

    dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.

    Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)

  3. Enterprise survey 2006-2017, Panel data - Argentina

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Enterprise survey 2006-2017, Panel data - Argentina [Dataset]. https://microdata.worldbank.org/index.php/catalog/3396
    Explore at:
    Dataset updated
    Jan 8, 2019
    Dataset authored and provided by
    World Bankhttps://www.worldbank.org/
    Time period covered
    2006 - 2017
    Area covered
    Argentina
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Argentina in 2006, 2010 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.

    The objective of the 2006-2017 Enterprise Survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the 2006-2017 Argentina Enterprise Survey (ES) was selected using stratified random sampling, following the methodology explained in the Sampling Manual. Stratified random sampling was preferred over simple random sampling for several reasons: - To obtain unbiased estimates for different subdivisions of the population with some known level of precision. - To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors (group D), construction (group F), services (groups G and H), and transport, storage, and communications (group I). Groups are defined following ISIC revision 3.1. Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, excluding sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. - To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. - To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.)

    Three levels of stratification were used in every country: industry, establishment size, and region.

    Industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews. In middle size economies the population was stratified into 4 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. For the manufacturing industries sample sizes were inflated by 25% to account for potential non-response in the financing data.

    For the Argentina ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposed, the number of employees was defined on the basis of reported permanent full-time workers. This resulted in some difficulties in certain countries where seasonal/casual/part-time labor is common.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.

    The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies:

    a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don't know (-9).

    b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from "Don't know" responses.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals; whenever this was done, strict rules were followed to ensure replacements were randomly selected within the same stratum. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

  4. m

    Data for: Panel Data and Experimental Design

    • data.mendeley.com
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fiona Burlig (2020). Data for: Panel Data and Experimental Design [Dataset]. http://doi.org/10.17632/vbcp9rh8yj.1
    Explore at:
    Dataset updated
    Jul 1, 2020
    Authors
    Fiona Burlig
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    This zipped file contains the code and data to replicate the results in Burlig, Preonas, and Woerman (2020). See README.rtf for more information.

  5. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    World Bankhttps://www.worldbank.org/
    European Investment Bank (EIB)
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  6. Enterprise Survey 2009-2016, Panel Data - Lesotho

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated May 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2017). Enterprise Survey 2009-2016, Panel Data - Lesotho [Dataset]. https://microdata.worldbank.org/index.php/catalog/2835
    Explore at:
    Dataset updated
    May 11, 2017
    Dataset authored and provided by
    World Bankhttps://www.worldbank.org/
    Time period covered
    2008 - 2016
    Area covered
    Lesotho
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Lesotho in 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.

    Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Lesotho ES 2009 was conducted from September 2008 to February 2009, Lesotho ES 2016 was carried out in June - August 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.

    Data from 301 establishments was analyzed: 90 businesses were from 2009 only, 89 - from 2016 only, and 122 firms were from 2009 and 2016.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Two levels of stratification were used in this country: industry and establishment size.

    Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries - Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).

    For the Lesotho ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification did not take place for the Lesotho ES.

    In 2009, it was not possible to obtain a single usable frame for Lesotho. Instead frames were obtained from two government branches: the Chamber of Commerce and the Ministry of Trade, Industry, Cooperatives and Marketing. Those frames were merged and duplicates removed to provide the frame used for the survey.

    In 2016 ES, the sample frame consisted of listings of firms from two sources: for panel firms the list of 151 firms from the Lesotho 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from Lesotho Bureau of Statistics Business Register, published in August 2015, was used.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments were used for Lesotho ES: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  7. Benefits and Costs of Knowledge and Technology Transfer: a Panel Data...

    • beta.ukdataservice.ac.uk
    Updated 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Jofre-Bonet; A. Banal-Estanol (2011). Benefits and Costs of Knowledge and Technology Transfer: a Panel Data Analysis, 1985-2007 [Dataset]. http://doi.org/10.5255/ukda-sn-6748-1
    Explore at:
    Dataset updated
    2011
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    M. Jofre-Bonet; A. Banal-Estanol
    Description

    The Benefits and Costs of Knowledge and Technology Transfer: a Panel Data Analysis, 1985-2007 aimed to create a dataset that would enable researchers to document and analyse quantitatively the evolution of research output, knowledge and technology transfer measures in the UK. In particular the researchers planned to measure the dynamic impact of industry collaboration on individual academic research output. The study addresses the concerns that received most public and scholarly attention: firstly the reduction in the number of publications, secondly the increase in applied research versus basic; and thirdly the delay of publications due to secrecy requirements for patents. Despite the extensive interest in knowledge and technology transfer, most of the claims in either direction still lack satisfying empirical evidence stemming from the analysis of a large and longitudinal dataset.

