Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The exponential increase of published data and the diversity of systems require the adoption of good practices to achieve quality indexes that enable discovery, access, and reuse. To identify good practices, an integrative review was used, as well as procedures from the ProKnow-C methodology. After applying the ProKnow-C procedures to the documents retrieved from the Web of Science, Scopus and Library, Information Science & Technology Abstracts databases, an analysis of 31 items was performed. This analysis allowed observing that in the last 20 years the guidelines for publishing open government data had a great impact on the Linked Data model implementation in several domains and currently the FAIR principles and the Data on the Web Best Practices are the most highlighted in the literature. These guidelines presents orientations in relation to various aspects for the publication of data in order to contribute to the optimization of quality, independent of the context in which they are applied. The CARE and FACT principles, on the other hand, although they were not formulated with the same objective as FAIR and the Best Practices, represent great challenges for information and technology scientists regarding ethics, responsibility, confidentiality, impartiality, security, and transparency of data.
Facebook
TwitterThis report describes the quality assurance arrangements for the registered provider (RP) Tenant Satisfaction Measures statistics, providing more detail on the regulatory and operational context for data collections which feed these statistics and the safeguards that aim to maximise data quality.
The statistics we publish are based on data collected directly from local authority registered provider (LARPs) and from private registered providers (PRPs) through the Tenant Satisfaction Measures (TSM) return. We use the data collected through these returns extensively as a source of administrative data. The United Kingdom Statistics Authority (UKSA) encourages public bodies to use administrative data for statistical purposes and, as such, we publish these data.
These data are first being published in 2024, following the first collection and publication of the TSM.
In February 2018, the UKSA published the Code of Practice for Statistics. This sets standards for organisations producing and publishing statistics, ensuring quality, trustworthiness and value.
These statistics are drawn from our TSM data collection and are being published for the first time in 2024 as official statistics in development.
Official statistics in development are official statistics that are undergoing development. Over the next year we will review these statistics and consider areas for improvement to guidance, validations, data processing and analysis. We will also seek user feedback with a view to improving these statistics to meet user needs and to explore issues of data quality and consistency.
Until September 2023, ‘official statistics in development’ were called ‘experimental statistics’. Further information can be found on the https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment">Office for Statistics Regulation website.
We are keen to increase the understanding of the data, including the accuracy and reliability, and the value to users. Please https://forms.office.com/e/cetNnYkHfL">complete the form or email feedback, including suggestions for improvements or queries as to the source data or processing to enquiries@rsh.gov.uk.
We intend to publish these statistics in Autumn each year, with the data pre-announced in the release calendar.
All data and additional information (including a list of individuals (if any) with 24 hour pre-release access) are published on our statistics pages.
The data used in the production of these statistics are classed as administrative data. In 2015 the UKSA published a regulatory standard for the quality assurance of administrative data. As part of our compliance to the Code of Practice, and in the context of other statistics published by the UK Government and its agencies, we have determined that the statistics drawn from the TSMs are likely to be categorised as low-quality risk – medium public interest (with a requirement for basic/enhanced assurance).
The publication of these statistics can be considered as medium publi
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Quality Management Software Market size was valued at USD 4.32 Billion in 2023 and is projected to reach USD 10.73 Billion by 2030, growing at a CAGR of 17.75% during the forecast period 2024-2030.Global Data Quality Management Software Market DriversThe growth and development of the Data Quality Management Software Market can be credited with a few key market drivers. Several of the major market drivers are listed below:Growing Data Volumes: Organizations are facing difficulties in managing and guaranteeing the quality of massive volumes of data due to the exponential growth of data generated by consumers and businesses. Organizations can identify, clean up, and preserve high-quality data from a variety of data sources and formats with the use of data quality management software.Increasing Complexity of Data Ecosystems: Organizations function within ever-more-complex data ecosystems, which are made up of a variety of systems, formats, and data sources. Software