20 datasets found
  1. Data from: Water-quality data imputation with a high percentage of missing...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    csv
    Updated Jun 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 8, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

    This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

    To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

    IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

    In this dataset, we include the original and imputed values for the following variables:

    • Water temperature (Tw)

    • Dissolved oxygen (DO)

    • Electrical conductivity (EC)

    • pH

    • Turbidity (Turb)

    • Nitrite (NO2-)

    • Nitrate (NO3-)

    • Total Nitrogen (TN)

    Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

    More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

    If you use this dataset in your work, please cite our paper:
    Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

  2. h

    Restricted Boltzmann Machine for Missing Data Imputation in Biomedical...

    • datahub.hku.hk
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen Ma (2020). Restricted Boltzmann Machine for Missing Data Imputation in Biomedical Datasets [Dataset]. http://doi.org/10.25442/hku.12752549.v1
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    HKU Data Repository
    Authors
    Wen Ma
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description
    1. NCCTG Lung cancer datasetSurvival in patients with advanced lung cancer from the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities.2.CNV measurements of CNV of GBM This dataset records the information about copy number variation of Glioblastoma (GBM).Abstract:In biology and medicine, conservative patient and data collection malpractice can lead to missing or incorrect values in patient registries, which can affect both diagnosis and prognosis. Insufficient or biased patient information significantly impedes the sensitivity and accuracy of predicting cancer survival. In bioinformatics, making a best guess of the missing values and identifying the incorrect values are collectively called “imputation”. Existing imputation methods work by establishing a model based on the data mechanism of the missing values. Existing imputation methods work well under two assumptions: 1) the data is missing completely at random, and 2) the percentage of missing values is not high. These are not cases found in biomedical datasets, such as the Cancer Genome Atlas Glioblastoma Copy-Number Variant dataset (TCGA: 108 columns), or the North Central Cancer Treatment Group Lung Cancer (NCCTG) dataset (NCCTG: 9 columns). We tested six existing imputation methods, but only two of them worked with these datasets: The Last Observation Carried Forward (LOCF) and K-nearest Algorithm (KNN). Predictive Mean Matching (PMM) and Classification and Regression Trees (CART) worked only with the NCCTG lung cancer dataset with fewer columns, except when the dataset contains 45% missing data. The quality of the imputed values using existing methods is bad because they do not meet the two assumptions.In our study, we propose a Restricted Boltzmann Machine (RBM)-based imputation method to cope with low randomness and the high percentage of the missing values. RBM is an undirected, probabilistic and parameterized two-layer neural network model, which is often used for extracting abstract information from data, especially for high-dimensional data with unknown or non-standard distributions. In our benchmarks, we applied our method to two cancer datasets: 1) NCCTG, and 2) TCGA. The running time, root mean squared error (RMSE) of the different methods were gauged. The benchmarks for the NCCTG dataset show that our method performs better than other methods when there is 5% missing data in the dataset, with 4.64 RMSE lower than the best KNN. For the TCGA dataset, our method achieved 0.78 RMSE lower than the best KNN.In addition to imputation, RBM can achieve simultaneous predictions. We compared the RBM model with four traditional prediction methods. The running time and area under the curve (AUC) were measured to evaluate the performance. Our RBM-based approach outperformed traditional methods. Specifically, the AUC was up to 19.8% higher than the multivariate logistic regression model in the NCCTG lung cancer dataset, and the AUC was higher than the Cox proportional hazard regression model, with 28.1% in the TCGA dataset.Apart from imputation and prediction, RBM models can detect outliers in one pass by allowing the reconstruction of all the inputs in the visible layer with in a single backward pass. Our results show that RBM models have achieved higher precision and recall on detecting outliers than other methods.
  3. f

    A Simple Optimization Workflow to Enable Precise and Accurate Imputation of...

    • acs.figshare.com
    xlsx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kruttika Dabke; Simion Kreimer; Michelle R. Jones; Sarah J. Parker (2023). A Simple Optimization Workflow to Enable Precise and Accurate Imputation of Missing Values in Proteomic Data Sets [Dataset]. http://doi.org/10.1021/acs.jproteome.1c00070.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    ACS Publications
    Authors
    Kruttika Dabke; Simion Kreimer; Michelle R. Jones; Sarah J. Parker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.

  4. d

    Example Groundwater-Level Datasets and Benchmarking Results for the...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Example Groundwater-Level Datasets and Benchmarking Results for the Automated Regional Correlation Analysis for Hydrologic Record Imputation (ARCHI) Software Package [Dataset]. https://catalog.data.gov/dataset/example-groundwater-level-datasets-and-benchmarking-results-for-the-automated-regional-cor
    Explore at:
    Dataset updated
    Oct 13, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release provides two example groundwater-level datasets used to benchmark the Automated Regional Correlation Analysis for Hydrologic Record Imputation (ARCHI) software package (Levy and others, 2024). The first dataset contains groundwater-level records and site metadata for wells located on Long Island, New York (NY) and some surrounding mainland sites in New York and Connecticut. The second dataset contains groundwater-level records and site metadata for wells located in the southeastern San Joaquin Valley of the Central Valley, California (CA). For ease of exposition these are referred to as NY and CA datasets, respectively. Both datasets are formatted with column headers that can be read by the ARCHI software package within the R computing environment. These datasets were used to benchmark the imputation accuracy of three ARCHI model settings (OLS, ridge, and MOVE.1) against the widely used imputation program missForest (Stekhoven and Bühlmann, 2012). The ARCHI program was used to process the NY and CA datasets on monthly and annual timesteps, respectively, filter out sites with insufficient data for imputation, and create 200 test datasets from each of the example datasets with 5 percent of observations removed at random (herein, referred to as "holdouts"). Imputation accuracy for test datasets was assessed using normalized root mean square error (NRMSE), which is the root mean square error divided by the standard deviation of the observed holdout values. ARCHI produces prediction intervals (PIs) using a non-parametric bootstrapping routine, which were assessed by computing a coverage rate (CR) defined as the proportion of holdout observations falling within the estimated PI. The multiple regression models included with the ARCHI package (OLS and ridge) were further tested on all test datasets at eleven different levels of the p_per_n input parameter, which limits the maximum ratio of regression model predictors (p) per observations (n) as a decimal fraction greater than zero and less than or equal to one. This data release contains ten tables formatted as tab-delimited text files. The “CA_data.txt” and “NY_data.txt” tables contain 243,094 and 89,997 depth-to-groundwater measurement values (value, in feet below land surface) indexed by site identifier (site_no) and measurement date (date) for CA and NY datasets, respectively. The “CA_sites.txt” and “NY_sites.txt” tables contain site metadata for the 4,380 and 476 unique sites included in the CA and NY datasets, respectively. The “CA_NRMSE.txt” and “NY_NRMSE.txt” tables contain NRMSE values computed by imputing 200 test datasets with 5 percent random holdouts to assess imputation accuracy for three different ARCHI model settings and missForest using CA and NY datasets, respectively. The “CA_CR.txt” and “NY_CR.txt” tables contain CR values used to evaluate non-parametric PIs generated by bootstrapping regressions with three different ARCHI model settings using the CA and NY test datasets, respectively. The “CA_p_per_n.txt” and “NY_p_per_n.txt” tables contain mean NRMSE values computed for 200 test datasets with 5 percent random holdouts at 11 different levels of p_per_n for OLS and ridge models compared to training error for the same models on the entire CA and NY datasets, respectively. References Cited Levy, Z.F., Stagnitta, T.J., and Glas, R.L., 2024, ARCHI: Automated Regional Correlation Analysis for Hydrologic Record Imputation, v1.0.0: U.S. Geological Survey software release, https://doi.org/10.5066/P1VVHWKE. Stekhoven, D.J., and Bühlmann, P., 2012, MissForest—non-parametric missing value imputation for mixed-type data: Bioinformatics 28(1), 112-118. https://doi.org/10.1093/bioinformatics/btr597.