    Further information can be found on the "http://www.esrcsocietytoday.ac.uk/my-esrc/grants/RES-000-22-2806/read" title="Benefits and Costs of Knowledge and Technology Transfer: A Panel Data Analysis" >Benefits and Costs of Knowledge and Technology Transfer: A Panel Data Analysis ESRC Award web page.

  8. Enterprise Survey 2006-2017, Panel data - Peru

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Enterprise Survey 2006-2017, Panel data - Peru [Dataset]. https://microdata.worldbank.org/index.php/catalog/3443
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset authored and provided by
    World Bankhttps://www.worldbank.org/
    Time period covered
    2006 - 2017
    Area covered
    Peru
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Peru in 2006, 2010 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.

    The objective of the 2006-2017 Enterprise Survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the 2006-2017 Peru Enterprise Survey (ES) was selected using stratified random sampling, following the methodology explained in the Sampling Manual. Stratified random sampling was preferred over simple random sampling for several reasons: - To obtain unbiased estimates for different subdivisions of the population with some known level of precision. - To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors (group D), construction (group F), services (groups G and H), and transport, storage, and communications (group I). Groups are defined following ISIC revision 3.1. Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, excluding sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. - To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. - To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.)

    Three levels of stratification were used in every country: industry, establishment size, and region.

    Industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews. In middle size economies the population was stratified into 4 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. For the manufacturing industries sample sizes were inflated by 25% to account for potential non-response in the financing data.

    For the Peru ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposed, the number of employees was defined on the basis of reported permanent full-time workers. This resulted in some difficulties in certain countries where seasonal/casual/part-time labor is common.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.

    The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies:

    a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don’t know (-9).

    b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from “Don’t know” responses.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals; whenever this was done, strict rules were followed to ensure replacements were randomly selected within the same stratum. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

  9. H

    Survey of Income and Program Participation (SIPP)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Survey of Income and Program Participation (SIPP) [Dataset]. http://doi.org/10.7910/DVN/I0FFJV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the survey of income and program participation (sipp) with r if the census bureau's budget was gutted and only one complex sample survey survived, pray it's the survey of income and program participation (sipp). it's giant. it's rich with variables. it's monthly. it follows households over three, four, now five year panels. the congressional budget office uses it for their health insurance simulation . analysts read that sipp has person-month files, get scurred, and retreat to inferior options. the american community survey may be the mount everest of survey data, but sipp is most certainly the amazon. questions swing wild and free through the jungle canopy i mean core data dictionary. legend has it that there are still species of topical module variables that scientists like you have yet to analyze. ponce de león would've loved it here. ponce. what a name. what a guy. the sipp 2008 panel data started from a sample of 105,663 individuals in 42,030 households. once the sample gets drawn, the census bureau surveys one-fourth of the respondents every four months, over f our or five years (panel durations vary). you absolutely must read and understand pdf pages 3, 4, and 5 of this document before starting any analysis (start at the header 'waves and rotation groups'). if you don't comprehend what's going on, try their survey design tutorial. since sipp collects information from respondents regarding every month over the duration of the panel, you'll need to be hyper-aware of whether you want your results to be point-in-time, annualized, or specific to some other period. the analysis scripts below provide examples of each. at every four-month interview point, every respondent answers every core question for the previous four months. after that, wave-specific addenda (called topical modules) get asked, but generally only regarding a single prior month. to repeat: core wave files contain four records per person, topical modules contain one. if you stacked every core wave, you would have one record per person per month for the duration o f the panel. mmmassive. ~100,000 respondents x 12 months x ~4 years. have an analysis plan before you start writing code so you extract exactly what you need, nothing more. better yet, modify something of mine. cool? this new github repository contains eight, you read me, eight scripts: 1996 panel - download and create database.R 2001 panel - download and create database.R 2004 panel - download and create database.R 2008 panel - download and create database.R since some variables are character strings in one file and integers in anoth er, initiate an r function to harmonize variable class inconsistencies in the sas importation scripts properly handle the parentheses seen in a few of the sas importation scripts, because the SAScii package currently does not create an rsqlite database, initiate a variant of the read.SAScii function that imports ascii data directly into a sql database (.db) download each microdata file - weights, topical modules, everything - then read 'em into sql 2008 panel - full year analysis examples.R< br /> define which waves and specific variables to pull into ram, based on the year chosen loop through each of twelve months, constructing a single-year temporary table inside the database read that twelve-month file into working memory, then save it for faster loading later if you like read the main and replicate weights columns into working memory too, merge everything construct a few annualized and demographic columns using all twelve months' worth of information construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half, again save it for faster loading later, only if you're so inclined reproduce census-publish ed statistics, not precisely (due to topcoding described here on pdf page 19) 2008 panel - point-in-time analysis examples.R define which wave(s) and specific variables to pull into ram, based on the calendar month chosen read that interview point (srefmon)- or calendar month (rhcalmn)-based file into working memory read the topical module and replicate weights files into working memory too, merge it like you mean it construct a few new, exciting variables using both core and topical module questions construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half reproduce census-published statistics, not exactly cuz the authors of this brief used the generalized variance formula (gvf) to calculate the margin of error - see pdf page 4 for more detail - the friendly statisticians at census recommend using the replicate weights whenever possible. oh hayy, now it is. 2008 panel - median value of household assets.R define which wave(s) and spe cific variables to pull into ram, based on the topical module chosen read the topical module and replicate weights files into working memory too, merge once again construct a replicate-weighted complex sample design with a...

