Facebook
TwitterWorld Countries Generalized provides a generalized basemap layer for the countries of the world. It has fields for official names and country codes. The generalized boundaries improve draw performance and effectiveness at global and continental levels.This layer is best viewed out beyond a maximum scale (zoomed in) of 1:5,000,000.The sources of this dataset are Esri, Garmin, and U.S. Central Intelligence Agency (The World Factbook). It is updated every 12-18 months as country names or significant borders change.
Facebook
TwitterThis resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Facebook
TwitterThis shapefile contains tax parcel polygons for Eaton County, Michigan, USA. Because tax parcel information changes daily, this shapefile contains only geometry, the parcel identifier and a URL link to the current information for each parcel. Parcel geometries are not survey-grade and should not be used to make important decisions like where to build a structure or install a fence. In their current form, they are only useful in spatial terms for getting an inexact idea of where a parcel is located. If you need to know exactly where a property line falls, please consult a certified land surveyor. Parcel geometries will be updated either annually or bi-annually. New splits and combinations are typically not visible in the parcel geometry until changes become official via Board of Review in the following April.
Facebook
TwitterThis city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tool and data set of road networks for 80 of the most populated urban areas in the world. The data consist of a graph edge list for each city and two corresponding GIS shapefiles (i.e., links and nodes).Make your own data with our ArcGIS, QGIS, and python tools available at: http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Facebook
TwitterEcoregions denote areas of general similarity in ecosystems and in the type quality, and quantity of environmental resources. The ecoregions shown here have been derived from the "Level III Ecoregions of the continental United States" GIS coverage created by the US Environmental Protection Agency. The useco polygon was converted to a shapefile in ArcToolbox using the "Feature Class To Shapefile" tool. The shapefile was reprojected from Albers Conical Equal Area to Oregon Lambert. The shapefile was clipped to the boundary of Oregon.
Facebook
TwitterThis dataset was created by Daryna Smyrnova
Facebook
TwitterThe CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine Fisheries Commission, the California Department of Fish and Game, and the National Marine Fisheries Service, began a cooperative project aimed at collecting, archiving, and entering into standardized electronic formats, the wealth of information generated by fisheries resource management agencies and tribes throughout California.Extensive data are currently available for chinook, coho, and steelhead. Major data categories include adult abundance population estimates, actual fish and/or carcass counts, counts of fish collected at dams, weirs, or traps, and redd counts. Harvest data has been compiled for many streams, and hatchery return data has been compiled for the states mitigation facilities. A draft format has been developed for juvenile abundance and awaits final approval. This CalFish Abundance Database shapefile was generated from fully routed 1:100,000 hydrography. In a few cases streams had to be added to the hydrography dataset in order to provide a means to create shapefiles to represent abundance data associated with them. Streams added were digitized at no more than 1:24,000 scale based on stream line images portrayed in 1:24,000 Digital Raster Graphics (DRG).These features generally represent abundance counts resulting from stream surveys. The linear features in this layer typically represent the location for which abundance data records apply. This would be the reach or length of stream surveyed, or the stream sections for which a given population estimate applies. In some cases the actual stream section surveyed was not specified and linear features represent the entire stream. In many cases there are multiple datasets associated with the same length of stream, and so, linear features overlap. Please view the associated datasets for detail regarding specific features. In CalFish these are accessed through the "link" that is visible when performing an identify or query operation. A URL string is provided with each feature in the downloadable data which can also be used to access the underlying datasets.The coho data that is available via the CalFish website is actually linked directly to the StreamNet website where the database's tabular data is currently stored. Additional information about StreamNet may be downloaded at http://www.streamnet.org. Complete documentation for the StreamNet database may be accessed at http://http://www.streamnet.org/def.html
Facebook
TwitterThis data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary polygon shapefile records the extent of each source survey in the output grid.