for data quality management enables the integration, standardization, and validation of data from various sources, guaranteeing accuracy and consistency throughout the data landscape.Regulatory Compliance Requirements: Organizations must maintain accurate, complete, and secure data in order to comply with regulations like the GDPR, CCPA, HIPAA, and others. Data quality management software ensures data accuracy, integrity, and privacy, which assists organizations in meeting regulatory requirements.Growing Adoption of Business Intelligence and Analytics: As BI and analytics tools are used more frequently for data-driven decision-making, there is a greater need for high-quality data. With the help of data quality management software, businesses can extract actionable insights and generate significant business value by cleaning, enriching, and preparing data for analytics.Focus on Customer Experience: Put the Customer Experience First: Businesses understand that providing excellent customer experiences requires high-quality data. By ensuring data accuracy, consistency, and completeness across customer touchpoints, data quality management software assists businesses in fostering more individualized interactions and higher customer satisfaction.Initiatives for Data Migration and Integration: Organizations must clean up, transform, and move data across heterogeneous environments as part of data migration and integration projects like cloud migration, system upgrades, and mergers and acquisitions. Software for managing data quality offers procedures and instruments to guarantee the accuracy and consistency of transferred data.Need for Data Governance and Stewardship: The implementation of efficient data governance and stewardship practises is imperative to guarantee data quality, consistency, and compliance. Data governance initiatives are supported by data quality management software, which offers features like rule-based validation, data profiling, and lineage tracking.Operational Efficiency and Cost Reduction: Inadequate data quality can lead to errors, higher operating costs, and inefficiencies for organizations. By guaranteeing high-quality data across business processes, data quality management software helps organizations increase operational efficiency, decrease errors, and minimize rework.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Metrics used to give an indication of data quality between our test’s groups. This includes whether documentation was used and what proportion of respondents rounded their answers. Unit and item non-response are also reported.
Facebook
TwitterThe Data Quality Utility performs comprehensive checks on AFCARS data to help title IV-E agencies assess and improve data quality. Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset is an expanded version of the popular "Sample - Superstore Sales" dataset, commonly used for introductory data analysis and visualization. It contains detailed transactional data for a US-based retail company, covering orders, products, and customer information.
This version is specifically designed for practicing Data Quality (DQ) and Data Wrangling skills, featuring a unique set of real-world "dirty data" problems (like those encountered in tools like SPSS Modeler, Tableau Prep, or Alteryx) that must be cleaned before any analysis or machine learning can begin.
This dataset combines the original Superstore data with 15,000 plausibly generated synthetic records, totaling 25,000 rows of transactional data. It includes 21 columns detailing: - Order Information: Order ID, Order Date, Ship Date, Ship Mode. - Customer Information: Customer ID, Customer Name, Segment. - Geographic Information: Country, City, State, Postal Code, Region. - Product Information: Product ID, Category, Sub-Category, Product Name. - Financial Metrics: Sales, Quantity, Discount, and Profit.
This dataset is intentionally corrupted to provide a robust practice environment for data cleaning. Challenges include: Missing/Inconsistent Values: Deliberate gaps in Profit and Discount, and multiple inconsistent entries (-- or blank) in the Region column.
Data Type Mismatches: Order Date and Ship Date are stored as text strings, and the Profit column is polluted with comma-formatted strings (e.g., "1,234.56"), forcing the entire column to be read as an object (string) type.
Categorical Inconsistencies: The Category field contains variations and typos like "Tech", "technologies", "Furni", and "OfficeSupply" that require standardization.
Outliers and Invalid Data: Extreme outliers have been added to the Sales and Profit fields, alongside a subset of transactions with an invalid Sales value of 0.
Duplicate Records: Over 200 rows are duplicated (with slight financial variations) to test your deduplication logic.
This dataset is ideal for:
Data Wrangling/Cleaning (Primary Focus): Fix all the intentional data quality issues before proceeding.
Exploratory Data Analysis (EDA): Analyze sales distribution by region, segment, and category.
Regression: Predict the Profit based on Sales, Discount, and product features.
Classification: Build an RFM Model (Recency, Frequency, Monetary) and create a target variable (HighValueCustomer = 1 if total sales are* $>$ $1000$*) to be predicted by logistical regression or decision trees.
Time Series Analysis: Aggregate sales by month/year to perform forecasting.