  10. Enterprise Survey 2009-2017 - Sierra Leone

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2018). Enterprise Survey 2009-2017 - Sierra Leone [Dataset]. https://datacatalog.ihsn.org/catalog/study/SLE_2009-2017_ES-P_v01_M
    Explore at:
    Dataset updated
    Sep 19, 2018
    Dataset provided by
    World Bankhttps://www.worldbank.org/
    Authors
    The World Bank
    Time period covered
    2008 - 2017
    Area covered
    Sierra Leone
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Sierra Leone in 2009 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.

    The objective of the 2009-2017 survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries. As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Questionnaire topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, land and permits, taxation, business-government relations, performance measures, AIDS and sickness. The mode of data collection is face-to-face interviews.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for registered establishments in Sierra Leone was selected using stratified random sampling, following the methodology explained in the Sampling Note.

    Stratified random sampling was preferred over simple random sampling for several reasons: a. To obtain unbiased estimates for different subdivisions of the population with some known level of precision. b. To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. c. To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. d. To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.) e. Stratification may produce a smaller bound on the error of estimation than would be produced by a simple random sample of the same size. This result is particularly true if measurements within strata are homogeneous. f. The cost per observation in the survey may be reduced by stratification of the population elements into convenient groupings.

    Three levels of stratification were used in the Sierra Leone sample: firm sector, firm size, and geographic region.

    Industry stratification was designed as follows: the universe was stratified into one manufacturing industry and one services industry (retail).

    Size stratification was defined following the standardized definition used for the Indicator Surveys: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers.

    Regional stratification was defined in terms of the geographic regions with the largest commercial presence in the country: Kenema and W/A Urban. In 2017, regional stratification was done across four regions: Bo, Western Urban, Kenema, and Bombali.

    Given the stratified design, sample frames containing a complete and updated list of establishments as well as information on all stratification variables (number of employees, industry, and region) are required to draw the sample. Great efforts were made to obtain the best source for these listings.

    The sample frame consisted of listings of firms from two sources: For panel firms the list of 150 firms from the Sierra Leone 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from 2016 Business Establishment Census and Dun & Bradstreet Global database (June 2017), was used.

    Necessary measures were taken to ensure the quality of the frame; however, the sample frame was not immune to the typical problems found in establishment surveys: positive rates of non-eligibility, repetition, non-existent units, etc.

    Given the impact that non-eligible units included in the sample universe may have on the results, adjustments may be needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 8.9% (18 out of 202 establishments).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Services and Manufacturing Questionnaire - Screener Questionnaire.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country's business environment. The remaining questions assess the survey respondents' opinions on what are the obstacles to firm growth and performance.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    There was a high response rate especially as a result of positive attitude towards the international community in collaboration with the government in their reconstruction efforts after a period of civil strife. It is period in which a lot of statistics is being collected by the Sierra Leone Statistics for reconstruction thus most respondents were enlightened on research benefits.

  11. i

    National Panel Survey 2008-2015, Uniform Panel Dataset - Tanzania

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (2021). National Panel Survey 2008-2015, Uniform Panel Dataset - Tanzania [Dataset]. https://datacatalog.ihsn.org/catalog/8559
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset authored and provided by
    National Bureau of Statistics
    Time period covered
    2008 - 2015
    Area covered
    Tanzania
    Description

    Abstract

    Panel data possess several advantages over conventional cross-sectional and time-series data, including their power to isolate the effects of specific actions, treatments, and general policies often at the core of large-scale econometric development studies. While the concept of panel data alone provides the capacity for modeling the complexities of human behavior, the notion of universal panel data – in which time- and situation-driven variances leading to variations in tools, and thus results, are mitigated – can further enhance exploitation of the richness of panel information.

