100+ datasets found
  1. Coffee Shop Sales Analysis

    • kaggle.com
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Amir (2024). Coffee Shop Sales Analysis [Dataset]. https://www.kaggle.com/datasets/monisamir/coffee-shop-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    Kaggle
    Authors
    Monis Amir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Analyzing Coffee Shop Sales: Excel Insights 📈

    In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕

    DATA CLEANING 🧹

    • REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.

    • FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.

    • CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.

    DATA MANIPULATION 🛠️

    • UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.

    • IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.

    • APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.

    • CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.

    PIVOTING THE DATA 𝄜

    • CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.

    • FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.

    VISUALIZATION 📊

    • KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.

    • SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.

    • PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.

    • TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.

    *I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.

    While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.

    THANKS TO: WsCube Tech Mo Chen Alex Freberg

    TOOLS USED: Microsoft Excel

    DataAnalytics #DataAnalyst #ExcelProject #DataVisualization #BusinessIntelligence #SalesAnalysis #DataAnalysis #DataDrivenDecisions

  2. Google Analytics data of an E-commerce Company

    • kaggle.com
    zip
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fehu.zone (2024). Google Analytics data of an E-commerce Company [Dataset]. https://www.kaggle.com/datasets/fehu94/google-analytics-data-of-an-e-commerce-company
    Explore at:
    zip(3156 bytes)Available download formats
    Dataset updated
    Oct 19, 2024
    Authors
    fehu.zone
    Description

    📊 Dataset Title: Daily Active Users Dataset

    📝 Description

    This dataset provides detailed insights into daily active users (DAU) of a platform or service, captured over a defined period of time. The dataset includes information such as the number of active users per day, allowing data analysts and business intelligence teams to track usage trends, monitor platform engagement, and identify patterns in user activity over time.

    The data is ideal for performing time series analysis, statistical analysis, and trend forecasting. You can utilize this dataset to measure the success of platform initiatives, evaluate user behavior, or predict future trends in engagement. It is also suitable for training machine learning models that focus on user activity prediction or anomaly detection.

    📂 Dataset Structure

    The dataset is structured in a simple and easy-to-use format, containing the following columns:

    • Date: The date on which the data was recorded, formatted as YYYYMMDD.
    • Number of Active Users: The number of users who were active on the platform on the corresponding date.

    Each row in the dataset represents a unique date and its corresponding number of active users. This allows for time-based analysis, such as calculating the moving average of active users, detecting seasonality, or spotting sudden spikes or drops in engagement.

    🧐 Key Use Cases

    This dataset can be used for a wide range of purposes, including:

    1. Time Series Analysis: Analyze trends and seasonality of user engagement.
    2. Trend Detection: Discover peaks and valleys in user activity.
    3. Anomaly Detection: Use statistical methods or machine learning algorithms to detect anomalies in user behavior.
    4. Forecasting User Growth: Build forecasting models to predict future platform usage.
    5. Seasonality Insights: Identify patterns like increased activity on weekends or holidays.

    📈 Potential Analysis

    Here are some specific analyses you can perform using this dataset:

    • Moving Average and Smoothing: Calculate the moving average over a 7-day or 30-day period.
    • Correlation with External Factors: Correlate daily active users with other datasets.
    • Statistical Hypothesis Testing: Perform t-tests or ANOVA to determine significant differences in user activity.
    • Machine Learning for Prediction: Train machine learning models to predict user engagement.

    🚀 Getting Started

    To get started with this dataset, you can load it into your preferred analysis tool. Here's how to do it using Python's pandas library:

    import pandas as pd
    
    # Load the dataset
    data = pd.read_csv('path_to_dataset.csv')
    
    # Display the first few rows
    print(data.head())
    
    # Basic statistics
    print(data.describe())
    
  3. f

    Data from: HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated May 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helito, Camilo Partezani; Gonçalves, Romeu Krause; de Lima, Lana Lacerda; Clazzer, Renata; de Lima, Diego Ariel; de Camargo, Olavo Pires (2022). HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE USING R SOFTWARE AND RSTUDIO [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000403452
    Explore at:
    Dataset updated
    May 27, 2022
    Authors
    Helito, Camilo Partezani; Gonçalves, Romeu Krause; de Lima, Lana Lacerda; Clazzer, Renata; de Lima, Diego Ariel; de Camargo, Olavo Pires
    Description