This dataset is an expanded and corrupted derivative of the original Sample Superstore dataset, credited to Tableau and widely shared for educational purposes. All synthetic records were generated to follow the plausible distribution of the original data.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Single Digital View dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundRoutine Data Quality Assessments (RDQAs) were developed to measure and improve facility-level electronic medical record (EMR) data quality. We assessed if RDQAs were associated with improvements in data quality in KenyaEMR, an HIV care and treatment EMR used at 341 facilities in Kenya.MethodsRDQAs assess data quality by comparing information recorded in paper records to KenyaEMR. RDQAs are conducted during a one-day site visit, where approximately 100 records are randomly selected and 24 data elements are reviewed to assess data completeness and concordance. Results are immediately provided to facility staff and action plans are developed for data quality improvement. For facilities that had received more than one RDQA (baseline and follow-up), we used generalized estimating equation models to determine if data completeness or concordance improved from the baseline to the follow-up RDQAs.Results27 facilities received two RDQAs and were included in the analysis, with 2369 and 2355 records reviewed from baseline and follow-up RDQAs, respectively. The frequency of missing data in KenyaEMR declined from the baseline (31% missing) to the follow-up (13% missing) RDQAs. After adjusting for facility characteristics, records from follow-up RDQAs had 0.43-times the risk (95% CI: 0.32–0.58) of having at least one missing value among nine required data elements compared to records from baseline RDQAs. Using a scale with one point awarded for each of 20 data elements with concordant values in paper records and KenyaEMR, we found that data concordance improved from baseline (11.9/20) to follow-up (13.6/20) RDQAs, with the mean concordance score increasing by 1.79 (95% CI: 0.25–3.33).ConclusionsThis manuscript demonstrates that RDQAs can be implemented on a large scale and used to identify EMR data quality problems. RDQAs were associated with meaningful improvements in data quality and could be adapted for implementation in other settings.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Long Term Development Statement dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
Global Data Quality Tools Market market size valued at US$ 3.93 Billion in 2023, set to reach US$ 6.54 Billion by 2032 at a CAGR of about 5.83% from 2024 to 2032.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data quality flags generated for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) Level 2 (L2) version 5.2 data products. These data quality flags are generated using the technique described in Sheese et al. (2015). One netCDF file is produced for each species, isotopologue or parameter retrieved from the ACE-FTS spectra for version 5.2. Each file contains the data quality flags organized by occultation (orbit number and occultation type). Note, the ACE-FTS Level 2 version 5.2 profiles are not included in these files. The data quality flag files are updated monthly as new Level 2 version 5.2 data are produced for ACE-FTS.
Facebook
Twitter
According to our latest research, the global Data Quality Tools market size reached USD 2.65 billion in 2024, reflecting robust demand across industries for solutions that ensure data accuracy, consistency, and reliability. The market is poised to expand at a CAGR of 17.6% from 2025 to 2033, driven by increasing digital transformation initiatives, regulatory compliance requirements, and the exponential growth of enterprise data. By 2033, the Data Quality Tools market is forecasted to attain a value of USD 12.06 billion, as organizations worldwide continue to prioritize data-driven decision-making and invest in advanced data management solutions.
A key growth factor propelling the Data Quality Tools market is the proliferation of data across diverse business ecosystems. Enterprises are increasingly leveraging big data analytics, artificial intelligence, and cloud computing, all of which demand high-quality data as a foundational element. The surge in unstructured and structured data from various sources such as customer interactions, IoT devices, and business operations has made data quality management a strategic imperative. Organizations recognize that poor data quality can lead to erroneous insights, operational inefficiencies, and compliance risks. As a result, the adoption of comprehensive Data Quality Tools for data profiling, cleansing, and enrichment is accelerating, particularly among industries with high data sensitivity like BFSI, healthcare, and retail.
Another significant driver for the Data Quality Tools market is the intensifying regulatory landscape. Data privacy laws such as the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and other country-specific mandates require organizations to maintain high standards of data integrity and traceability. Non-compliance can result in substantial financial penalties and reputational damage. Consequently, businesses are investing in sophisticated Data Quality Tools that provide automated monitoring, data lineage, and audit trails to ensure regulatory adherence. This regulatory push is particularly prominent in sectors like finance, healthcare, and government, where the stakes for data accuracy and security are exceptionally high.
Advancements in cloud technology and the growing trend of digital transformation across enterprises are also fueling market growth. Cloud-based Data Quality Tools offer scalability, flexibility, and cost-efficiency, enabling organizations to manage data quality processes remotely and in real-time. The shift towards Software-as-a-Service (SaaS) models has lowered the entry barrier for small and medium enterprises (SMEs), allowing them to implement enterprise-grade data quality solutions without substantial upfront investments. Furthermore, the integration of machine learning and artificial intelligence capabilities into data quality platforms is enhancing automation, reducing manual intervention, and improving the overall accuracy and efficiency of data management processes.
