8 datasets found
  1. a

    USA Wetlands

    • cgs-topics-lincolninstitute.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Nov 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LincolnHub (2021). USA Wetlands [Dataset]. https://cgs-topics-lincolninstitute.hub.arcgis.com/items/c954cfa7cee34d94b3b266356445a7ea
    Explore at:
    Dataset updated
    Nov 16, 2021
    Dataset authored and provided by
    LincolnHub
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    Wetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands and the Northern Mariana IslandsVisible Scale: The data is visible at scales from 1:144,000 to 1:1,000Resolution/Tolerance: 0.0001 meters/0.001 metersNumber of Features: 34,954,623 diced, after applying a 50,000 vertex limit to an original set of 34,950,653 featuresFeature Limit: 10,000Source: U.S. Fish and Wildlife ServicePublication Date: September 29, 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the September 29, 2020 version of the NWI. This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data.NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesArea - area of the wetland in acresEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Text = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  2. a

    Heat Severity - USA 2023

    • giscommons-countyplanning.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/TPL::heat-severity-usa-2023
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  3. w

    Data from: Wildlife Areas

    • geo.wa.gov
    • hub.arcgis.com
    • +2more
    Updated Feb 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WA Dept of Fish and Wildlife (2016). Wildlife Areas [Dataset]. https://geo.wa.gov/maps/wdfw::wildlife-areas
    Explore at:
    Dataset updated
    Feb 4, 2016
    Dataset authored and provided by
    WA Dept of Fish and Wildlife
    Area covered
    Description

    WDFW cartography staff create map content designed to inform map viewers where certain types of recreation opportunities are promoted on WDFW Wildlife Areas. This layer is created from WDFW parcel data using parcel attributes to define where these targeted recreation opportunities exist. There are currently two focused map content areas, one is to support the GoHunt application where hunting opportunities are promoted. The other is used to identify WDFW lands where a Washington Discover Pass is required. The Recreation Access Code, managed in the WDFW_Lands feature class, is used to define which parcels are dissolved into this feature class. Recreation Access Code values that are brought across as a result of a standard definition query are: 1 - Parcels managed within a designated Wildlife Area and not restricted in any way for being displayed on GoHunt or Discover Pass maps; 4 - Parcels designated by the Wildlife Program for exclusion from GoHunt activities; 5 - Parcels designated by the Wildlife Program for exclusion from the Discover Pass. Users of this feature class can use ArcMap definition queries to appropriately display either GoHunt or Discover Pass map content. This feature class displays the finest scale of the Wildlife Area administrative hierarchy that consists of Widlife Area Complexes, Wildlife Areas and Wildlife Area Units. There are several fields in this data that can be used to label maps with the Wildlife Area Unit name.

  4. u

    USA NLCD Impervious Surface Time Series

    • colorado-river-portal.usgs.gov
    • community-climatesolutions.hub.arcgis.com
    Updated Sep 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA NLCD Impervious Surface Time Series [Dataset]. https://colorado-river-portal.usgs.gov/datasets/1fdbb561c58b45c58f8f966c00c78ae6
    Explore at:
    Dataset updated
    Sep 26, 2019
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. Phenomenon Mapped: The proportion of the landscape that is impervious to water.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the lower 48 conterminous US states. A small portion of Alaska around Anchorage displays a time series of 2001, 2011, and 2016. Hawaii, Puerto Rico, and the US Virgin Islands unfortunately only have data for 2001 so there is only one image in the series. This information may be used in conjunction with the USA NLCD Land Cover layer.Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: CONUS, Hawaii, A portion of Alaska around Anchorage, District of Columbia, Puerto RicoNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 30, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years in the lower 48 states, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection. Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  5. K

    New Jersey Road Centerlines

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New Jersey (2018). New Jersey Road Centerlines [Dataset]. https://koordinates.com/layer/97254-new-jersey-road-centerlines/
    Explore at:
    shapefile, kml, csv, mapinfo tab, dwg, pdf, mapinfo mif, geopackage / sqlite, geodatabaseAvailable download formats
    Dataset updated
    Sep 13, 2018
    Dataset authored and provided by
    State of New Jersey
    Area covered
    Description

    The New Jersey Office of Information Technology (OIT), Office of GIS (OGIS) has enhanced the previously published NJ Department of Transportation (DOT) Roadway Network GIS data set to create a fully segmented Road Centerlines of New Jersey feature class. This dataset includes fully parsed address information and additional roadway characteristics. It provides the geometric framework for display and query of relevant non-spatial data published as separate tables that can be joined to the feature class. The enhancement process included integration of multiple data sets, primarily those developed and maintained by county agencies in New Jersey and the US Census Bureau.