    This Basic Information Document (BID) provides a brief overview of the Tanzania National Panel Survey (NPS), but focuses primarily on the theoretical development and application of panel data, as well as key elements of the universal panel survey instrument and datasets generated by the four rounds of the NPS. As this Basic Information Document (BID) for the UPD does not describe in detail the background, development, or use of the NPS itself, the round-specific NPS BIDs should supplement the information provided here.

    The NPS Uniform Panel Dataset (UPD) consists of both survey instruments and datasets, meticulously aligned and engineered with the aim of facilitating the use of and improving access to the wealth of panel data offered by the NPS. The NPS-UPD provides a consistent and straightforward means of conducting not only user-driven analyses using convenient, standardized tools, but also for monitoring MKUKUTA, FYDP II, and other national level development indicators reported by the NPS.

    The design of the NPS-UPD combines the four completed rounds of the NPS – NPS 2008/09 (R1), NPS 2010/11 (R2), NPS 2012/13 (R3), and NPS 2014/15 (R4) – into pooled, module-specific survey instruments and datasets. The panel survey instruments offer the ease of comparability over time, with modifications and variances easily identifiable as well as those aspects of the questionnaire which have remained identical and offer consistent information. By providing all module-specific data over time within compact, pooled datasets, panel datasets eliminate the need for user-generated merges between rounds and present data in a clear, logical format, increasing both the usability and comprehension of complex data.

    Geographic coverage

    Designed for analysis of key indicators at four primary domains of inference, namely: Dar es Salaam, other urban, rural, Zanzibar.

    Analysis unit

    • Households
    • Individuals

    Universe

    The universe includes all households and individuals in Tanzania with the exception of those residing in military barracks or other institutions.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    While the same sample of respondents was maintained over the first three rounds of the NPS, longitudinal surveys tend to suffer from bias introduced by households leaving the survey over time; i.e. attrition. Although the NPS maintains a highly successful recapture rate (roughly 96% retention at the household level), minimizing the escalation of this selection bias, a refresh of longitudinal cohorts was done for the NPS 2014/15 to ensure proper representativeness of estimates while maintaining a sufficient primary sample to maintain cohesion within panel analysis. A newly completed Population and Housing Census (PHC) in 2012, providing updated population figures along with changes in administrative boundaries, emboldened the opportunity to realign the NPS sample and abate collective bias potentially introduced through attrition.

    To maintain the panel concept of the NPS, the sample design for NPS 2014/2015 consisted of a combination of the original NPS sample and a new NPS sample. A nationally representative sub-sample was selected to continue as part of the “Extended Panel” while an entirely new sample, “Refresh Panel”, was selected to represent national and sub-national domains. Similar to the sample in NPS 2008/2009, the sample design for the “Refresh Panel” allows analysis at four primary domains of inference, namely: Dar es Salaam, other urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. This new cohort in NPS 2014/2015 will be maintained and tracked in all future rounds between national censuses.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The format of the NPS-UPD survey instrument is similar to previously disseminated NPS survey instruments. Each module has a questionnaire and clearly identifies if the module collects information at the individual or household level. Within each module-specific questionnaire of the NPS-UPD survey instrument, there are five distinct sections, arranged vertically: (1) the UPD - “U” on the survey instrument, (2) R4, (3), R3, (4) R2, and (5) R1 – the latter 4 sections presenting each questionnaire in its original form at time of its respective dissemination.

    The uppermost section of each module’s questionnaire (“U”) represents the model universal panel questionnaire, with questions generated from the comprehensive listing of questions across all four rounds of the NPS and codes generated from the comprehensive collection of codes. The following sections are arranged vertically by round, considering R4 as most recent. While not all rounds will have data reported for each question in the UPD and not each question will have reports for each of the UPD codes listed, the NPS-UPD survey instrument represents the visual, all-inclusive set of information collected by the NPS over time.

    The four round-specific sections (R4, R3, R2, R1) are aligned with their UPD-equivalent question, visually presenting their contribution to compatibility with the UPD. Each round-specific section includes the original round-specific variable names, response codes and skip patterns (corresponding to their respective round-specific NPS data sets, and despite their variance from other rounds or from the comprehensive UPD code listing)4.