From a regional perspective, North America continues to dominate the Data Quality Tools market due to its early adoption of advanced technologies, a mature IT infrastructure, and the presence of leading market players. However, the Asia Pacific region is emerging as a high-growth market, driven by rapid digitalization, increasing investments in IT, and a burgeoning SME sector. Europe maintains a strong position owing to stringent data privacy regulations and widespread enterprise adoption of data management solutions. Latin America and the Middle East & Africa, while relatively nascent, are witnessing growing awareness and adoption, particularly in the banking, government, and telecommunications sectors.
The Component segment of the Data Quality Tools market is bifurcated into software and services. Software dominates the segment, accounting for a significant share of the global market revenue in 2024. This dominance is
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.
Get a FREE sample now!
Data quality tools market in APAC overview
The need to improve customer engagement is the primary factor driving the growth of data quality tools market in APAC. The reputation of a company gets hampered if there is a delay in product delivery or response to payment-related queries. To avoid such issues organizations are integrating their data with software such as CRM for effective communication with customers. To capitalize on market opportunities, organizations are adopting data quality strategies to perform accurate customer profiling and improve customer satisfaction.
Also, by using data quality tools, companies can ensure that targeted communications reach the right customers which will enable companies to take real-time action as per the requirements of the customer. Organizations use data quality tool to validate e-mails at the point of capture and clean their database of junk e-mail addresses. Thus, the need to improve customer engagement is driving the data quality tools market growth in APAC at a CAGR of close to 23% during the forecast period.
Top data quality tools companies in APAC covered in this report
The data quality tools market in APAC is highly concentrated. To help clients improve their revenue shares in the market, this research report provides an analysis of the market’s competitive landscape and offers information on the products offered by various leading companies. Additionally, this data quality tools market in APAC analysis report suggests strategies companies can follow and recommends key areas they should focus on, to make the most of upcoming growth opportunities.
The report offers a detailed analysis of several leading companies, including:
IBM
Informatica
Oracle
SAS Institute
Talend
Data quality tools market in APAC segmentation based on end-user
Banking, financial services, and insurance (BFSI)
Telecommunication
Retail
Healthcare
Others
BFSI was the largest end-user segment of the data quality tools market in APAC in 2018. The market share of this segment will continue to dominate the market throughout the next five years.
Data quality tools market in APAC segmentation based on region
China
Japan
Australia
Rest of Asia
China accounted for the largest data quality tools market share in APAC in 2018. This region will witness an increase in its market share and remain the market leader for the next five years.
Key highlights of the data quality tools market in APAC for the forecast years 2019-2023:
CAGR of the market during the forecast period 2019-2023
Detailed information on factors that will accelerate the growth of the data quality tools market in APAC during the next five years
Precise estimation of the data quality tools market size in APAC and its contribution to the parent market
Accurate predictions on upcoming trends and changes in consumer behavior
The growth of the data quality tools market in APAC across China, Japan, Australia, and Rest of Asia
A thorough analysis of the market’s competitive landscape and detailed information on several vendors
Comprehensive details on factors that will challenge the growth of data quality tools companies in APAC
We can help! Our analysts can customize this market research report to meet your requirements. Get in touch
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Flexibility Dispatch dataset. The quality assessment was carried out on the 20th of October 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://data.nat.gov.tw/licensehttps://data.nat.gov.tw/license
Data Quality Education Training Test Data Set Description
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Technical Limits dataset. The quality assessment was carried out on the 16th of September 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Cloud Data Quality Monitoring and Testing market is poised for robust expansion, projected to reach an estimated market size of USD 15,000 million in 2025, with a remarkable Compound Annual Growth Rate (CAGR) of 18% expected from 2025 to 2033. This significant growth is fueled by the escalating volume of data generated by organizations and the increasing adoption of cloud-based solutions for data management. Businesses are recognizing that reliable data is paramount for informed decision-making, regulatory compliance, and driving competitive advantage. As more critical business processes migrate to the cloud, the imperative to ensure the accuracy, completeness, consistency, and validity of this data becomes a top priority. Consequently, investments in sophisticated monitoring and testing tools are surging, enabling organizations to proactively identify and rectify data quality issues before they impact operations or strategic initiatives. Key drivers propelling this market forward include the growing demand for real-time data analytics, the complexities introduced by multi-cloud and hybrid cloud environments, and the increasing stringency of data privacy regulations. Cloud Data Quality Monitoring and Testing solutions offer enterprises the agility and scalability required to manage vast datasets effectively. The market is segmented by deployment into On-Premises and Cloud-Based solutions, with a clear shift towards cloud-native approaches due to their inherent flexibility and cost-effectiveness. Furthermore, the adoption of these solutions is observed across both Large Enterprises and Small and Medium-sized Enterprises (SMEs), indicating a broad market appeal. Emerging trends such as AI-powered data quality anomaly detection and automated data profiling are further enhancing the capabilities of these platforms, promising to streamline data governance and boost overall data trustworthiness. However, challenges such as the initial cost of implementation and a potential shortage of skilled data quality professionals may temper the growth trajectory in certain segments. Here's a comprehensive report description for Cloud Data Quality Monitoring and Testing, incorporating your specified elements:
Facebook
TwitterData quality scale applied to the assessment of each measure in the FGT.