    © New Jersey Office of Information Technology, Office of GIS -New Jersey Office of Information Technology, Office of Emergency Telecommunications Systems -New Jersey Department of Transportation, Bureau of Transportation Data and Safety -New Jersey Office of Homeland Security and Preparedness -US Census Bureau -US Department of Defense Joint Base McGuire-Dix-Lakehurst -Port Authority of New York/New Jersey GIS Coordinators from: -Atlantic County -Bergen County -Burlington County -Camden County -Cape May County -Cumberland County -Gloucester County -Hudson County -Hunterdon County -Meadowlands Commission -Mercer County -Monmouth County -Montgomery Township, Somerset County -Morris County -North Brunswick Township, Middlesex County -Ocean County -Passaic County -Somerset County -Sussex County -Trenton, Mercer County -Warren County

    This layer is a component of Transportation.

  6. a

    Heat Severity - USA 2022

    • hrtc-oc-cerf.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://hrtc-oc-cerf.hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  7. a

    Unvalidated Human Development Footprint Lines

    • nio-ne-pene-hub-srrb.hub.arcgis.com
    Updated Nov 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sahtu Renewable Resources Board (2021). Unvalidated Human Development Footprint Lines [Dataset]. https://nio-ne-pene-hub-srrb.hub.arcgis.com/datasets/unvalidated-human-development-footprint-lines
    Explore at:
    Dataset updated
    Nov 23, 2021
    Dataset authored and provided by
    Sahtu Renewable Resources Board
    Area covered
    Description

    This data represents the Human Disturbances Dataset for the North Slave Region, South Slave Region, Sahtu Administrative Region, and Inuvik Administrative Region (and/or Inuvialuit Settlement Region)using information from the Mackenzie Valley Land and Water Board, Wek'eezhii Land and Water Board, Gwich'in Land and Water Board, Sahtu Land and Water Board, Inuvialuit Water Board, and Nunavut Impact Review Board registries by Caslys Consulting Ltd. between 2000 and 2023. (Note this dataset extends across all of the NWT and into a portion of Nunavut to provide information across the Bathurst Caribou Range, which straddles the territorial boundary.).This was part of the Human Disturbance Mapping project for the GNWT, where a series of spatial datasets were created with the key objective to create an accurate and up-to-date human disturbance footprint that can be used to help make future land and water management decisions. These datasets were created based on existing baseline GIS data, aerial and satellite imagery, as well as permit records from registries with associated online archives..Modelling and other landscape GIS analyses that use this information may benefit from combining all point, line and polygon datasets into a single disturbance footprint that best represents the sum of all input files. It is recommended that this process be completed by first applying GIS buffer functions to point and line feature classes. This provides the advantages of having a more true representation of disturbance footprint with the ability to calculate spatially explicit functions, such as determining the area of the total disturbance. Using the ‘PointArea_Ha’ (Permit_Data_Points) and ‘LinearWidth_m’ (Permit_Data_Lines) fields respectively, users can calculate the buffer distance for each record in the point and line feature class files. The values in these fields do not represent the buffer distance itself, but can be used to calculate an appropriate buffer distance that can be added to an additional buffer-distance-field..Using the date fields and seasonal date fields, the user may develop queries that will allow human disturbance information to be displayed for a specific time period. Refer to Section 3.2 in the Human Disturbance Mapping Report (Caslys, 2015) which lists the fields that can be used to accomplish date-specific queries, as well as the Technical Guide - Selection by Date (Caslys, 2015) which outlines the query syntax..Along with the content created through this mapping project, several other GIS map layers should be used to create a comprehensive representation of the human disturbance footprint. Primarily, roads that have been previously mapped have not been re-captured under the scope of this project. Therefore, any modelling that is developed to map the human disturbance footprint should include other map layers managed by NWTCG. Refer to Section 3.1 in the Human Disturbance Mapping Report (Caslys, 2015) for a list of recommended map layers to be included in this process. As well, refer to the (NWT Cumulative Impact Monitoring Program) Inventory of Landscape Change Map Viewer to view a series of map layers that all contribute to the total development footprint. For a geometry prioritized listing of NWTCG seismic datasets see: NWTCG_SeismicData.xlsx at http://diims.pws.gov.nt.ca/gnwt/llisapi.dll/link/54154974