  5. f

    Data from: Investigating the contributors to hit-and-run crashes using...

    • figshare.com
    xlsx
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gen Li (2024). Investigating the contributors to hit-and-run crashes using gradient boosting decision trees [Dataset]. http://doi.org/10.6084/m9.figshare.27178305.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 7, 2024
    Dataset provided by
    figshare
    Authors
    Gen Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper uses the 2021 traffic crash data from the NHTSA CRSS as a sample for model training and validation. The CRSS data collects crash report data provided by police departments from all 50 states in the United States. It details various factors of each traffic crash, including crash information, driver information, vehicle information, road information, and environmental information.The crash accident data provided by CRSS include crash-related details such as the location, time, cause, type of crash, driver’s age, gender, attention level, injury status, risky driving behavior, vehicle type, usage, damage, and hit-and-run situations. However, due to the separate recording of the dataset and the presence of systematic errors and redundant information, the CRSS 2021 data undergo the following merging and filtering processes:1) Match and merge separately recorded data based on the unique case number "CASENUM" in the dataset.2) Records with missing values in critical variables (e.g., whether the crash involved a hit-and-run) were removed to avoid bias in the analysis. For non-critical variables, missing values were imputed using the mean or mode depending on the variable type. For continuous variables, such as speed limits, we used mean imputation. For categorical variables (e.g., weather, road surface conditions), mode imputation was applied.3) Noise in the dataset arises from both human error in crash reporting and random fluctuations in recorded variables. We used z-scores to detect and remove extreme outliers in numerical variables (e.g., speed limits, crash angle). Data points with a z-score beyond ±3 standard deviations were considered outliers and were excluded from the analysis. To handle noisy fluctuations in continuous variables (e.g., speed limits), we applied a symmetrical exponential moving average (EMA) filter.After processing, the CRSS 2021 data include a total of 54,187 crash accidents, among which there are 5,944 hit-and-run accidents, accounting for 10.97% of crash accidents. The hit-and-run and non-hit-and-run categories face a serious class imbalance issue, and data balancing processing is applied to the target variable during parameter calibration. Hit-and-run crashes constitute a relatively small proportion of total crashes in the dataset, leading to class imbalance in the binary classification target. To address this issue, we utilized the resampling techniques available in the data mining software. Specifically, random undersampling was applied to the majority class (non-hit-and-run crashes), while Synthetic Minority Over-sampling Technique (SMOTE) was used for the minority class. This ensured balanced class distribution in the training set, improving model performance and preventing the classifier from being biased toward the majority class.

  6. User mobile app interaction data

    • kaggle.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Moslemani (2025). User mobile app interaction data [Dataset]. https://www.kaggle.com/datasets/mohamedmoslemani/user-mobile-app-interaction-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohamed Moslemani
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset has been artificially generated to mimic real-world user interactions within a mobile application. It contains 100,000 rows of data, each row of which represents a single event or action performed by a synthetic user. The dataset was designed to capture many of the attributes commonly tracked by app analytics platforms, such as device details, network information, user demographics, session data, and event-level interactions.

    Key Features Included

    User & Session Metadata

    User ID: A unique integer identifier for each synthetic user. Session ID: Randomly generated session identifiers (e.g., S-123456), capturing the concept of user sessions. IP Address: Fake IP addresses generated via Faker to simulate different network origins. Timestamp: Randomized timestamps (within the last 30 days) indicating when each interaction occurred. Session Duration: An approximate measure (in seconds) of how long a user remained active. Device & Technical Details

    Device OS & OS Version: Simulated operating systems (Android/iOS) with plausible version numbers. Device Model: Common phone models (e.g., “Samsung Galaxy S22,” “iPhone 14 Pro,” etc.). Screen Resolution: Typical screen resolutions found in smartphones (e.g., “1080x1920”). Network Type: Indicates whether the user was on Wi-Fi, 5G, 4G, or 3G. Location & Locale

    Location Country & City: Random global locations generated using Faker. App Language: Represents the user’s app language setting (e.g., “en,” “es,” “fr,” etc.). User Properties

    Battery Level: The phone’s battery level as a percentage (0–100). Memory Usage (MB): Approximate memory consumption at the time of the event. Subscription Status: Boolean flag indicating if the user is subscribed to a premium service. User Age: Random integer ranging from teenagers to seniors (13–80). Phone Number: Fake phone numbers generated via Faker. Push Enabled: Boolean flag indicating if the user has push notifications turned on. Event-Level Interactions

    Event Type: The action taken by the user (e.g., “click,” “view,” “scroll,” “like,” “share,” etc.). Event Target: The UI element or screen component interacted with (e.g., “home_page_banner,” “search_bar,” “notification_popup”). Event Value: A numeric field indicating additional context for the event (e.g., intensity, count, rating). App Version: Simulated version identifier for the mobile application (e.g., “4.2.8”). Data Quality & “Noise” To better approximate real-world data, 1% of all fields have been intentionally “corrupted” or altered:

    Typos and Misspellings: Random single-character edits, e.g., “Andro1d” instead of “Android.” Missing Values: Some cells might be blank (None) to reflect dropped or unrecorded data. Random String Injections: Occasional random alphanumeric strings inserted where they don’t belong. These intentional discrepancies can help data scientists practice data cleaning, outlier detection, and data wrangling techniques.

    Usage & Applications

    Data Cleaning & Preprocessing: Ideal for practicing how to handle missing values, inconsistent data, and noise in a realistic scenario. Analytics & Visualization: Demonstrate user interaction funnels, session durations, usage by device/OS, etc. Machine Learning & Modeling: Suitable for building classification or clustering models (e.g., user segmentation, event classification). Simulation for Feature Engineering: Experiment with deriving new features (e.g., session frequency, average battery drain, etc.).

    Important Notes & Disclaimer

    Synthetic Data: All entries (users, device info, IPs, phone numbers, etc.) are artificially generated and do not correspond to real individuals. Privacy & Compliance: Since no real personal data is present, there are no direct privacy concerns. However, always handle synthetic data ethically.

  7. Zenodo Open Metadata snapshot - Training dataset for records and communities...

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip, bin
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo team; Zenodo team (2022). Zenodo Open Metadata snapshot - Training dataset for records and communities classifier building [Dataset]. http://doi.org/10.5281/zenodo.7438358
    Explore at:
    bin, application/gzipAvailable download formats
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Zenodo team; Zenodo team
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains Zenodo's published open access records and communities metadata, including entries marked by the Zenodo staff as spam and deleted.

    The datasets are gzipped compressed JSON-lines files, where each line is a JSON object representation of a Zenodo record or community.

    Records dataset

    Filename: zenodo_open_metadata_{ date of export }.jsonl.gz

    Each object contains the terms: part_of, thesis, description, doi, meeting, imprint, references, recid, alternate_identifiers, resource_type, journal, related_identifiers, title, subjects, notes, creators, communities, access_right, keywords, contributors, publication_date

    which correspond to the fields with the same name available in Zenodo's record JSON Schema at https://zenodo.org/schemas/records/record-v1.0.0.json.

    In addition, some terms have been altered:

    • The term files contains a list of dictionaries containing filetype, size, and filename only.
    • The term license contains a short Zenodo ID of the license (e.g. "cc-by").

    Communities dataset

    Filename: zenodo_community_metadata_{ date of export }.jsonl.gz

    Each object contains the terms: id, title, description, curation_policy, page

    which correspond to the fields with the same name available in Zenodo's community creation form.