Facebook
TwitterThis dataset was created by shamiul islam shifat
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Data Quality Software market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.
North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS of
Data Quality Software
The Emergence of Big Data and IoT drives the Market
The rise of big data analytics and Internet of Things (IoT) applications has significantly increased the volume and complexity of data that businesses need to manage. As more connected devices generate real-time data, the amount of information businesses handle grows exponentially. This surge in data requires organizations to ensure its accuracy, consistency, and relevance to prevent decision-making errors. For instance, in industries like healthcare, where real-time data from medical devices and patient monitoring systems is used for diagnostics and treatment decisions, inaccurate data can lead to critical errors. To address these challenges, organizations are increasingly investing in data quality software to manage large volumes of data from various sources. Companies like GE Healthcare use data quality software to ensure the integrity of data from connected medical devices, allowing for more accurate patient care and operational efficiency. The demand for these tools continues to rise as businesses realize the importance of maintaining clean, consistent, and reliable data for effective big data analytics and IoT applications. With the growing adoption of digital transformation strategies and the integration of advanced technologies, organizations are generating vast amounts of structured and unstructured data across various sectors. For instance, in the retail sector, companies are collecting data from customer interactions, online transactions, and social media channels. If not properly managed, this data can lead to inaccuracies, inconsistencies, and unreliable insights that can adversely affect decision-making. The proliferation of data highlights the need for robust data quality solutions to profile, cleanse, and validate data, ensuring its integrity and usability. Companies like Walmart and Amazon rely heavily on data quality software to manage vast datasets for personalized marketing, inventory management, and customer satisfaction. Without proper data management, these businesses risk making decisions based on faulty data, potentially leading to lost revenue or customer dissatisfaction. The increasing volumes of data and the need to ensure high-quality, reliable data across organizations are significant drivers behind the rising demand for data quality software, as it enables companies to stay competitive and make informed decisions.
Key Restraints to
Data Quality Software
Lack of Skilled Personnel and High Implementation Costs Hinders the market growth
The effective use of data quality software requires expertise in areas like data profiling, cleansing, standardization, and validation, as well as a deep understanding of the specific business needs and regulatory requirements. Unfortunately, many organizations struggle to find personnel with the right skill set, which limits their ability to implement and maximize the potential of these tools. For instance, in industries like finance or healthcare, where data quality is crucial for compliance and decision-making, the lack of skilled personnel can lead to inefficiencies in managing data and missed opportunities for improvement. In turn, organizations may fail to extract the full value from their data quality investments, resulting in poor data outcomes and suboptimal decision-ma...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The exponential increase of published data and the diversity of systems require the adoption of good practices to achieve quality indexes that enable discovery, access, and reuse. To identify good practices, an integrative review was used, as well as procedures from the ProKnow-C methodology. After applying the ProKnow-C procedures to the documents retrieved from the Web of Science, Scopus and Library, Information Science & Technology Abstracts databases, an analysis of 31 items was performed. This analysis allowed observing that in the last 20 years the guidelines for publishing open government data had a great impact on the Linked Data model implementation in several domains and currently the FAIR principles and the Data on the Web Best Practices are the most highlighted in the literature. These guidelines presents orientations in relation to various aspects for the publication of data in order to contribute to the optimization of quality, independent of the context in which they are applied. The CARE and FACT principles, on the other hand, although they were not formulated with the same objective as FAIR and the Best Practices, represent great challenges for information and technology scientists regarding ethics, responsibility, confidentiality, impartiality, security, and transparency of data.