  8. a

    Unvalidated Human Development Footprint Areas

    • nio-ne-pene-hub-srrb.hub.arcgis.com
    Updated Nov 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sahtu Renewable Resources Board (2021). Unvalidated Human Development Footprint Areas [Dataset]. https://nio-ne-pene-hub-srrb.hub.arcgis.com/datasets/unvalidated-human-development-footprint-areas
    Explore at:
    Dataset updated
    Nov 23, 2021
    Dataset authored and provided by
    Sahtu Renewable Resources Board
    Area covered
    Description

    This data represents the Human Disturbances Dataset for the North Slave Region, South Slave Region, Sahtu Administrative Region, and Inuvik Administrative Region (and/or Inuvialuit Settlement Region)using information from the Mackenzie Valley Land and Water Board, Wek'eezhii Land and Water Board, Gwich'in Land and Water Board, Sahtu Land and Water Board, Inuvialuit Water Board, and Nunavut Impact Review Board registries by Caslys Consulting Ltd. between 2000 and 2023. (Note this dataset extends across all of the NWT and into a portion of Nunavut to provide information across the Bathurst Caribou Range, which straddles the territorial boundary.).This was part of the Human Disturbance Mapping project for the GNWT, where a series of spatial datasets were created with the key objective to create an accurate and up-to-date human disturbance footprint that can be used to help make future land and water management decisions. These datasets were created based on existing baseline GIS data, aerial and satellite imagery, as well as permit records from registries with associated online archives..Modelling and other landscape GIS analyses that use this information may benefit from combining all point, line and polygon datasets into a single disturbance footprint that best represents the sum of all input files. It is recommended that this process be completed by first applying GIS buffer functions to point and line feature classes. This provides the advantages of having a more true representation of disturbance footprint with the ability to calculate spatially explicit functions, such as determining the area of the total disturbance. Using the ‘PointArea_Ha’ (Permit_Data_Points) and ‘LinearWidth_m’ (Permit_Data_Lines) fields respectively, users can calculate the buffer distance for each record in the point and line feature class files. The values in these fields do not represent the buffer distance itself, but can be used to calculate an appropriate buffer distance that can be added to an additional buffer-distance-field..Using the date fields and seasonal date fields, the user may develop queries that will allow human disturbance information to be displayed for a specific time period. Refer to Section 3.2 in the Human Disturbance Mapping Report (Caslys, 2015) which lists the fields that can be used to accomplish date-specific queries, as well as the Technical Guide - Selection by Date (Caslys, 2015) which outlines the query syntax..Along with the content created through this mapping project, several other GIS map layers should be used to create a comprehensive representation of the human disturbance footprint. Primarily, roads that have been previously mapped have not been re-captured under the scope of this project. Therefore, any modelling that is developed to map the human disturbance footprint should include other map layers managed by NWTCG. Refer to Section 3.1 in the Human Disturbance Mapping Report (Caslys, 2015) for a list of recommended map layers to be included in this process. As well, refer to the (NWT Cumulative Impact Monitoring Program) Inventory of Landscape Change Map Viewer to view a series of map layers that all contribute to the total development footprint.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
LincolnHub (2021). USA Wetlands [Dataset]. https://cgs-topics-lincolninstitute.hub.arcgis.com/items/c954cfa7cee34d94b3b266356445a7ea

USA Wetlands

Explore at:
Dataset updated
Nov 16, 2021
Dataset authored and provided by
LincolnHub
Area covered
Pacific Ocean, South Pacific Ocean
Description

Wetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands and the Northern Mariana IslandsVisible Scale: The data is visible at scales from 1:144,000 to 1:1,000Resolution/Tolerance: 0.0001 meters/0.001 metersNumber of Features: 34,954,623 diced, after applying a 50,000 vertex limit to an original set of 34,950,653 featuresFeature Limit: 10,000Source: U.S. Fish and Wildlife ServicePublication Date: September 29, 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the September 29, 2020 version of the NWI. This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data.NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesArea - area of the wetland in acresEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Text = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

Search
Clear search
Close search
Google apps
Main menu