    Notes for all datasets

    For each object the term spam contains a boolean value, determining whether a given record/community was marked as spam content by Zenodo staff.

    Some values for the top-level terms, which were missing in the metadata may contain a null value.

    A smaller uncompressed random sample of 200 JSON lines is also included for each dataset to test and get familiar with the format without having to download the entire dataset.

  8. c

    Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data

    • s.cnmilf.com
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/variable-terrestrial-gps-telemetry-detection-rates-parts-1-7data
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Studies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM _location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site _location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.

  9. m

    Dataset for Number Line Estimation Patterns and their Relationship with...

    • figshare.mq.edu.au
    • researchdata.edu.au
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebecca Bull; Carola Ruiz Hornblas; Saskia Kohnen (2023). Dataset for Number Line Estimation Patterns and their Relationship with Mathematical Performance [Dataset]. http://doi.org/10.25949/22558528.v1
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    Macquarie University
    Authors
    Rebecca Bull; Carola Ruiz Hornblas; Saskia Kohnen
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    The sample included in this dataset represents children who participated in a cross-sectional study, a smaller cohort of which was followed up as part of a longitudinal study reported elsewhere (Bull et al., 2021). In the original study, 347 children were recruited. As data was found to be likely missing completely at random (χ2 = 29.445, df = 24, p = .204, Little, 1998), listwise deletion was used, and 23 observations were deleted from the original dataset. This dataset includes three hundred and twenty-four participants that composed the final sample of this study (162 boys, Mage = 6.2 years, SDage = 0.3 years). Children in this sample were in their second year of kindergarten (i.e., the year before starting primary school) in Singapore. The dataset includes children's sociodemographic information (i.e., age and sex) and performance on different mathematical skills. Children were assessed on a computer-based 0-100 number line task and on the Mathematical Reasoning and Numerical Operations subtests from the Wechsler Individual Achievement Test II (WIAT II). The initial variables recorded on the dataset were children's estimates on each of the target numbers included on the 0-100 number line task, and their accuracy for both subtests of the WIAT II. Several more variables were created based on these original ones. The variables included in the dataset are: Age = Child’s age (in months) Sex = Boy/Girl (parent reported; boy=1, girl=2) Maths_reason = Mathematical reasoning (Math Reasoning subtest from the Wechsler Individual Achievement Test II) Num_Ops = Numerical Operations (Numerical Operations subtest from the Weschler Individual Achievement Test II) Mathematical_achievement = Mathematical achievement (Composite score created by adding the raw scores from the Numerical Operations and Mathematical Reasoning subtests from the Weschler Individual Achievement Test II) P3 to P96 = Placement of the estimate on the 0-100 number line for each respective target number (i.e., P3 corresponds to the placement of the estimate provided when the target number was 3) NLE100PAE = 0-100 number line (Percent absolute error) NP100_Corr = Correlation of individual estimates to target numbers (Spearman’s correlation; p > .05= 0, p < .05 = 1) NP100LinAICc = AICc value obtained for the linear model (9999 = model cannot be fitted) NP100LogAICc = AICc value obtained for the logarithmic model (9999 = model cannot be fitted) NP100PowerAICc = AICc value obtained for the unbounded power model (9999 = model cannot be fitted) NP1001cycleAICc = AICc value obtained for the one-cycle power model (9999 = model cannot be fitted) NP1002cycleAICc = AICc value obtained for the two-cycle power model (9999 = model cannot be fitted) Best_fit_NP100_repshift = Best fitting model based on the representational shift account (0 = model cannot be fitted, 1 = linear, 2 = logarithmic) AICc_bestmodel_repshift = AICc value of the best fitting model based on the representational shift account AICc_diff_repshift = AICc difference (ΔAICc) between both models (i.e, linear and logarithmic) based on the representational shift account AICc_diff_cat_repshift = categorical value created based on AICc_diff_repshift (0 = model cannot be fitted, 1= best fitting model does not have strong support (ΔAIcc < 2), 2 = best fitting model has strong support (ΔAIcc > 2)) Best_fit_NP100_propjudg = Best fitting model based on the proportional judgment account (0 = model cannot be fitted, 3 = unbounded power model, 4 = one-cycle power model, 5 = two-cycle power model) AICc_bestmodel_propjudg = AICc value of the best fitting model based on the proportional judgment account AICc_diff_propjudg_unb = AICc difference (ΔAIcc) between the best fitting model based on the proportional judgment account and the unbounded power model AICc_diff_propjudg_1cyc = AICc difference (ΔAIcc) between the best fitting model based on the proportional judgment account and the one-cycle power model AICc_diff_propjudg_2cyc = AICc difference (ΔAIcc) between the best fitting model based on the proportional judgment account and the two-cycle power model AICc_diff_cat_propjudg = categorical value created based on AICc differences between the best fitting model and the following one based on the proportional judgment account (0 = model cannot be fitted, 1= best fitting model does not have strong support (ΔAIcc < 2), 2 = best fitting model has strong support (ΔAIcc > 2)) Best_fit_NP100_between = Best fitting model when comparing all models to each other (0= model cannot be fitted, 1 = linear, 2 = logarithmic, 3 = unbounded power model, 4 = one-cycle power model, 5 = two-cycle power model) AICc_bestmodel_between = AICc value of the best fitting model from comparing all models to each other AICc_diff_linear_NP100 =AICc difference (ΔAIcc) between the best fitting model based on comparing all models to each other and the linear model AICc_diff_log_NP100 =AICc difference (ΔAIcc) between the best fitting model based on comparing all model to each other and the logarithmic model AICc_diff_power_NP100 =AICc difference (ΔAIcc) between the best fitting model based on comparing all models to each other and the unbounded power model AICc_diff_1cycle_NP100 =AICc difference (ΔAIcc) between the best fitting model based on comparing all models to each other and the one-cycle power model AICc_diff_2cycle_NP100 =AICc difference (ΔAIcc) between the best fitting model based on comparing all models to each other and the two-cycle power model AICc_diff_cat_between = categorical value created based on AICc differences between the best fitting model and the following one based on the comparison of all models to each other (0 = model cannot be fitted, 1= best fitting model does not have strong support (ΔAIcc < 2), 2 = best fitting model has strong support (ΔAIcc > 2))

  10. f

    Table_1_Comparison of machine learning and logistic regression as predictive...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dongying Zheng; Xinyu Hao; Muhanmmad Khan; Lixia Wang; Fan Li; Ning Xiang; Fuli Kang; Timo Hamalainen; Fengyu Cong; Kedong Song; Chong Qiao (2023). Table_1_Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study.XLSX [Dataset]. http://doi.org/10.3389/fcvm.2022.959649.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Dongying Zheng; Xinyu Hao; Muhanmmad Khan; Lixia Wang; Fan Li; Ning Xiang; Fuli Kang; Timo Hamalainen; Fengyu Cong; Kedong Song; Chong Qiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionPreeclampsia, one of the leading causes of maternal and fetal morbidity and mortality, demands accurate predictive models for the lack of effective treatment. Predictive models based on machine learning algorithms demonstrate promising potential, while there is a controversial discussion about whether machine learning methods should be recommended preferably, compared to traditional statistical models.MethodsWe employed both logistic regression and six machine learning methods as binary predictive models for a dataset containing 733 women diagnosed with preeclampsia. Participants were grouped by four different pregnancy outcomes. After the imputation of missing values, statistical description and comparison were conducted preliminarily to explore the characteristics of documented 73 variables. Sequentially, correlation analysis and feature selection were performed as preprocessing steps to filter contributing variables for developing models. The models were evaluated by multiple criteria.ResultsWe first figured out that the influential variables screened by preprocessing steps did not overlap with those determined by statistical differences. Secondly, the most accurate imputation method is K-Nearest Neighbor, and the imputation process did not affect the performance of the developed models much. Finally, the performance of models was investigated. The random forest classifier, multi-layer perceptron, and support vector machine demonstrated better discriminative power for prediction evaluated by the area under the receiver operating characteristic curve, while the decision tree classifier, random forest, and logistic regression yielded better calibration ability verified, as by the calibration curve.ConclusionMachine learning algorithms can accomplish prediction modeling and demonstrate superior discrimination, while Logistic Regression can be calibrated well. Statistical analysis and machine learning are two scientific domains sharing similar themes. The predictive abilities of such developed models vary according to the characteristics of datasets, which still need larger sample sizes and more influential predictors to accumulate evidence.