  12. data1.tar.gz

    • figshare.com
    application/x-gzip
    Updated May 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Douglas Bates (2020). data1.tar.gz [Dataset]. http://doi.org/10.6084/m9.figshare.12343910.v1
    Explore at:
    application/x-gzipAvailable download formats
    Dataset updated
    May 20, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Douglas Bates
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of several data sets used to illustrate fitting (generalized) linear mixed-effects models. Individual data sets are in Feather format (https://github.com/wesm/feather). They include Dyestuff, Dyestuff2, Penicillin, Pastes, InstEval, sleepstudy, cbpp, Contraception, grouseticks and VerbAgg from the lme4 package for R. The kb07 data is from github.com/dalejbarr/kronmueller-barr-2007 and ml1m is from https://grouplens.org/datasets/movielens/1m/

  13. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  14. m

    Example Stata syntax and data construction for negative binomial time series...

    • data.mendeley.com
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Price (2022). Example Stata syntax and data construction for negative binomial time series regression [Dataset]. http://doi.org/10.17632/3mj526hgzx.2
    Explore at:
    Dataset updated
    Nov 2, 2022
    Authors
    Sarah Price
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We include Stata syntax (dummy_dataset_create.do) that creates a panel dataset for negative binomial time series regression analyses, as described in our paper "Examining methodology to identify patterns of consulting in primary care for different groups of patients before a diagnosis of cancer: an exemplar applied to oesophagogastric cancer". We also include a sample dataset for clarity (dummy_dataset.dta), and a sample of that data in a spreadsheet (Appendix 2).

    The variables contained therein are defined as follows:

    case: binary variable for case or control status (takes a value of 0 for controls and 1 for cases).

    patid: a unique patient identifier.

    time_period: A count variable denoting the time period. In this example, 0 denotes 10 months before diagnosis with cancer, and 9 denotes the month of diagnosis with cancer,

    ncons: number of consultations per month.

    period0 to period9: 10 unique inflection point variables (one for each month before diagnosis). These are used to test which aggregation period includes the inflection point.

    burden: binary variable denoting membership of one of two multimorbidity burden groups.

    We also include two Stata do-files for analysing the consultation rate, stratified by burden group, using the Maximum likelihood method (1_menbregpaper.do and 2_menbregpaper_bs.do).

    Note: In this example, for demonstration purposes we create a dataset for 10 months leading up to diagnosis. In the paper, we analyse 24 months before diagnosis. Here, we study consultation rates over time, but the method could be used to study any countable event, such as number of prescriptions.

  15. f

    Living Standards Measurement Survey 2001 (Wave 1 Panel) - Bosnia and...

    • microdata.fao.org
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Agency for Statistics (BHAS) (2022). Living Standards Measurement Survey 2001 (Wave 1 Panel) - Bosnia and Herzegovina [Dataset]. https://microdata.fao.org/index.php/catalog/1532
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset provided by
    Republika Srpska Institute of Statistics (RSIS)
    State Agency for Statistics (BHAS)
    Federation of BiH Institute of Statistics (FIS)
    Time period covered
    2001
    Area covered
    Bosnia and Herzegovina
    Description

    Abstract

    In 1992, Bosnia-Herzegovina, one of the six republics in former Yugoslavia, became an independent nation. A civil war started soon thereafter, lasting until 1995 and causing widespread destruction and losses of lives. Following the Dayton accord, BosniaHerzegovina (BiH) emerged as an independent state comprised of two entities, namely, the Federation of Bosnia-Herzegovina (FBiH) and the Republika Srpska (RS), and the district of Brcko. In addition to the destruction caused to the physical infrastructure, there was considerable social disruption and decline in living standards for a large section of the population. Alongside these events, a period of economic transition to a market economy was occurring. The distributive impacts of this transition, both positive and negative, are unknown. In short, while it is clear that welfare levels have changed, there is very little information on poverty and social indicators on which to base policies and programs. In the post-war process of rebuilding the economic and social base of the country, the government has faced the problems created by having little relevant data at the household level. The three statistical organizations in the country (State Agency for Statistics for BiH -BHAS, the RS Institute of Statistics-RSIS, and the FBiH Institute of Statistics-FIS) have been active in working to improve the data available to policy makers: both at the macro and the household level. One facet of their activities is to design and implement a series of household series. The first of these surveys is the Living Standards Measurement Study survey (LSMS). Later surveys will include the Household Budget Survey (an Income and Expenditure Survey) and a Labour Force Survey. A subset of the LSMS households will be re-interviewed in the two years following the LSMS to create a panel data set.

