3 datasets found
  1. f

    Data from: Valid Inference Corrected for Outlier Removal

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuxiao Chen; Jacob Bien (2023). Valid Inference Corrected for Outlier Removal [Dataset]. http://doi.org/10.6084/m9.figshare.9762731.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Shuxiao Chen; Jacob Bien
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ordinary least square (OLS) estimation of a linear regression model is well-known to be highly sensitive to outliers. It is common practice to (1) identify and remove outliers by looking at the data and (2) to fit OLS and form confidence intervals and p-values on the remaining data as if this were the original data collected. This standard “detect-and-forget” approach has been shown to be problematic, and in this paper we highlight the fact that it can lead to invalid inference and show how recently developed tools in selective inference can be used to properly account for outlier detection and removal. Our inferential procedures apply to a general class of outlier removal procedures that includes several of the most commonly used approaches. We conduct simulations to corroborate the theoretical results, and we apply our method to three real data sets to illustrate how our inferential results can differ from the traditional detect-and-forget strategy. A companion R package, outference, implements these new procedures with an interface that matches the functions commonly used for inference with lm in R.

  2. g

    Water Temperature of Lakes in the Conterminous U.S. Using the Landsat 8...

    • gimi9.com
    • s.cnmilf.com
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Water Temperature of Lakes in the Conterminous U.S. Using the Landsat 8 Analysis Ready Dataset Raster Images from 2013-2023 [Dataset]. https://gimi9.com/dataset/data-gov_water-temperature-of-lakes-in-the-conterminous-u-s-using-the-landsat-8-analysis-ready-2013
    Explore at:
    Dataset updated
    Feb 22, 2025
    Area covered
    Contiguous United States
    Description

    This data release contains lake and reservoir water surface temperature summary statistics calculated from Landsat 8 Analysis Ready Dataset (ARD) images available within the Conterminous United States (CONUS) from 2013-2023. All zip files within this data release contain nested directories using .parquet files to store the data. The file example_script_for_using_parquet.R contains example code for using the R arrow package (Richardson and others, 2024) to open and query the nested .parquet files. Limitations with this dataset include: - All biases inherent to the Landsat Surface Temperature product are retained in this dataset which can produce unrealistically high or low estimates of water temperature. This is observed to happen, for example, in cases with partial cloud coverage over a waterbody. - Some waterbodies are split between multiple Landsat Analysis Ready Data tiles or orbit footprints. In these cases, multiple waterbody-wide statistics may be reported - one for each data tile. The deepest point values will be extracted and reported for tile covering the deepest point. A total of 947 waterbodies are split between multiple tiles (see the multiple_tiles = “yes” column of site_id_tile_hv_crosswalk.csv). - Temperature data were not extracted from satellite images with more than 90% cloud cover. - Temperature data represents skin temperature at the water surface and may differ from temperature observations from below the water surface. Potential methods for addressing limitations with this dataset: - Identifying and removing unrealistic temperature estimates: - Calculate total percentage of cloud pixels over a given waterbody as: percent_cloud_pixels = wb_dswe9_pixels/(wb_dswe9_pixels + wb_dswe1_pixels), and filter percent_cloud_pixels by a desired percentage of cloud coverage. - Remove lakes with a limited number of water pixel values available (wb_dswe1_pixels < 10) - Filter waterbodies where the deepest point is identified as water (dp_dswe = 1) - Handling waterbodies split between multiple tiles: - These waterbodies can be identified using the "site_id_tile_hv_crosswalk.csv" file (column multiple_tiles = “yes”). A user could combine sections of the same waterbody by spatially weighting the values using the number of water pixels available within each section (wb_dswe1_pixels). This should be done with caution, as some sections of the waterbody may have data available on different dates. All zip files within this data release contain nested directories using .parquet files to store the data. The example_script_for_using_parquet.R contains example code for using the R arrow package to open and query the nested .parquet files. - "year_byscene=XXXX.zip" – includes temperature summary statistics for individual waterbodies and the deepest points (the furthest point from land within a waterbody) within each waterbody by the scene_date (when the satellite passed over). Individual waterbodies are identified by the National Hydrography Dataset (NHD) permanent_identifier included within the site_id column. Some of the .parquet files with the byscene datasets may only include one dummy row of data (identified by tile_hv="000-000"). This happens when no tabular data is extracted from the raster images because of clouds obscuring the image, a tile that covers mostly ocean with a very small amount of land, or other possible. An example file path for this dataset follows: year_byscene=2023/tile_hv=002-001/part-0.parquet -"year=XXXX.zip" – includes the summary statistics for individual waterbodies and the deepest points within each waterbody by the year (dataset=annual), month (year=0, dataset=monthly), and year-month (dataset=yrmon). The year_byscene=XXXX is used as input for generating these summary tables that aggregates temperature data by year, month, and year-month. Aggregated data is not available for the following tiles: 001-004, 001-010, 002-012, 028-013, and 029-012, because these tiles primarily cover ocean with limited land, and no output data were generated. An example file path for this dataset follows: year=2023/dataset=lakes_annual/tile_hv=002-001/part-0.parquet - "example_script_for_using_parquet.R" – This script includes code to download zip files directly from ScienceBase, identify HUC04 basins within desired landsat ARD grid tile, download NHDplus High Resolution data for visualizing, using the R arrow package to compile .parquet files in nested directories, and create example static and interactive maps. - "nhd_HUC04s_ingrid.csv" – This cross-walk file identifies the HUC04 watersheds within each Landsat ARD Tile grid. -"site_id_tile_hv_crosswalk.csv" - This cross-walk file identifies the site_id (nhdhr{permanent_identifier}) within each Landsat ARD Tile grid. This file also includes a column (multiple_tiles) to identify site_id's that fall within multiple Landsat ARD Tile grids. - "lst_grid.png" – a map of the Landsat grid tiles labelled by the horizontal – vertical ID.