Facebook
TwitterFlood Hatch ShapefilesIn addition to the three sets of rasters (Maximum Wave Heights, Water Surface Elevations, and DFEs) provided, separate shapefiles were also created to overlap and highlight special areas within the raster datasets produced for calculating DFEs. A flood hatch shapefile is not provided for every ACFEP level or for every region, but when it is provided, it encompasses the special areas for that level and region. The same hatch shapefile is applicable for all datatypes for the particular level and region. Flood hatch shapefiles encompass all areas of special values within the data rasters (including areas of 9999, 9998, and 9997 values). All regions have a 0.1% ACFEP level flood hatch shapefile because all 0.1% ACFEP rasters contain 9999 values.The flood hatch shapefiles contain individual polygons that describe the type of special area underlying that polygon’s spatial extent. For 9999 and 9998 values in the value rasters (water surface elevations, waves, and DFEs), the special hatched polygons will have the same extent of those values within those rasters. For 9997 values in the value rasters, the hatch polygon will always encompass the 9997 values, but may be larger in extent than just the location of those value cells. For these areas, water surface elevation, wave heights, and DFEs values may be provided, but they still represent a special zone.The Hatch polygons have 5 fields (Column headers) that describe each polygon within the shapefile. These fields include FID, Shape, Hatch_Type, Zones_txt, Hatch, and Hatch_Txt. The FID field contains an ID number for each polygon within that shapefile, while the Shape fieldlists the type of shapefile contained (polygon in all cases). The Hatch_Type field contains the numerical value that can be found within the value rasters (wave height, water surface, and DFE) underlying that polygon. Zones_txt and Hatch_txt are string type fields that contain descriptors of the polygon type, while the Hatch Field contains a numerical value for the type of hatching (1 for 0.1% Edge Zone, 2 for Wave Overtopping Zones, 3 for Dynamic Zone). The following table is an example of what a flood hatch file’s attribute table might look like.FIDShapeHatch_TypeZones_TxtHatchHatch_Txt0Polygon9999Shallow water flooding during extreme storms10.1% Edge Zone1Polygon9997Influenced by wave overtopping (incl. 9997 areas)2Wave Overtopping Zone2Polygon9998Dynamic Landform Areas3Dynamic ZoneSpecifically, the various hatch shapefiles can be defined as follows:• FID 0 Hatch Type – These represent areas of shallow water flooding during extreme storms. These are locations where flooding can only be expected during the most extreme events (> 1000-year return period) or where there are only minor flood depths (shallow flooding) during 1000-year return period AEP. These values only appear in 0.1% ACFEP level since they only occur at the very upper extent of extreme flooding. Water surface elevation values in these regions can be set to 0.1 foot above the site-specific land elevation to provide an estimate of the water surface elevation. Site-specific survey information may be needed to determine the land elevation. These hatch areas directly match areas with 9999 values within the rasters.• FID 1 Hatch Type – These represent wave overtopping zones. These hatch layers encompass the 9997 areas, but also include areas that have known values. Hatched areas of this type covering 9997 values would be expected to experience flooding caused by intermittent wave spray and overtopping only. Hatched areas of this type covering locations with values indicate that the flooding is caused by both direct sheet flow and wave overtopping. These hatched zones are provided for informational purposes by identifying zones that may require special design considerations for wave overtopping. Site-specific coastal processes analysis may also be required in these areas.• FID 2 Hatch Type – These represent areas where geomorphology is extremely dynamic and as such expected flooding may vary drastically. These values can appear in any ACFEP level. There are minimal locations of this type. These hatch areas directly match areas with 9998 values within the rasters.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rasters assocaited with elevation (from the National elevation dataset), slope (created from the elevation dataset using ArcGIS), a Shannon diversity index as a metric of landscape fragmentation (created from the forest/shrub layer using Fragstats), distance to all roads (created in ArcGIS using a road TIGER shapefile), distance to forest/shrubs (created using NLCD 2016 data), human population density (created using data from the US Census Bureau). All rasters are at a 90m resolution.
Facebook
TwitterThis specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.
How Do We Create Polygons?
-All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery, satellite data, and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct highly detailed polygons. This meticulous process ensures maximum accuracy and consistency. -We verify our polygons through multiple quality assurance checks, focusing on accuracy, relevance, and completeness.