  11. r

    Dataset for The effects of a number line intervention on calculation skills

    • researchdata.edu.au
    • figshare.mq.edu.au
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas (2023). Dataset for The effects of a number line intervention on calculation skills [Dataset]. http://doi.org/10.25949/22799717.V1
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset provided by
    Macquarie University
    Authors
    Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas
    Description

    Study information

    The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset.

    All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders.

    The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point.

    The number of measurement points were distributed across participants as follows:

    Participant 1 – 3 baseline, 6 treatment, 1 post-treatment

    Participant 3 – 2 baseline, 7 treatment, 1 post-treatment

    Participant 5 – 2 baseline, 5 treatment, 1 post-treatment

    Participant 6 – 3 baseline, 4 treatment, 1 post-treatment

    Participant 7 – 2 baseline, 5 treatment, 1 post-treatment

    In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.


    Measures

    Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.


    Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.


    Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.


    Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.


    The Number Line Intervention

    During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.


    Variables in the dataset

    Age = age in ‘years, months’ at the start of the study

    Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents)

    Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).


    The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.


    The second part of the variable name refers to the task, as follows:

    DC = dot comparison

    SDC = single-digit computation

    NLE_UT = number line estimation (untrained set)

    NLE_T= number line estimation (trained set)

    CE = multidigit computational estimation

    NC = number comparison

    The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).


    Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.





  12. n

    Data from: Biological traits of seabirds predict extinction risk and...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Mar 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cerren Richards; Robert Cooke; Amanda Bates (2021). Biological traits of seabirds predict extinction risk and vulnerability to anthropogenic threats [Dataset]. http://doi.org/10.5061/dryad.x69p8czhd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 16, 2021
    Dataset provided by
    University of Gothenburg
    Memorial University of Newfoundland
    Authors
    Cerren Richards; Robert Cooke; Amanda Bates
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Aim

    Seabirds are heavily threatened by anthropogenic activities and their conservation status is deteriorating rapidly. Yet, these pressures are unlikely to uniformly impact all species. It remains an open question if seabirds with similar ecological roles are responding similarly to human pressures. Here we aim to: 1) test whether threatened vs non-threatened seabirds are separated in trait space; 2) quantify the similarity of species’ roles (redundancy) per IUCN Red List Category; and 3) identify traits that render species vulnerable to anthropogenic threats.

    Location

    Global

    Time period

    Contemporary

    Major taxa studied

    Seabirds

    Methods

    We compile and impute eight traits that relate to species’ vulnerabilities and ecosystem functioning across 341 seabird species. Using these traits, we build a mixed-data PCA of species’ trait space. We quantify trait redundancy using the unique trait combinations (UTCs) approach. Finally, we employ a SIMPER analysis to identify which traits explain the greatest difference between threat groups.

    Results

    We find seabirds segregate in trait space based on threat status, indicating anthropogenic impacts are selectively removing large, long-lived, pelagic surface feeders with narrow habitat breadths. We further find that threatened species have higher trait redundancy, while non-threatened species have relatively limited redundancy. Finally, we find that species with narrow habitat breadths, fast reproductive speeds, and varied diets are more likely to be threatened by habitat-modifying processes (e.g., pollution and natural system modifications); whereas pelagic specialists with slow reproductive speeds and varied diets are vulnerable to threats that directly impact survival and fecundity (e.g., invasive species and biological resource use) and climate change. Species with no threats are non-pelagic specialists with invertebrate diets and fast reproductive speeds.

    Main conclusions

    Our results suggest both threatened and non-threatened species contribute unique ecological strategies. Consequently, conserving both threat groups, but with contrasting approaches may avoid potential changes in ecosystem functioning and stability.

    Methods ​​​​Trait Selection and Data

    We compiled data from multiple databases for eight traits across all 341 extant species of seabirds. Here we recognise seabirds as those that feed at sea, either nearshore or offshore, but excluding marine ducks. These traits encompass the varying ecological and life history strategies of seabirds, and relate to ecosystem functioning and species’ vulnerabilities. We first extracted the trait data for body mass, clutch size, habitat breadth and diet guild from a recently compiled trait database for birds (Cooke, Bates, et al., 2019). Generation length and migration status were compiled from BirdLife International (datazone.birdlife.org), and pelagic specialism and foraging guild from Wilman et al. (2014). We further compiled clutch size information for 84 species through a literature search.

    Foraging and diet guild describe the most dominant foraging strategy and diet of the species. Wilman et al. (2014) assigned species a score from 0 to 100% for each foraging and diet guild based on their relative usage of a given category. Using these scores, species were classified into four foraging guild categories (diver, surface, ground, and generalist foragers) and three diet guild categories (omnivore, invertebrate, and vertebrate & scavenger diets). Each was assigned to a guild based on the predominant foraging strategy or diet (score > 50%). Species with category scores < 50% were classified as generalists for the foraging guild trait and omnivores for the diet guild trait. Body mass was measured in grams and was the median across multiple databases. Habitat breadth is the number of habitats listed as suitable by the International Union for Conservation of Nature (IUCN, iucnredlist.org). Generation length describes the mean age in years at which a species produces offspring. Clutch size is the number of eggs per clutch (the central tendency was recorded as the mean or mode). Migration status describes whether a species undertakes full migration (regular or seasonal cyclical movements beyond the breeding range, with predictable timing and destinations) or not. Pelagic specialism describes whether foraging is predominantly pelagic. To improve normality of the data, continuous traits, except clutch size, were log10 transformed.

    Multiple Imputation

    All traits had more than 80% coverage for our list of 341 seabird species, and body mass and habitat breadth had complete species coverage. To achieve complete species trait coverage, we imputed missing data for clutch size (4 species), generation length (1 species), diet guild (60 species), foraging guild (60 species), pelagic specialism (60 species) and migration status (3 species). The imputation approach has the advantage of increasing the sample size and consequently the statistical power of any analysis whilst reducing bias and error (Kim, Blomberg, & Pandolfi, 2018; Penone et al., 2014; Taugourdeau, Villerd, Plantureux, Huguenin-Elie, & Amiaud, 2014).

    We estimated missing values using random forest regression trees, a non-parametric imputation method, based on the ecological and phylogenetic relationships between species (Breiman, 2001; Stekhoven & Bühlmann, 2012). This method has high predictive accuracy and the capacity to deal with complexity in relationships including non-linearities and interactions (Cutler et al., 2007). To perform the random forest multiple imputations, we used the missForest function from package “missForest” (Stekhoven & Bühlmann, 2012). We imputed missing values based on the ecological (the trait data) and phylogenetic (the first 10 phylogenetic eigenvectors, detailed below) relationships between species. We generated 1,000 trees - a cautiously large number to increase predictive accuracy and prevent overfitting (Stekhoven & Bühlmann, 2012). We set the number of variables randomly sampled at each split (mtry) as the square-root of the number variables included (10 phylogenetic eigenvectors, 8 traits; mtry = 4); a useful compromise between imputation error and computation time (Stekhoven & Bühlmann, 2012). We used a maximum of 20 iterations (maxiter = 20), to ensure the imputations finished due to the stopping criterion and not due to the limit of iterations (the imputed datasets generally finished after 4 – 10 iterations).

