Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID
= group identifier (1-2000)
x
= numeric (Level 1)
y
= numeric (Level 1)
w
= binary (Level 2)
In all data sets, missing values are coded as "NA".
Replication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An adequate imputation of missing data would significantly preserve the statistical power and avoid erroneous conclusions. In the era of big data, machine learning is a great tool to infer the missing values. The root means square error (RMSE) and the proportion of falsely classified entries (PFC) are two standard statistics to evaluate imputation accuracy. However, the Cox proportional hazards model using various types requires deliberate study, and the validity under different missing mechanisms is unknown. In this research, we propose supervised and unsupervised imputations and examine four machine learning-based imputation strategies. We conducted a simulation study under various scenarios with several parameters, such as sample size, missing rate, and different missing mechanisms. The results revealed the type-I errors according to different imputation techniques in the survival data. The simulation results show that the non-parametric “missForest” based on the unsupervised imputation is the only robust method without inflated type-I errors under all missing mechanisms. In contrast, other methods are not valid to test when the missing pattern is informative. Statistical analysis, which is improperly conducted, with missing data may lead to erroneous conclusions. This research provides a clear guideline for a valid survival analysis using the Cox proportional hazard model with machine learning-based imputations.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This synthetic dataset contains 4,362 rows and five columns, including both numerical and categorical data. It is designed for data cleaning, imputation, and analysis tasks, featuring structured missing values at varying percentages (63%, 4%, 47%, 31%, and 9%).
The dataset includes:
- Category (Categorical): Product category (A, B, C, D)
- Price (Numerical): Randomized product prices
- Rating (Numerical): Ratings between 1 to 5
- Stock (Categorical): Availability status (In Stock, Out of Stock)
- Discount (Numerical): Discount percentage
This dataset is ideal for practicing missing data handling, exploratory data analysis (EDA), and machine learning preprocessing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
When dealing with missing data in clinical trials, it is often convenient to work under simplifying assumptions, such as missing at random (MAR), and follow up with sensitivity analyses to address unverifiable missing data assumptions. One such sensitivity analysis, routinely requested by regulatory agencies, is the so-called tipping point analysis, in which the treatment effect is re-evaluated after adding a successively more extreme shift parameter to the predicted values among subjects with missing data. If the shift parameter needed to overturn the conclusion is so extreme that it is considered clinically implausible, then this indicates robustness to missing data assumptions. Tipping point analyses are frequently used in the context of continuous outcome data under multiple imputation. While simple to implement, computation can be cumbersome in the two-way setting where both comparator and active arms are shifted, essentially requiring the evaluation of a two-dimensional grid of models. We describe a computationally efficient approach to performing two-way tipping point analysis in the setting of continuous outcome data with multiple imputation. We show how geometric properties can lead to further simplification when exploring the impact of missing data. Lastly, we propose a novel extension to a multi-way setting which yields simple and general sufficient conditions for robustness to missing data assumptions.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Internet of Things (IoT) enables the seamless integration of sensors, actuators, and communication devices for real-time applications. IoT systems require good-quality of sensor data for making real-time decisions. However, we often encounter missing values from the collected sensor data due to faulty sensors, loss of data in communication, interference, and measurement errors.
In this Dataset, we are given measurements of five sensor nodes from an IoT deployment for environment monitoring where each sensor node is measuring humidity and temperature values. However, there are some missing values collected from measurements. The goal of data is to predict the missing values in sensor measurements so that the imputed values are as close as possible to the true value.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.
Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.
Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.
Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Missing values are a notable challenge when analyzing mass spectrometry-based proteomics data. While the field is still actively debating the best practices, the challenge increased with the emergence of mass spectrometry-based single-cell proteomics and the dramatic increase in missing values. A popular approach to deal with missing values is to perform imputation. Imputation has several drawbacks for which alternatives exist, but currently, imputation is still a practical solution widely adopted in single-cell proteomics data analysis. This perspective discusses the advantages and drawbacks of imputation. We also highlight 5 main challenges linked to missing value management in single-cell proteomics. Future developments should aim to solve these challenges, whether it is through imputation or data modeling. The perspective concludes with recommendations for reporting missing values, for reporting methods that deal with missing values, and for proper encoding of missing values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.