    ABSTRACT Meta-analysis is an adequate statistical technique to combine results from different studies, and its use has been growing in the medical field. Thus, not only knowing how to interpret meta-analysis, but also knowing how to perform one, is fundamental today. Therefore, the objective of this article is to present the basic concepts and serve as a guide for conducting a meta-analysis using R and RStudio software. For this, the reader has access to the basic commands in the R and RStudio software, necessary for conducting a meta-analysis. The advantage of R is that it is a free software. For a better understanding of the commands, two examples were presented in a practical way, in addition to revising some basic concepts of this statistical technique. It is assumed that the data necessary for the meta-analysis has already been collected, that is, the description of methodologies for systematic review is not a discussed subject. Finally, it is worth remembering that there are many other techniques used in meta-analyses that were not addressed in this work. However, with the two examples used, the article already enables the reader to proceed with good and robust meta-analyses. Level of Evidence V, Expert Opinion.

  4. Google Data Analytics Capstone Project

    • kaggle.com
    zip
    Updated Nov 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NANCY CHAUHAN (2021). Google Data Analytics Capstone Project [Dataset]. https://www.kaggle.com/datasets/nancychauhan199/google-case-study-pdf
    Explore at:
    zip(284279 bytes)Available download formats
    Dataset updated
    Nov 13, 2021
    Authors
    NANCY CHAUHAN
    Description

    Case Study: How Does a Bike-Share Navigate Speedy Success?¶

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path. By the end of this lesson, you will have a portfolio-ready case study. Download the packet and reference the details of this case study anytime. Then, when you begin your job hunt, your case study will be a tangible way to demonstrate your knowledge and skills to potential employers.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations. Characters and teams ● Cyclistic: A bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. ● Lily Moreno: The director of marketing and your manager. Moreno is responsible for the development of campaigns and initiatives to promote the bike-share program. These may include email, social media, and other channels. ● Cyclistic marketing analytics team: A team of data analysts who are responsible for collecting, analyzing, and reporting data that helps guide Cyclistic marketing strategy. You joined this team six months ago and have been busy learning about Cyclistic’s mission and business goals — as well as how you, as a junior data analyst, can help Cyclistic achieve them. ● Cyclistic executive team: The notoriously detail-oriented executive team will decide whether to approve the recommended marketing program.

    About the company

    In 2016, Cyclistic launched a successful bike-share offering. Since then, the program has grown to a fleet of 5,824 bicycles that are geotracked and locked into a network of 692 stations across Chicago. The bikes can be unlocked from one station and returned to any other station in the system anytime. Until now, Cyclistic’s marketing strategy relied on building general awareness and appealing to broad consumer segments. One approach that helped make these things possible was the flexibility of its pricing plans: single-ride passes, full-day passes, and annual memberships. Customers who purchase single-ride or full-day passes are referred to as casual riders. Customers who purchase annual memberships are Cyclistic members. Cyclistic’s finance analysts have concluded that annual members are much more profitable than casual riders. Although the pricing flexibility helps Cyclistic attract more customers, Moreno believes that maximizing the number of annual members will be key to future growth. Rather than creating a marketing campaign that targets all-new customers, Moreno believes there is a very good chance to convert casual riders into members. She notes that casual riders are already aware of the Cyclistic program and have chosen Cyclistic for their mobility needs. Moreno has set a clear goal: Design marketing strategies aimed at converting casual riders into annual members. In order to do that, however, the marketing analyst team needs to better understand how annual members and casual riders differ, why casual riders would buy a membership, and how digital media could affect their marketing tactics. Moreno and her team are interested in analyzing the Cyclistic historical bike trip data to identify trends

    Three questions will guide the future marketing program:

    How do annual members and casual riders use Cyclistic bikes differently? Why would casual riders buy Cyclistic annual memberships? How can Cyclistic use digital media to influence casual riders to become members? Moreno has assigned you the first question to answer: How do annual members and casual rid...

  5. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  6. c

    Walmart Products Dataset – Free Product Data CSV

    • crawlfeeds.com
    csv, zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Walmart Products Dataset – Free Product Data CSV [Dataset]. https://crawlfeeds.com/datasets/walmart-products-free-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Looking for a free Walmart product dataset? The Walmart Products Free Dataset delivers a ready-to-use ecommerce product data CSV containing ~2,100 verified product records from Walmart.com. It includes vital details like product titles, prices, categories, brand info, availability, and descriptions — perfect for data analysis, price comparison, market research, or building machine-learning models.