  3. R notebooks to reproduce all analyses from the manuscript "grandR: a...

    • zenodo.org
    zip
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Erhard; Florian Erhard (2023). R notebooks to reproduce all analyses from the manuscript "grandR: a comprehensive package for nucleotide conversion sequencing data analysis" [Dataset]. http://doi.org/10.5281/zenodo.7096853
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 18, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Florian Erhard; Florian Erhard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This package contains all R notebooks to reproduce the analyses from our manuscript "grandR: a comprehensive package for nucleotide conversion sequencing data analysis".

    In the zip file you find

    • several rds files in the data folder: They contain grandR objects of both simulated and real SLAM-seq data sets. You can delete them and create them again by either just "knitting" the notebooks (which will generate all data necessary for this notebook and save it into the data folder), or by executing the generateAllDataFiles.R script ("Rscript generateAllDataFiles.R"), which will generate all rds files that do not exist).
    • several R notebooks (Rmd): "Knitting" them will generate all figures from the manuscript. Without the data files (rds), this will be slow!
    • knit_all.bash: Execute to "knit" all notebooks
    • clean.bash: Clear the output of "knitting" the notebooks

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shuxiao Chen; Jacob Bien (2023). Valid Inference Corrected for Outlier Removal [Dataset]. http://doi.org/10.6084/m9.figshare.9762731.v1

Data from: Valid Inference Corrected for Outlier Removal

Related Article
Explore at:
pdfAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Taylor & Francis
Authors
Shuxiao Chen; Jacob Bien
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Ordinary least square (OLS) estimation of a linear regression model is well-known to be highly sensitive to outliers. It is common practice to (1) identify and remove outliers by looking at the data and (2) to fit OLS and form confidence intervals and p-values on the remaining data as if this were the original data collected. This standard “detect-and-forget” approach has been shown to be problematic, and in this paper we highlight the fact that it can lead to invalid inference and show how recently developed tools in selective inference can be used to properly account for outlier detection and removal. Our inferential procedures apply to a general class of outlier removal procedures that includes several of the most commonly used approaches. We conduct simulations to corroborate the theoretical results, and we apply our method to three real data sets to illustrate how our inferential results can differ from the traditional detect-and-forget strategy. A companion R package, outference, implements these new procedures with an interface that matches the functions commonly used for inference with lm in R.

Search
Clear search
Close search
Google apps
Main menu