    Due to the stochastic nature of the regression tree imputation approach, the estimated values will differ slightly each time. To capture this imputation uncertainty and to converge on a reliable result, we repeated the process 15 times, resulting in 15 trait datasets, which is suggested to be sufficient (González-Suárez, Zanchetta Ferreira, & Grilo, 2018; van Buuren & Groothuis-Oudshoorn, 2011). We took the mean values for continuous traits and modal values for categorical traits across the 15 datasets for subsequent analyses.

    Phylogenetic data can improve the estimation of missing trait values in the imputation process (Kim et al., 2018; Swenson, 2014), because closely related species tend to be more similar to each other (Pagel, 1999) and many traits display high degrees of phylogenetic signal (Blomberg, Garland, & Ives, 2003). Phylogenetic information was summarised by eigenvectors extracted from a principal coordinate analysis, representing the variation in the phylogenetic distances among species (Jose Alexandre F. Diniz-Filho et al., 2012; José Alexandre Felizola Diniz-Filho, Rangel, Santos, & Bini, 2012). Bird phylogenetic distance data (Prum et al., 2015) were decomposed into a set of orthogonal phylogenetic eigenvectors using the Phylo2DirectedGraph and PEM.build functions from the “MPSEM” package (Guenard & Legendre, 2018). Here, we used the first 10 phylogenetic eigenvectors, which have previously been shown to minimise imputation error (Penone et al., 2014). These phylogenetic eigenvectors summarise major phylogenetic differences between species (Diniz-Filho et al., 2012) and captured 61% of the variation in the phylogenetic distances among seabirds. Still, these eigenvectors do not include fine-scale differences between species (Diniz-Filho et al., 2012), however the inclusion of many phylogenetic eigenvectors would dilute the ecological information contained in the traits, and could lead to excessive noise (Diniz-Filho et al., 2012; Peres‐Neto & Legendre, 2010). Thus, including the first 10 phylogenetic eigenvectors reduces imputation error and ensures a balance between including detailed phylogenetic information and diluting the information contained in the other traits.

    To quantify the average error in random forest predictions across the imputed datasets (out-of-bag error), we calculated the mean normalized root squared error and associated standard deviation across the 15 datasets for continuous traits (clutch size = 13.3 ± 0.35 %, generation length = 0.6 ± 0.02 %). For categorical data, we quantified the mean percentage of traits falsely classified (diet guild = 28.6 ± 0.97 %, foraging guild = 18.0 ± 1.05 %, pelagic specialism = 11.2 ± 0.66 %, migration status = 18.8 ± 0.58 %). Since body mass and habitat breadth have complete trait coverage, they did not require imputation. Low imputation accuracy is reflected in high out-of-bag error values where diet guild had the lowest imputation accuracy with 28.6% wrongly classified on average. Diet is generally difficult to predict (Gainsbury, Tallowin, & Meiri, 2018), potentially due to species’ high dietary plasticity (Gaglio, Cook, McInnes, Sherley, & Ryan, 2018) and/or the low phylogenetic conservatism of diet (Gainsbury et al., 2018). With this caveat in mind, we chose dietary guild, as more coarse dietary classifications are more

  13. Zenodo Open Metadata snapshot - Training dataset for records classifier...

    • zenodo.org
    application/gzip, bin
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Ioannidis; Alex Ioannidis (2022). Zenodo Open Metadata snapshot - Training dataset for records classifier building [Dataset]. http://doi.org/10.5281/zenodo.1255786
    Explore at:
    bin, application/gzipAvailable download formats
    Dataset updated
    Dec 14, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alex Ioannidis; Alex Ioannidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains Zenodo's published open access records' metadata, including also records that have been marked by the Zenodo staff as spam and deleted.

    The dataset is a gzipped compressed JSON-lines file, where each line is a JSON object representation of a Zenodo record.

    Each object contains the terms:
    part_of, thesis, description, doi, meeting, imprint, references, recid, alternate_identifiers, resource_type, journal, related_identifiers, title, subjects, notes, creators, communities, access_right, keywords, contributors, publication_date

    which are corresponding to the fields with the same name available in Zenodo's record JSON Schema at https://zenodo.org/schemas/records/record-v1.0.0.json.

    In addition, some terms have been altered:

    The term files contains a list of dictionaries containing filetype, size, and filename only.
    The term license contains a short Zenodo ID of the license (e.g "cc-by").
    The term spam contains a boolean value, determining whether a given record was marked as a spam record by Zenodo staff.

    Some values for the top-level terms, which were missing in the metadata may contain a null value.

    A smaller uncompressed random sample of 200 JSON lines is also included to allow for testing and getting familiar with the format without having to download the entire dataset.

  14. Z

    Data from: The Software Heritage License Dataset (2022 Edition)

    • data.niaid.nih.gov
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Montes-Leon (2024). The Software Heritage License Dataset (2022 Edition) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8200351
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Gregorio Robles
    Stefano Zacchiroli
    Jesus M. Gonzalez-Barahona
    Sergio Montes-Leon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all “license files” extracted from a snapshot of the Software Heritage archive taken on 2022-04-25. (Other, possibly more recent, versions of the datasets can be found at https://annex.softwareheritage.org/public/dataset/license-blobs/).

    In this context, a license file is a unique file content (or “blob”) that appeared in a software origin archived by Software Heritage as a file whose name is often used to ship licenses in software projects. Some name examples are: COPYING, LICENSE, NOTICE, COPYRIGHT, etc. The exact file name pattern used to select the blobs contained in the dataset can be found in the SQL query file 01-select-blobs.sql. Note that the file name was not expected to be at the project root, because project subdirectories can contain different licenses than the top-level one, and we wanted to include those too.

    Format

    The dataset is organized as follows:

    blobs.tar.zst: a Zst-compressed tarball containing deduplicated license blobs, one per file. The tarball contains 6’859’189 blobs, for a total uncompressed size on disk of 66 GiB.

    The blobs are organized in a sharded directory structure that contains files named like blobs/86/24/8624bcdae55baeef00cd11d5dfcfa60f68710a02, where:

    blobs/ is the root directory containing all license blobs

    8624bcdae55baeef00cd11d5dfcfa60f68710a02 is the SHA1 checksum of a specific license blobs, a copy of the GPL3 license in this case. Each license blob is ultimately named with its SHA1:

    $ head -n 3 blobs/86/24/8624bcdae55baeef00cd11d5dfcfa60f68710a02 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

    $ sha1sum blobs/86/24/8624bcdae55baeef00cd11d5dfcfa60f68710a02 8624bcdae55baeef00cd11d5dfcfa60f68710a02 blobs/86/24/8624bcdae55baeef00cd11d5dfcfa60f68710a02

    86 and 24 are, respectively, the first and second group of two hex digits in the blob SHA1

    One blob is missing, because its size (313MB) prevented its inclusion; (it was originally a tarball containing source code):

    swh:1:cnt:61bf63793c2ee178733b39f8456a796b72dc8bde,1340d4e2da173c92d432026ecdc54b4859fe9911,"AUTHORS"

    blobs-sample20k.tar.zst: analogous to blobs.tar.zst, but containing “only” 20’000 randomly selected license blobs

    license-blobs.csv.zst a Zst-compressed CSV index of all the blobs in the dataset. Each line in the index (except the first one, which contains column headers) describes a license blob and is in the format SWHID,SHA1,NAME, for example:

    swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2,8624bcdae55baeef00cd11d5dfcfa60f68710a02,"COPYING" swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2,8624bcdae55baeef00cd11d5dfcfa60f68710a02,"COPYING.GPL3" swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2,8624bcdae55baeef00cd11d5dfcfa60f68710a02,"COPYING.GLP-3"

    where:

    SWHID: the Software Heritage persistent identifier of the blob. It can be used to retrieve and cross-reference the license blob via the Software Heritage archive, e.g., at: https://archive.softwareheritage.org/swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2

    SHA1: the blob SHA1, that can be used to cross-reference blobs in the blobs/ directory

    NAME: a file name given to the license blob in a given software origin. As the same license blob can have different names in different contexts, the index contain multiple entries for the same blob with different names, as it is the case in the example above (yes, one of those has a typo in it, but it’s an original typo from some repository!).

    blobs-fileinfo.csv.zst a Zst-compressed CSV mapping from blobs to basic file information in the format: SHA1,MIME_TYPE,ENCODING,LINE_COUNT,WORD_COUNT,SIZE, where:

    SHA1: blob SHA1

    MIME_TYPE: blob MIME type, as detected by libmagic

    ENCODING: blob character encoding, as detected by libmagic

    LINE_COUNT: number of lines in the blob (only for textual blobs with UTF8 encoding)

    WORD_COUNT: number of words in the blob (only for textual blobs with UTF8 encoding)

    SIZE: blob size in bytes

    blobs-scancode.csv.zst a Zst-compressed CSV mapping from blobs to software license detected in them by ScanCode, in the format: SHA1,LICENSE,SCORE, where:

    SHA1: blob SHA1

    LICENSE: license detected in the blob, as an SPDX identifier (or ScanCode identifier for non-SPDX-indexed licenses)

    SCORE: confidence score in the result, as a decimal number between 0 and 100

    There may be zero or arbitrarily many lines for each blob.

    blobs-scancode.ndjson.zst a Zst-compressed line-delimited JSON, containing a superset of the information in blobs-scancode.csv.zst. Each line is a JSON dictionary with three keys:

    sha1: blob SHA1

    licenses: output of scancode.api.get_licenses(..., min_score=0)

    copyrights: output of scancode.api.get_copyrights(...)

    There is exactly one line for each blob. licenses and copyrights keys are omitted for files not detected as plain text.

    blobs-origins.csv.zst a Zst-compressed CSV mapping of where license blobs come from. Each line in the index associate a license blob to one of its origins in the format SWHIDURL, for example:

    swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2 https://github.com/pombreda/Artemis

    Note that a license blob can come from many different places, only an arbitrary (and somewhat random) one is listed in this mapping.

    If no origin URL is found in the Software Heritage archive, then a blank is used instead. This happens when they were either being loaded when the dataset was generated, or the loader process crashed before completing the blob’s origin’s ingestion.

    blobs-nb-origins.csv.zst a Zst-compressed CSV mapping of how many origins of this blob are known to Software Heritage. Each line in the index associate a license blob to this count in the format SWHIDNUMBER, for example:

    swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2 2822260

    Two blobs are missing because the computation crashes:

    swh:1:cnt:e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 swh:1:cnt:8b137891791fe96927ad78e64b0aad7bded08bdc

    This issue will be fixed in a future version of the dataset

    blobs-earliest.csv.zst a Zst-compressed CSV mapping from blobs to information about their (earliest) known occurence(s) in the archive. Format: SWHIDEARLIEST_SWHIDEARLIEST_TSOCCURRENCES, where:

    SWHID: blob SWHID

    EARLIEST_SWHID: SWHID of the earliest known commit containing the blob

    EARLIEST_TS: timestamp of the earliest known commit containing the blob, as a Unix time integer

    OCCURRENCES: number of known commits containing the blob

    replication-package.tar.gz: code and scripts used to produce the dataset

    licenses-annotated-sample.tar.gz: ground truth, i.e., manually annotated random sample of license blobs, with details about the kind of information they contain.

    Changes since the 2021-03-23 dataset

    More input data, due to the SWH archive growing: more origins in supported forges and package managers; and support for more forges and package managers. See the SWH Archive Changelog for details.

    Values in the NAME column of license-blobs.csv.zst are quoted, as some file names now contain commas.

    Replication package now contains all the steps needed to reproduce all artefacts including the licenseblobs/fetch.py script.

    blobs-nb-origins.csv.zst is added.

    blobs-origins.csv.zst is now generated using the first origin returned by swh-graph’s leaves endpoint, instead of its randomwalk endpoint. This should have no impact on the result, other than a different distribution of “random” origins being picked.

    blobs-origins.csv.zst was missing ~10% of its results in previous versions of the dataset, due to errors and/or timeouts in its generation, this is now down to 0.02% (1254 of the 6859445 unique blobs). Blobs with no known origins are now present, with a blank instead of URL.

    blobs-earliest.csv.zst was missing ~10% of its results in previous versions of the dataset. It is complete now.

    blobs-scancode.csv.zst is generated with a newer scancode-toolkit version (31.2.1)

    blobs-scancode.ndjson.zst is added.

    Errata

    A file name .tmp_1340d4e2da173c92d432026ecdc54b4859fe9911 was present in the initial version of the dataset (published on 2022-11-07). It was removed on 2022-11-09 using these two commands:

    pv blobs-fileinfo.csv.zst | zstdcat | grep -v ".tmp" | zstd -19 pv blobs.tar.zst| zstdcat | tar --delete blobs/13/40/.tmp_1340d4e2da173c92d432026ecdc54b4859fe9911 | zstd -19 -T12

    The total uncompressed size was announced as 84 GiB based on the physical size on ext4, but it is actually 66 GiB.

    Citation

    If you use this dataset for research purposes, please acknowledge its use by citing one or both of the following papers:

    [pdf, bib] Jesús M. González-Barahona, Sergio Raúl Montes León, Gregorio Robles, Stefano Zacchiroli. The software heritage license dataset (2022 edition). Empirical Software Engineering, Volume 28, Number 6, Article number 147 (2023).

    [pdf, bib] Stefano Zacchiroli. A Large-scale Dataset of (Open Source) License Text Variants. In proceedings of the 2022 Mining Software Repositories Conference (MSR 2022). 23-24 May 2022 Pittsburgh, Pennsylvania, United States. ACM 2022.

    References

    The dataset has been built using primarily the data sources described in the following papers:

    [pdf, bib] Roberto Di Cosmo, Stefano Zacchiroli. Software Heritage: Why and How to Preserve Software Source Code. In Proceedings of iPRES 2017: 14th International Conference on Digital Preservation, Kyoto, Japan, 25-29 September 2017.

    [pdf, bib] Antoine Pietri, Diomidis Spinellis, Stefano Zacchiroli. The Software Heritage Graph Dataset: Public software development under one roof. In proceedings of MSR 2019: The 16th International Conference on Mining Software Repositories, May 2019, Montreal, Canada. Pages 138-142, IEEE 2019.

    Errata (v2, 2024-01-09)

    licenses-annotated-sample.tar.gz: some comments not intended for publication were removed, and 4

  15. f

    Missing completely at random test.