    Key Features

    Complete Product Metadata: Each entry includes URL, title, brand, SKU, price, currency, description, availability, delivery method, average rating, total ratings, image links, unique ID, and timestamp.

    CSV Format, Ready to Use: Download instantly - no need for scraping, cleaning or formatting.

    Good for E-commerce Research & ML: Ideal for product cataloging, price tracking, demand forecasting, recommendation systems, or data-driven projects.

    Free & Easy Access: Priced at USD $0.0, making it a great starting point for developers, data analysts or students.

    Who Benefits?

    • Data analysts & researchers exploring e-commerce trends or product catalog data.
    • Developers & data scientists building price-comparison tools, recommendation engines or ML models.
    • E-commerce strategists/marketers need product metadata for competitive analysis or market research.
    • Students/hobbyists needing a free dataset for learning or demo projects.

    Why Use This Dataset Instead of Manual Scraping?

    • Time-saving: No need to write scrapers or deal with rate limits.
    • Clean, structured data: All records are verified and already formatted in CSV, saving hours of cleaning.
    • Risk-free: Avoid Terms-of-Service issues or IP blocks that come with manual scraping.
      Instant access: Free and immediately downloadable.
  7. r

    Dataset for "Do LiU researchers publish data – and where? Dataset analysis...

    • researchdata.se
    • demo.researchdata.se
    • +1more
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaori Hoshi Larsson (2025). Dataset for "Do LiU researchers publish data – and where? Dataset analysis using ODDPub" [Dataset]. http://doi.org/10.5281/zenodo.15017715
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Linköping University
    Authors
    Kaori Hoshi Larsson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the results from the ODDPubb text mining algorithm and the findings from manual analysis. Full-text PDFs of all articles parallel-published by Linköping University in 2022 were extracted from the institute's repository, DiVA. These were analyzed using the ODDPubb (https://github.com/quest-bih/oddpub) text mining algorithm to determine the extent of data sharing and identify the repositories where the data was shared. In addition to the results from ODDPubb, manual analysis was conducted to confirm the presence of data sharing statements, assess data availability, and identify the repositories used.

  8. d

    Data release for solar-sensor angle analysis subset associated with the...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Western United States, United States
    Description

    This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

  9. Z

    Assessing the impact of hints in learning formal specification: Research...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Macedo, Nuno; Cunha, Alcino; Campos, José Creissac; Sousa, Emanuel; Margolis, Iara (2024). Assessing the impact of hints in learning formal specification: Research artifact [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10450608
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    INESC TEC
    Centro de Computação Gráfica
    Authors
    Macedo, Nuno; Cunha, Alcino; Campos, José Creissac; Sousa, Emanuel; Margolis, Iara
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.

    Dataset

    The artifact contains the resources described below.

    Experiment resources

    The resources needed for replicating the experiment, namely in directory experiment:

    alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.

    alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.

    docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.

    api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.

    Experiment data

    The task database used in our application of the experiment, namely in directory data/experiment:

    Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.

    identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.

    Collected data

    Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:

    data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).

    data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).

    data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);

    detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.

    data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).

    participants.txt: the list of participant identifiers that have registered for the experiment.

    Analysis scripts

    The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:

    analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.

    requirements.r: An R script to install the required libraries for the analysis script.

    normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.

    normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.

    Dockerfile: Docker script to automate the analysis script from the collected data.

    Setup

    To replicate the experiment and the analysis of the results, only Docker is required.

    If you wish to manually replicate the experiment and collect your own data, you'll need to install:

    A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.

    If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:

    Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.

    R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.

    Usage

    Experiment replication

    This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.

    To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.

    cd experimentdocker-compose up

    This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.

    In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:

    Group N (no hints): http://localhost:3000/0CAN

    Group L (error locations): http://localhost:3000/CA0L

    Group E (counter-example): http://localhost:3000/350E

    Group D (error description): http://localhost:3000/27AD

    In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.

    Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.

    Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.

    After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:

    Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.

    Analysis of other applications of the experiment

    This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.

    The analysis script expects data in 4 CSV files,

  10. D

    Mass Spectrometry Data Analysis AI Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Mass Spectrometry Data Analysis AI Market Research Report 2033 [Dataset]. https://dataintelo.com/report/mass-spectrometry-data-analysis-ai-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Mass Spectrometry Data Analysis AI Market Outlook



    According to our latest research, the global Mass Spectrometry Data Analysis AI market size reached USD 1.45 billion in 2024, reflecting an impressive surge in adoption across life sciences, healthcare, and environmental sectors. The market is projected to grow at a robust CAGR of 21.6% from 2025 to 2033, reaching a forecasted value of USD 10.23 billion by 2033. This significant growth is primarily driven by the increasing demand for high-throughput, accurate, and automated data analysis solutions in mass spectrometry, coupled with the rapid integration of artificial intelligence (AI) technologies to enhance data interpretation, reduce turnaround time, and improve reproducibility.