    The three statistical organizations began work on the design of the Living Standards Measurement Study Survey (LSMS) in 1999. The purpose of the survey was to collect data needed for assessing the living standards of the population and for providing the key indicators needed for social and economic policy formulation. The survey was to provide data at the country and the entity level and to allow valid comparisons between entities to be made. The LSMS survey was carried out in the Fall of 2001 by the three statistical organizations with financial and technical support from the Department for International Development of the British Government (DfID), United Nations Development Program (UNDP), the Japanese Government, and the World Bank (WB). The creation of a Master Sample for the survey was supported by the Swedish Government through SIDA, the European Commission, the Department for International Development of the British Government and the World Bank. The overall management of the project was carried out by the Steering Board, comprised of the Directors of the RS and FBiH Statistical Institutes, the Management Board of the State Agency for Statistics and representatives from DfID, UNDP and the WB. The day-to-day project activities were carried out by the Survey Management Team, made up of two professionals from each of the three statistical organizations. The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows: 1. To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population's living conditions, as well as on available resources for satisfying basic needs. 2. To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population's living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labour) at a given time, as well as within a household. 3. To provide key contributions for development of government's Poverty Reduction Strategy Paper, based on analysed data.

    Geographic coverage

    National coverage

    Analysis unit

    Households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    (a) SAMPLE SIZE A total sample of 5,400 households was determined to be adequate for the needs of the survey: with 2,400 in the Republika Srpska and 3,000 in the Federation of BiH. The difficulty was in selecting a probability sample that would be representative of the country's population. The sample design for any survey depends upon the availability of information on the universe of households and individuals in the country. Usually this comes from a census or administrative records. In the case of BiH the most recent census was done in 1991. The data from this census were rendered obsolete due to both the simple passage of time but, more importantly, due to the massive population displacements that occurred during the war. At the initial stages of this project it was decided that a master sample should be constructed. Experts from Statistics Sweden developed the plan for the master sample and provided the procedures for its construction. From this master sample, the households for the LSMS were selected. Master Sample [This section is based on Peter Lynn's note "LSMS Sample Design and Weighting - Summary". April, 2002. Essex University, commissioned by DfID.] The master sample is based on a selection of municipalities and a full enumeration of the selected municipalities. Optimally, one would prefer smaller units (geographic or administrative) than municipalities. However, while it was considered that the population estimates of municipalities were reasonably accurate, this was not the case for smaller geographic or administrative areas. To avoid the error involved in sampling smaller areas with very uncertain population estimates, municipalities were used as the base unit for the master sample. The Statistics Sweden team proposed two options based on this same method, with the only difference being in the number of municipalities included and enumerated.

    (b) SAMPLE DESIGN For reasons of funding, the smaller option proposed by the team was used, or Option B. Stratification of Municipalities The first step in creating the Master Sample was to group the 146 municipalities in the country into three strata- Urban, Rural and Mixed - within each of the two entities. Urban municipalities are those where 65 percent or more of the households are considered to be urban, and rural municipalities are those where the proportion of urban households is below 35 percent. The remaining municipalities were classified as Mixed (Urban and Rural) Municipalities. Brcko was excluded from the sampling frame. Urban, Rural and Mixed Municipalities: It is worth noting that the urban-rural definitions used in BiH are unusual with such large administrative units as municipalities classified as if they were completely homogeneous. Their classification into urban, rural, mixed comes from the 1991 Census which used the predominant type of income of households in the municipality to define the municipality. This definition is imperfect in two ways. First, the distribution of income sources may have changed dramatically from the pre-war times: populations have shifted, large industries have closed, and much agricultural land remains unusable due to the presence of land mines. Second, the definition is not comparable to other countries' where villages, towns and cities are classified by population size into rural or urban or by types of services and infrastructure available. Clearly, the types of communities within a municipality vary substantially in terms of both population and infrastructure. However, these imperfections are not detrimental to the sample design (the urban/rural definition may not be very useful for analysis purposes, but that is a separate issue).

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    (a) DATA ENTRY

    An integrated approach to data entry and fieldwork was adopted in Bosnia and Herzegovina. Data entry proceeded side by side with data gathering to ensure verification and correction in the field. Data entry stations were located in the regional offices of the entity institutes and were equipped with computers, modem and a dedicated telephone line. The completed questionnaires were delivered to these stations each day for data entry. Twenty data entry operators (10 from Federation and 10 from RS) were trained in two training sessions held for a week each in Sarajevo and Banja Luka. The trainers were the staff of the two entity institutes who had undergone training in the CSPro software earlier and had participated in the workshops of the Pilot survey. Prior to the training, laptop computers were provided to the entity institutes, and the CSPro software was installed in them. The training for the data entry operators covered the following elements:

    • Introduction to the LSMS Survey questionnaire; Introduction to the personal computers/ lap top computers; Copying data on diskette and printing of output
    • The Data entry programme (CSPro). Understanding of the Round 1 data entry screens (Modules 1-10)
    • Practice of Round 1 (data entry trainees enter questionnaires completed by interviewer trainees during practice interviews)
    • Understanding of Round 2 Data entry screen (Modules 11-13)
    • Practice of Round 2 Data entry screens (data entry trainees entered the questionnaires completed by interviewer trainees)
    • Control Procedures; Copying
  16. u