The integration of proteomic datasets, generated by non-cooperating laboratories using different LC-MS/MS setups can overcome limitations in statistically underpowered sample cohorts but has not been demonstrated to this day. In proteomics, differences in sample preservation and preparation strategies, chromatography and mass spectrometry approaches and the used quantification strategy distort protein abundance distributions in integrated datasets. The Removal of these technical batch effects requires setup-specific normalization and strategies that can deal with missing at random (MAR) and missing not at random (MNAR) type values at a time. Algorithms for batch effect removal, such as the ComBat-algorithm, commonly used for other omics types, disregard proteins with MNAR missing values and reduce the informational yield and the effect size for combined datasets significantly. Here, we present a strategy for data harmonization across different tissue preservation techniques, LC-MS/MS instrumentation setups and quantification approaches. To enable batch effect removal without the need for data reduction or error-prone imputation we developed an extension to the ComBat algorithm, ´ComBat HarmonizR, that performs data harmonization with appropriate handling of MAR and MNAR missing values by matrix dissection The ComBat HarmonizR based strategy enables the combined analysis of independently generated proteomic datasets for the first time. Furthermore, we found ComBat HarmonizR to be superior for removing batch effects between different Tandem Mass Tag (TMT)-plexes, compared to commonly used internal reference scaling (iRS). Due to the matrix dissection approach without the need of data imputation, the HarmonizR algorithm can be applied to any type of -omics data while assuring minimal data loss
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Short R training course for medical students and other clinical researchers. Course duration is 2x3.5 hours. Basic concepts of R for data analysis are introduced. Components: setup of an R Project in R Studio, data loading from comma-separated value files or Excel files, data preparation, creation of descriptive tables, graphics, and simple statistical tests. Course structure: sandwich principle, where short receptive phases of learning are alternated with expressive phases. Receptive phases are performed with a simple real medical data example on slides and in demonstrations in R Studio, expressive phases with a more complex real dataset from a published RCT, with which the same basic data analysis steps are trained in simple exercises in the lectures and the primary outcome of the RCT is recalculated. Along the way, basic concepts of the R programming language are taught, such as the definition of objects and classes, data frames, and subsetting, functions and their arguments, together with help files, how to find and load relevant packages, and handling of missing values. After the course, participants should be able to perform an analysis with own data in R, potentially by consulting additional sources for help such as R help files and internet searches.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Data Analytics of a Sales company start to use OSEMN steps -Obtain the data -Scrub and clean the data by removing outliers and duplicates and dealing with missing values -Explore the data by doing some analysis and statistical formulas - sorting filtering and more -Model the data to predict the sales for the next month -iNterpret - using Tableau create a dashboard to show the result in a simple way and to show the the stakeholder
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Imputing missing values is an important preprocessing step in data analysis, but the literature offers little guidance on how to choose between imputation models. This letter suggests adopting the imputation model that generates a density of imputed values most similar to those of the observed values for an incomplete variable after balancing all other covariates. We recommend stable balancing weights as a practical approach to balance covariates whose distribution is expected to differ if the values are not missing completely at random. After balancing, discrepancy statistics can be used to compare the density of imputed and observed values. We illustrate the application of the suggested approach using simulated and real-world survey data from the American National Election Study, comparing popular imputation approaches including random forests, hot-deck, predictive mean matching, and multivariate normal imputation. An R package implementing the suggested approach accompanies this letter.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Fossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Titanic: cleaned data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jamesleslie/titanic-cleaned-data on 30 September 2021.
--- Dataset description provided by original source is as follows ---
This dataset was created in this notebook as part of a three-part series. The data is in machine-learning-ready format, with all missing values for the Age
, Fare
and Embarked
columns having been imputed.
Age
: this column was imputed by using the median age for the passenger's title (Mr, Mrs, Dr etc).Fare
: the single missing value in this column was imputed using the median value for that passenger's class.Embarked
: the two missing values here were imputed using the Pandas backfill
method.This data is used in both the second and third parts of the series.
--- Original source retains full ownership of the source dataset ---
The mechanism for the association between democratic development and the wealth gap has always been the focus of political and economic research, yet with no consistent conclusion. The reasons for that often are, 1) challenges to generalize the results obtained from analyzing a single country’s time series studies or multinational cross-section data analysis, and 2) deviations in research results caused by missing values or variable selection in panel data analysis. When it comes to the latter one, there are two factors contribute to it. One is that the accuracy of estimation is interfered with the presence of missing values in variables, another is that subjective discretion that must be exercised to select suitable proxies amongst many candidates, which are likely to cause variable selection bias. In order to solve these problems, this study is the pioneeringly research to utilize the machine learning method to interpolate missing values efficiently through the random forest model in this topic, and effectively analyzed cross-country data from 151 countries covering the period 1993–2017. Since this paper measures the importance of different variables to the dependent variable, more appropriate and important variables could be selected to construct a complete regression model. Results from different models come to a consensus that the promotion of democracy can significantly narrow the gap between the rich and the poor, with marginally decreasing effect with respect to wealth. In addition, the study finds out that this mechanism exists only in non-colonial nations or presidential states. Finally, this paper discusses the potential theoretical and policy implications of results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318