    One of the primary growth factors for the Mass Spectrometry Data Analysis AI market is the exponential increase in the volume and complexity of data generated by advanced mass spectrometry instruments. Traditional data analysis methods often struggle to keep pace with the high throughput and intricate datasets produced, especially in fields such as proteomics and metabolomics. The integration of AI-powered algorithms enables researchers and clinicians to automate data processing, identify complex patterns, and extract actionable insights with unprecedented speed and accuracy. This technological leap is particularly beneficial in drug discovery and clinical diagnostics, where timely and reliable data interpretation can accelerate research timelines and improve patient outcomes. The ability of AI to handle multi-dimensional datasets and provide real-time analysis is revolutionizing how mass spectrometry data is utilized across various industries.




    Another critical driver fueling the growth of the Mass Spectrometry Data Analysis AI market is the increasing investment by pharmaceutical and biotechnology companies in precision medicine and personalized healthcare. As these industries strive for more targeted therapies and diagnostics, the need for sophisticated data analysis solutions that can interpret complex biological data has become paramount. AI-driven platforms are being deployed to streamline workflows, reduce manual errors, and enhance the reproducibility of results. Additionally, the rise of cloud-based solutions is making AI-powered mass spectrometry data analysis more accessible to organizations of all sizes, eliminating the need for extensive on-premises infrastructure and enabling collaborative research across global teams. This democratization of advanced analytical capabilities is expected to further propel market expansion in the coming years.




    Regulatory compliance and quality assurance requirements also play a pivotal role in shaping the Mass Spectrometry Data Analysis AI market. With stringent guidelines governing data integrity, traceability, and reproducibility, especially in clinical and environmental testing laboratories, AI-based solutions offer robust frameworks for automated quality control and audit trails. These capabilities are crucial for ensuring that analytical results meet regulatory standards and can withstand scrutiny during regulatory submissions. Furthermore, the integration of AI with mass spectrometry data analysis is enabling laboratories to optimize resource allocation, minimize operational costs, and enhance overall productivity. As regulatory agencies continue to emphasize data transparency and reliability, the adoption of AI-driven data analysis tools is expected to become a standard practice across the industry.




    From a regional perspective, North America currently dominates the Mass Spectrometry Data Analysis AI market, accounting for more than 38% of the global market share in 2024. This leadership is attributed to the presence of major pharmaceutical companies, advanced research infrastructure, and a strong focus on technological innovation. Europe follows closely, driven by significant investments in life sciences and environmental monitoring. The Asia Pacific region is emerging as a high-growth market, with increasing adoption of AI technologies in research and clinical settings, particularly in countries such as China, Japan, and India. The rapid expansion of healthcare infrastructure, coupled with government initiatives to promote digital transformation, is expected to drive substantial growth in this region over the forecast period.



    Component Analysis



    The Component segment of the Mass Spectrometry Data Analysis AI ma

  11. Generative AI In Data Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Generative AI In Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/generative-ai-in-data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Generative AI In Data Analytics Market Size 2025-2029

    The generative ai in data analytics market size is valued to increase by USD 4.62 billion, at a CAGR of 35.5% from 2024 to 2029. Democratization of data analytics and increased accessibility will drive the generative ai in data analytics market.

    Market Insights

    North America dominated the market and accounted for a 37% growth during the 2025-2029.
    By Deployment - Cloud-based segment was valued at USD 510.60 billion in 2023
    By Technology - Machine learning segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 621.84 million 
    Market Future Opportunities 2024: USD 4624.00 million
    CAGR from 2024 to 2029 : 35.5%
    

    Market Summary

    The market is experiencing significant growth as businesses worldwide seek to unlock new insights from their data through advanced technologies. This trend is driven by the democratization of data analytics and increased accessibility of AI models, which are now available in domain-specific and enterprise-tuned versions. Generative AI, a subset of artificial intelligence, uses deep learning algorithms to create new data based on existing data sets. This capability is particularly valuable in data analytics, where it can be used to generate predictions, recommendations, and even new data points. One real-world business scenario where generative AI is making a significant impact is in supply chain optimization. In this context, generative AI models can analyze historical data and generate forecasts for demand, inventory levels, and production schedules. This enables businesses to optimize their supply chain operations, reduce costs, and improve customer satisfaction. However, the adoption of generative AI in data analytics also presents challenges, particularly around data privacy, security, and governance. As businesses continue to generate and analyze increasingly large volumes of data, ensuring that it is protected and used in compliance with regulations is paramount. Despite these challenges, the benefits of generative AI in data analytics are clear, and its use is set to grow as businesses seek to gain a competitive edge through data-driven insights.