    Cape Town RSC Levy Firm Panel Data 2000-2006 - South Africa

    • datafirst.uct.ac.za
    Updated Jul 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Kerr (2020). Cape Town RSC Levy Firm Panel Data 2000-2006 - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/522
    Explore at:
    Dataset updated
    Jul 28, 2020
    Dataset authored and provided by
    Andrew Kerr
    Time period covered
    2000 - 2006
    Area covered
    South Africa
    Description

    Abstract

    Until 2006 metropolitan and district councils in South Africa, which were previously called Regional Services Councils (RSC), were permitted to raise revenue by taxing firms that operated within the council area. The City of Cape Town taxed firms based on their turnover and wage bill but also used the administration of the RSC levy, as the tax was called, to create an administrative dataset of firms. The city used this data to calculate Gross Geographic product and produce a number of reports on the local economy (cf City of Cape Town 2001). The City undertook a survey of all firms on the RSC tax database in 2000 and linked the firms to location based GIS data. The RSC data is thus a mixture of administrative and survey data. The dataset covers the period 2000 to 2006. In theory any enterprise employing at least 1 worker or with a revenue of R10 000 a year was supposed to pay the RSC levy and thus be included in the database. Thus this dataset should be a census of all formal firms operating with the city of Cape Town during the period covered, except the very smallest self-employed operators. In practice, however those familiar with the RSC have said that there was evasion of the tax, with a possible 30% of firms evading.

    Around two thirds of the active firms in 2000 responded to this survey. Some of this survey data (particularly employment) was supposed to be updated every year but in practice we only have useable survey data for the first year of the panel. Much of the employment data was imputed in subsequent years and cannot be used. New entrants were captured in the database but some of the survey information is not available for these firms.

    The project to create this research dataset was made possible by an exploratory grant obtained by Andrew Kerr and Martin Wittenberg of DataFirst from the Private Enterprise Development in Low-Income Countries (PEDL) research initiative. PEDL is a joint research initiative of the Centre for Economic Policy Research (CEPR) and the UK Department For International Development (DFID). It aims to develop a research programme focusing on private-sector development in low-income countries.

    Geographic coverage

    The data covers the Metropolitan area of Cape Town. The data is available with firm-level GPS coordinates

    Mode of data collection

    Other [oth]

  17. e

    Benefits and Costs of Knowledge and Technology Transfer: a Panel Data...

    • b2find.eudat.eu
    Updated Oct 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Benefits and Costs of Knowledge and Technology Transfer: a Panel Data Analysis, 1985-2007 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/20e7f4dd-e51f-5801-aa58-a2dbceaca07b
    Explore at:
    Dataset updated
    Oct 23, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner. The Benefits and Costs of Knowledge and Technology Transfer: a Panel Data Analysis, 1985-2007 aimed to create a dataset that would enable researchers to document and analyse quantitatively the evolution of research output, knowledge and technology transfer measures in the UK. In particular the researchers planned to measure the dynamic impact of industry collaboration on individual academic research output. The study addresses the concerns that received most public and scholarly attention: firstly the reduction in the number of publications, secondly the increase in applied research versus basic; and thirdly the delay of publications due to secrecy requirements for patents. Despite the extensive interest in knowledge and technology transfer, most of the claims in either direction still lack satisfying empirical evidence stemming from the analysis of a large and longitudinal dataset. Further information can be found on the Benefits and Costs of Knowledge and Technology Transfer: A Panel Data Analysis ESRC Award web page. Main Topics: The final longitudinal study comprises career path information for more than 7,000 academics employed at the engineering departments of 40 major UK universities between 1985 and 2007. The study includes four separate data files:Basic - contains personal and career information of the academicPublications - contains publication information, one entry per publication and per researcherPatents - contains patenting information, one entry per patent per researcherEPSRC - contains EPSRC funding information, one entry per grant per researcher

  18. British Election Study, 2014-2023: Combined Internet Panel

    • beta.ukdataservice.ac.uk
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    E. Fieldhouse; J. Green; G. Evans; J. Mellon; C. Prosser; R. De Geus; J. Bailey; H. Schmitt; C. Van Der Eijk (2024). British Election Study, 2014-2023: Combined Internet Panel [Dataset]. http://doi.org/10.5255/ukda-sn-8202-3
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    E. Fieldhouse; J. Green; G. Evans; J. Mellon; C. Prosser; R. De Geus; J. Bailey; H. Schmitt; C. Van Der Eijk
    Area covered
    United Kingdom
    Description

    The British Election Study (BES) is one of the longest-running election studies in the world, having taken place at every general election since 1964. The BES explores why people choose to vote (or not) and why they support one party rather than another, as well as wider questions about democracy and political participation. The BES has included panel studies in a relatively small number of recent periods. These panel studies follow the same survey respondents over time in panel study 'waves' of data. Each wave can also be used as a cross-section and datasets include filter variables to find out which respondents are interviewed in all waves, some waves, or just one wave. Panel studies are particularly useful for studying within-person change and the evolution of political preferences and electoral behaviours. For more information see the British Election Study website.