    • plos.figshare.com
    xls
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ayman Omar Baniamer (2025). Missing completely at random test. [Dataset]. http://doi.org/10.1371/journal.pone.0321344.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Ayman Omar Baniamer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statistical models are essential tools in data analysis. However, missing data plays a pivotal role in impacting the assumptions and effectiveness of statistical models, especially when there is a significant amount of missing data. This study addresses one of the core assumptions supporting many statistical models, the assumption of unidimensionality. It examines the impact of missing data rates and imputation methods on fulfilling this assumption. The study employs three imputation methods: Corrected Item Mean, multiple imputation, and expectation maximization, assessing their performance across nineteen levels of missing data rates, and examining their impact on the assumption of unidimensionality using several indicators (Cronbach’s alpha, corrected correlation coefficients, factor analysis (Eigenvalues (, , and cumulative variance, and communalities). The study concluded that all imputation methods used effectively provided data that maintained the unidimensionality assumption, regardless of missing data rates. Additionally, it was found that most of the unidimensionality indicators increased in value as missing data rates rose.

  16. A

    ‘California Housing Data (1990)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘California Housing Data (1990)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-california-housing-data-1990-a0c5/b7389540/?iid=007-628&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Analysis of ‘California Housing Data (1990)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/harrywang/housing on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Source

    This is the dataset used in this book: https://github.com/ageron/handson-ml/tree/master/datasets/housing to illustrate a sample end-to-end ML project workflow (pipeline). This is a great book - I highly recommend!

    The data is based on California Census in 1990.

    About the Data (from the book):

    "This dataset is a modified version of the California Housing dataset available from Luís Torgo's page (University of Porto). Luís Torgo obtained it from the StatLib repository (which is closed now). The dataset may also be downloaded from StatLib mirrors.

    The following is the description from the book author:

    This dataset appeared in a 1997 paper titled Sparse Spatial Autoregressions by Pace, R. Kelley and Ronald Barry, published in the Statistics and Probability Letters journal. They built it using the 1990 California census data. It contains one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).

    The dataset in this directory is almost identical to the original, with two differences: 207 values were randomly removed from the total_bedrooms column, so we can discuss what to do with missing data. An additional categorical attribute called ocean_proximity was added, indicating (very roughly) whether each block group is near the ocean, near the Bay area, inland or on an island. This allows discussing what to do with categorical data. Note that the block groups are called "districts" in the Jupyter notebooks, simply because in some contexts the name "block group" was confusing."

    About the Data (From Luís Torgo page):

    http://www.dcc.fc.up.pt/%7Eltorgo/Regression/cal_housing.html

    This is a dataset obtained from the StatLib repository. Here is the included description:

    "We collected information on the variables using all the block groups in California from the 1990 Cens us. In this sample a block group on average includes 1425.5 individuals living in a geographically co mpact area. Naturally, the geographical area included varies inversely with the population density. W e computed distances among the centroids of each block group as measured in latitude and longitude. W e excluded all the block groups reporting zero entries for the independent and dependent variables. T he final data contained 20,640 observations on 9 variables. The dependent variable is ln(median house value)."

    End-to-End ML Project Steps (Chapter 2 of the book)

    1. Look at the big picture
    2. Get the data
    3. Discover and visualize the data to gain insights
    4. Prepare the data for Machine Learning algorithms
    5. Select a model and train it
    6. Fine-tune your model
    7. Present your solution
    8. Launch, monitor, and maintain your system

    The 10-Step Machine Learning Project Workflow (My Version)

    1. Define business object
    2. Make sense of the data from a high level
      • data types (number, text, object, etc.)
      • continuous/discrete
      • basic stats (min, max, std, median, etc.) using boxplot
      • frequency via histogram
      • scales and distributions of different features
    3. Create the traning and test sets using proper sampling methods, e.g., random vs. stratified
    4. Correlation analysis (pair-wise and attribute combinations)
    5. Data cleaning (missing data, outliers, data errors)
    6. Data transformation via pipelines (categorical text to number using one hot encoding, feature scaling via normalization/standardization, feature combinations)
    7. Train and cross validate different models and select the most promising one (Linear Regression, Decision Tree, and Random Forest were tried in this tutorial)
    8. Fine tune the model using trying different combinations of hyperparameters
    9. Evaluate the model with best estimators in the test set
    10. Launch, monitor, and refresh the model and system

    --- Original source retains full ownership of the source dataset ---

  17. f

    The dataset used in this study.

    • plos.figshare.com
    zip
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seyed Iman Mohammadpour; Majid Khedmati; Mohammad Javad Hassan Zada (2023). The dataset used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0281901.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Seyed Iman Mohammadpour; Majid Khedmati; Mohammad Javad Hassan Zada
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    While the cost of road traffic fatalities in the U.S. surpasses $240 billion a year, the availability of high-resolution datasets allows meticulous investigation of the contributing factors to crash severity. In this paper, the dataset for Trucks Involved in Fatal Accidents in 2010 (TIFA 2010) is utilized to classify the truck-involved crash severity where there exist different issues including missing values, imbalanced classes, and high dimensionality. First, a decision tree-based algorithm, the Synthetic Minority Oversampling Technique (SMOTE), and the Random Forest (RF) feature importance approach are employed for missing value imputation, minority class oversampling, and dimensionality reduction, respectively. Afterward, a variety of classification algorithms, including RF, K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Gradient-Boosted Decision Trees (GBDT), and Support Vector Machine (SVM) are developed to reveal the influence of the introduced data preprocessing framework on the output quality of ML classifiers. The results show that the GBDT model outperforms all the other competing algorithms for the non-preprocessed crash data based on the G-mean performance measure, but the RF makes the most accurate prediction for the treated dataset. This finding indicates that after the feature selection is conducted to alleviate the computational cost of the machine learning algorithms, bagging (bootstrap aggregating) of decision trees in RF leads to a better model rather than boosting them via GBDT. Besides, the adopted feature importance approach decreases the overall accuracy by only up to 5% in most of the estimated models. Moreover, the worst class recall value of the RF algorithm without prior oversampling is only 34.4% compared to the corresponding value of 90.3% in the up-sampled model which validates the proposed multi-step preprocessing scheme. This study also identifies the temporal and spatial (roadway) attributes, as well as crash characteristics, and Emergency Medical Service (EMS) as the most critical factors in truck crash severity.

  18. f

    Global hotspots for soil nature conservation - survey dataset + supporting...