What's More?
-Custom Polygon Creation: Our team can build polygons for any location or category based on your requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard GIS formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.
Unlock the Power of POI and Geospatial Data
With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market and location analyses to identify growth opportunities. -Pinpoint the ideal locations for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute location-based marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.
Why Choose LocationsXYZ?
LocationsXYZ is trusted by leading brands to unlock actionable business insights with our accurate and comprehensive spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI datasets. Request your free sample today and explore how we can help accelerate your business growth.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
GIS data is available on the Forest’s FTP site in the form of “shape files” or layers and is available free for downloading. To utilize these data layers you will need a program that uses the Geographic Information System (GIS) such as ESRI’s ArcMap, ArcView or the free map reading program ArcGIS Explorer. ArcGIS Explorer has tools that let you zoom in/out, print the map, and query data. It also has map tips to identify features, and a help menu. ArcGIS Explorer is available as a free download from the ESRI website. Included is a list of GIS data files available for the Shawnee National Forest. These GIS data files are updated on a continuing basis. It should be noted that this data may have been developed from sources of differing accuracy, accurate only at certain scales, based on modeling or interpretation, or incomplete while being created or revised. Overall accuracy, completeness and timeliness may vary. The following geospatial information/data was prepared by the Shawnee National Forests (US Forest Service). The Forest Service reserves the right to correct, update, modify or replace GIS data without notification. Resources in this dataset:Resource Title: Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/main/shawnee/landmanagement/gis Information about the geospatial data and a ftp link to download Forest GIS Data Shapefiles.
Facebook
TwitterThis archive contains a geology map of the general Roosevelt Hot Springs region, both in PDF and ArcGIS geodatabase formats, that was created as part of the Utah FORGE project. This archive contains an ArcGIS geodatabase containing the GIS feature classes and symbology for the geology of the general Roosevelt Hot Springs region in Utah.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Depicts the area of activities funded through BDBD and PPPP budget line item and reported through the FACTS database. The objective of the BD Program is to dispose of unwanted slash or other debris created by timber purchaser operations on timber sale contracts, stewardship contracts and permits, not disposed of by the purchaser. Activities are self-reported by Forest Service Units. The Brush Disposal Program (BD) objective of the BD Program was established in 1916. It requires all purchasers of National Forest timber make deposits to the United States for the estimated cost of disposing of brush and other debris resulting from its cutting operations. Brush disposal activities must be consistent with direction established in forest land and resource management plans, identified in environmental documents developed in accordance with the National Environmental Policy Act of 1969 (NEPA). MetadataThis record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.
Facebook
TwitterUse the app to find the downloadable area within Jackson County - 2 Foot Contour MapThe 2-foot Contour Map shows contours that were derived from several different LiDAR projects in the Rogue Valley over the last 10 years. The map can be used to both download and view the contour data. To use the map, search or zoom in to an address. When zoomed in to a specific scale, the map will change from the downloadable areas layer to 2-foot interval contour lines. The LiDAR Project Dates layer can be used to identify the date when the elevation was collected in an area. Please note that data is available only for the valley floor areas at this time.The 2ft contours were created from 1-meter pixel DEM and then cleaned to remove very small elevation changes and to create a smooth contour line. This information should not be used to create topographic surveys or other applications where the precise elevation of a location is required. For additional information on LiDAR in Oregon or to download the source data, please visit the DOGAMI Lidar Viewer.The downloadable data is a zipped ESRI Shapefile and is projected to Oregon State Plane South (Intl Feet) with NAD 1983 datum.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterWorld Countries Generalized provides a generalized basemap layer for the countries of the world. It has fields for official names and country codes. The generalized boundaries improve draw performance and effectiveness at global and continental levels.This layer is best viewed out beyond a maximum scale (zoomed in) of 1:5,000,000.The sources of this dataset are Esri, Garmin, and U.S. Central Intelligence Agency (The World Factbook). It is updated every 12-18 months as country names or significant borders change.