    The British Election Study, 2014-2023: Combined Internet Panel contains data from Waves 1-25 of the 2015 and 2019 BES, starting in February 2014 and going through to May 2023. The data includes waves that cover the 2015 General Election, the 2016 EU referendum, the 2017 General Election, and the 2019 General Election. Full details of the methodology and fieldwork are available in the technical report/codebook that accompanies the data release. The data includes boosted samples for Scotland and Wales. There are approximately 30,000 respondents in each wave. Further information about the panel data is available on the BES Panel study data webpage.

    This End User Licence version of the dataset contains all of the usual variables made available in the public access version, plus Middle Super-Output Area classifiers and SOC2010 occupation codes for each respondent.

    Latest edition information
    For the third edition (July 2022) data and documentation from a later study (SN 8810, now withdrawn) were combined with the materials contained in this study to create one study covering the full BES 2014-2023 Combined Internet Panel.

  19. Second round of Coronavirus IDB-Cornell Survey and Panel Data: 2020

    • data.iadb.org
    csv
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IDB Datasets (2025). Second round of Coronavirus IDB-Cornell Survey and Panel Data: 2020 [Dataset]. http://doi.org/10.60966/6i5f67jq
    Explore at:
    csv(238490120)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Inter-American Development Bankhttp://www.iadb.org/
    License

    Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020
    Description

    The second round of the IDB/Cornell Coronavirus Survey is a follow-up to the first round of the IDB/Cornell Coronavirus Survey, which collected information related to the impacts of the Covid-19 pandemic on labor markets, food security, social distancing, and knowledge about the symptoms and forms of contagion of the Coronavirus. The main objective of the second round was to follow up with households participating in the first round, collecting more detailed information on household income and assets, as well as data on beneficiaries of social programs existing before the pandemic, financial inclusion, political preferences, and behaviors related to Covid-19 in general. The data collection procedure for the second round, as well as its dissemination, were carried out in the same way as for the first round. Data from the two rounds of the survey were combined to create a household-level data panel. By conducting a correlation exercise between participation in the second round and demographic characteristics, we found that being a woman increased the probability of participating in the second round of the survey. Similarly, people with a higher level of education and higher income were more likely to participate in the second round. In line with these results, we also found a positive correlation between being 40 years old or older and participating in the follow-up survey. Panel data are useful for analyzing the effects of the pandemic on more detailed situations and preferences of households within a country and between countries. Weights are included that correct for differences in sample size between countries and provide greater weighting to observations from countries with larger populations.

  20. w

    Pakistan - Enterprise Survey 2007 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Pakistan - Enterprise Survey 2007 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/pakistan-enterprise-survey-2007
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pakistan
    Description

    This research was conducted in Pakistan between January 2006 and December 2007. Data from 935 manufacturing and service sector registered establishments was analyzed. The objective of the survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries. The survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. The questionnaire also assesses the survey respondents' opinions on what are the obstacles to firm growth and performance. The mode of data collection is face-to-face interviews.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cari Gandy; Daniel Armanios; Constantine Samaras (2023). Panel Data Preparation and Models for Social Equity of Bridge Management [Dataset]. http://doi.org/10.1184/R1/20643327.v4

Panel Data Preparation and Models for Social Equity of Bridge Management

Related Article
Explore at:
txtAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Carnegie Mellon University
Authors
Cari Gandy; Daniel Armanios; Constantine Samaras
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This repository provides code and data used in "Social Equity of Bridge Management" (DOI: 10.1061/JMENEA/MEENG-5265). Both the dataset used in the analysis ("Panel.csv") and the R script to create the dataset ("Panel_Prep.R") are provided. The main results of the paper as well as alternate specifications for the ordered probit with random effects models can be replicated with "Models_OrderedProbit.R". Note that these models take an extensive amount of memory and computational resources. Additionally, we have provided alternate model specifications in the "Robustness" R scripts: binomial probit with random effects, ordered probit without random effects, and Ordinary Least Squares with random effects. An extended version of the supplemental materials is also provided.

Search
Clear search
Close search
Google apps
Main menu