    • figshare.com
    txt
    Updated Jul 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Guerra (2022). Global hotspots for soil nature conservation - survey dataset + supporting code [Dataset]. http://doi.org/10.6084/m9.figshare.20221713.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 4, 2022
    Dataset provided by
    figshare
    Authors
    Carlos Guerra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We used composite topsoil samples from global field surveys which were conducted between 2016-2019 following standardized field protocols. This global field survey includes 151 locations from all continents and 23 countries, from which 615 composite topsoil samples were collected, providing a large representation of all climatic and vegetation biomes in the planet (Supplementary Fig. 1). Between three and five composite soil (top ~0-10cm) samples (from 5-10 soil cores) were collected in these locations (ranging between 0.09-0.25 ha) following the protocol described in Maestre et al. (2012). Environmental predictors were collected from publicly available datasets. Elevation and climatic information for each location was obtained from WorldClim v2 (1 km2 resolution; https://www.worldclim.org/data/bioclim.html), including information on climatologies and on the seasonality of temperature and precipitation. Soil pH was determined with a soil pH-meter from a soil-water mix 71. Texture was determined as in Maestre et al. 71 and, in the case of missing information, this was filled using Soilgrid v2 (https://soilgrids.org; as in 16). Information on dominant vegetation (forest, shrublands or grasslands) was obtained as part of the field survey. The alpha diversity (corresponding to the number of phylotypes) and community dissimilarity (averaged Jaccard distance across samples from presence/absence matrices to account for dissimilarity in phylotypes, measured as ASVs, rather than in their proportions) of archaea, bacteria, fungi, protists and invertebrates was determined using amplicon sequencing technology (Illumina Miseq platform) following the protocol in Delgado-Baquerizo et al. (2019). Soil DNA was extracted using the Powersoil® DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions. A portion of the bacterial/archaeal 16S and eukaryotic 18S rRNA genes were sequenced using the 515F/806R and Euk1391f/EukBr primer sets 48–50, respectively. Bioinformatics processing was performed using a combination of QIIME 51, USEARCH 52 and UNOISE3 53,54. Phylotypes (i.e. Amplicon sequence variant; ASVs) were identified at the 100% identity level. The ASV abundance tables were rarefied at 5000 (bacteria via 16S rRNA gene), 100 (archaea via 16S rRNA gene), 2000 (fungi via 18S rRNA gene), 1000 (protists via 18S rRNA gene), and 250 (invertebrates via 18S rRNA gene) sequences/sample, respectively, to ensure even sampling depth within each belowground group of organisms. Protists are defined as all eukaryotic taxa, except fungi, invertebrates (Metazoa) and vascular plants (Streptophyta). Finally, to provide further evidence that 18s rRNA Miseq Sequencing can in this case provide a solid representation of the global patterns in soil-borne mycorrhizal fungi and fungal potential plant pathogens, we compare the global patterns (see mapping method below) in the proportion of soil-borne mycorrhizal fungi and fungal potential plant pathogens determined using 18s rRNA Miseq Sequencing with the subset of data including ITS PacBio sequencing. To investigate the environmental factors associated with soil biodiversity and services, we first used machine learning Random Forest modeling. We used the R package “rfpermute” to conduct these analyses. We also conduct Spearman correlations to better describe the direction of the relationship between environmental factors and soil biodiversity and services. Next, we used spatially explicit random forest models to predict the distribution of each soil biodiversity and ecosystem service variable. To map each soil biodiversity and ecosystem service variable we used spatially explicit random forest models. For that, we used ArcGIS Pro that estimates random forest models by using an adaptation of the random forest algorithm (a supervised machine learning regression approach) proposed by Breiman et al.. Forest-based regressions were trained based on 90% of the dataset, the remaining 10% of the dataset were used for validation purposes. All models were fitted using 200 decision trees and 1000 runs for validation and fitting. Prior to prediction all variables included in the dataset and the predictors were scaled and predictions were made using a 0.25x0.25 deg. pixel size. Global hotspots were then calculated using a Getis-Ord Gi* spatial clustering method. The Getis-Ord Gi* statistic was calculated for each location (0.25x0.25 deg. pixel) in the dataset. The resulting z-scores were used to estimate if a given location has statistically high or low values and if these values are spatially clustered. Finally, we have implemented a two stage approach to tackle both the assessment of the environmental representation of the soil biodiversity and ecosystem services dataset used and the uncertainty related to the estimation of each variable or group of variables. For this, we calculated the mahalanobis distance in multidimensional space to assess environmental coverage and a second measure to assess the spatial uncertainty of the estimated values for each model. In order to do this analysis, for each soil biodiversity and ecosystem service variable, we calculated 1000 random iterations of each random forest model and estimated the upper and lower 25% quantile of the distribution of values. For the estimation of the spatial uncertainties related to our projections we calculated 1000 random iterations of each random forest model and estimated the upper and lower 25% quantile of the distribution of values. Similarly, in each model run we used 10% of the data (selected randomly) for validation.

  19. f

    Test MCAR vs. MAR.

    • plos.figshare.com
    xls
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jürgen Kampf; Iryna Dykun; Tienush Rassaf; Amir Abbas Mahabadi (2025). Test MCAR vs. MAR. [Dataset]. http://doi.org/10.1371/journal.pone.0319784.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Jürgen Kampf; Iryna Dykun; Tienush Rassaf; Amir Abbas Mahabadi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundMany datasets in medicine and other branches of science are incomplete. In this article we compare various imputation algorithms for missing data.ObjectivesWe take the point of view that it has already been decided that the imputation should be carried out using multiple imputation by chained equation and the only decision left is that of a subroutine for the one-dimensional imputations. The subroutines to be compared are predictive mean matching, weighted predictive mean matching, sampling, classification or regression trees and random forests.MethodsWe compare these subroutines on real data and on simulated data. We consider the estimation of expected values, variances and coefficients of linear regression models, logistic regression models and Cox regression models. As real data we use data of the survival times after the diagnosis of an obstructive coronary artery disease with systolic blood pressure, LDL, diabetes, smoking behavior and family history of premature heart diseases as variables for which values have to be imputed. While we are mainly interested in statistical properties like biases, mean squared errors or coverage probabilities of confidence intervals, we also have an eye on the computation time.ResultsWeighted predictive mean matching had to be excluded from the statistical comparison due to its enormous computation time. Among the remaining algorithms, in most situations we tested, predictive mean matching performed best.NoveltyThis is by far the largest comparison study for subroutines of multiple imputation by chained equations that has been performed up to now.

  20. f

    Table_3_Comparison of machine learning and logistic regression as predictive...

    • figshare.com
    • frontiersin.figshare.com
    xlsx
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dongying Zheng; Xinyu Hao; Muhanmmad Khan; Lixia Wang; Fan Li; Ning Xiang; Fuli Kang; Timo Hamalainen; Fengyu Cong; Kedong Song; Chong Qiao (2023). Table_3_Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study.XLSX [Dataset]. http://doi.org/10.3389/fcvm.2022.959649.s005
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Dongying Zheng; Xinyu Hao; Muhanmmad Khan; Lixia Wang; Fan Li; Ning Xiang; Fuli Kang; Timo Hamalainen; Fengyu Cong; Kedong Song; Chong Qiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionPreeclampsia, one of the leading causes of maternal and fetal morbidity and mortality, demands accurate predictive models for the lack of effective treatment. Predictive models based on machine learning algorithms demonstrate promising potential, while there is a controversial discussion about whether machine learning methods should be recommended preferably, compared to traditional statistical models.MethodsWe employed both logistic regression and six machine learning methods as binary predictive models for a dataset containing 733 women diagnosed with preeclampsia. Participants were grouped by four different pregnancy outcomes. After the imputation of missing values, statistical description and comparison were conducted preliminarily to explore the characteristics of documented 73 variables. Sequentially, correlation analysis and feature selection were performed as preprocessing steps to filter contributing variables for developing models. The models were evaluated by multiple criteria.ResultsWe first figured out that the influential variables screened by preprocessing steps did not overlap with those determined by statistical differences. Secondly, the most accurate imputation method is K-Nearest Neighbor, and the imputation process did not affect the performance of the developed models much. Finally, the performance of models was investigated. The random forest classifier, multi-layer perceptron, and support vector machine demonstrated better discriminative power for prediction evaluated by the area under the receiver operating characteristic curve, while the decision tree classifier, random forest, and logistic regression yielded better calibration ability verified, as by the calibration curve.ConclusionMachine learning algorithms can accomplish prediction modeling and demonstrate superior discrimination, while Logistic Regression can be calibrated well. Statistical analysis and machine learning are two scientific domains sharing similar themes. The predictive abilities of such developed models vary according to the characteristics of datasets, which still need larger sample sizes and more influential predictors to accumulate evidence.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
Organization logo

Data from: Water-quality data imputation with a high percentage of missing values: a machine learning approach

Related Article
Explore at:
csvAvailable download formats
Dataset updated
Jun 8, 2021
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

In this dataset, we include the original and imputed values for the following variables:

  • Water temperature (Tw)

  • Dissolved oxygen (DO)

  • Electrical conductivity (EC)

  • pH

  • Turbidity (Turb)

  • Nitrite (NO2-)

  • Nitrate (NO3-)

  • Total Nitrogen (TN)

Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

Search
Clear search
Close search
Google apps
Main menu