    What will be the size of the Generative AI In Data Analytics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleGenerative AI, a subset of artificial intelligence, is revolutionizing data analytics by automating data processing and analysis, enabling businesses to derive valuable insights faster and more accurately. Synthetic data generation, a key application of generative AI, allows for the creation of large, realistic datasets, addressing the challenge of insufficient data in analytics. Parallel processing methods and high-performance computing power the rapid analysis of vast datasets. Automated machine learning and hyperparameter optimization streamline model development, while model monitoring systems ensure continuous model performance. Real-time data processing and scalable data solutions facilitate data-driven decision-making, enabling businesses to respond swiftly to market trends. One significant trend in the market is the integration of AI-powered insights into business operations. For instance, probabilistic graphical models and backpropagation techniques are used to predict customer churn and optimize marketing strategies. Ensemble learning methods and transfer learning techniques enhance predictive analytics, leading to improved customer segmentation and targeted marketing. According to recent studies, businesses have achieved a 30% reduction in processing time and a 25% increase in predictive accuracy by implementing generative AI in their data analytics processes. This translates to substantial cost savings and improved operational efficiency. By embracing this technology, businesses can gain a competitive edge, making informed decisions with greater accuracy and agility.

    Unpacking the Generative AI In Data Analytics Market Landscape

    In the dynamic realm of data analytics, Generative AI algorithms have emerged as a game-changer, revolutionizing data processing and insights generation. Compared to traditional data mining techniques, Generative AI models can create new data points that mirror the original dataset, enabling more comprehensive data exploration and analysis (Source: Gartner). This innovation leads to a 30% increase in identified patterns and trends, resulting in improved ROI and enhanced business decision-making (IDC).

    Data security protocols are paramount in this context, with Classification Algorithms and Clustering Algorithms ensuring data privacy and compliance alignment. Machine Learning Pipelines and Deep Learning Frameworks facilitate seamless integration with Predictive Modeling Tools and Automated Report Generation on Cloud

  12. m

    Student Skill Gap Analysis

    • data.mendeley.com
    • kaggle.com
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bindu Garg (2025). Student Skill Gap Analysis [Dataset]. http://doi.org/10.17632/rv6scbpd7v.1
    Explore at:
    Dataset updated
    Apr 28, 2025
    Authors
    Bindu Garg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is designed for skill gap analysis, focusing on evaluating the skill gap between students’ current skills and industry requirements. It provides insights into technical skills, soft skills, career interests, and challenges, helping in skill gap analysis to identify areas for improvement.

    By leveraging this dataset, educators, recruiters, and researchers can conduct skill gap analysis to assess students’ job readiness and tailor training programs accordingly. It serves as a valuable resource for identifying skill deficiencies and skill gaps improving career guidance, and enhancing curriculum design through targeted skill gap analysis.

    Following is the column descriptors: Name - Student's full name. email_id - Student's email address. Year - The academic year the student is currently in (e.g., 1st Year, 2nd Year, etc.). Current Course - The course the student is currently pursuing (e.g., B.Tech CSE, MBA, etc.). Technical Skills - List of technical skills possessed by the student (e.g., Python, Data Analysis, Cloud Computing). Programming Languages - Programming languages known by the student (e.g., Python, Java, C++). Rating - Self-assessed rating of technical skills on a scale of 1 to 5. Soft Skills - List of soft skills (e.g., Communication, Leadership, Teamwork). Rating - Self-assessed rating of soft skills on a scale of 1 to 5. Projects - Indicates whether the student has worked on any projects (Yes/No). Career Interest - The student's preferred career path (e.g., Data Scientist, Software Engineer). Challenges - Challenges faced while applying for jobs/internships (e.g., Lack of experience, Resume building issues).

  13. G

    In-Line Data Analytics DPU Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). In-Line Data Analytics DPU Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/in-line-data-analytics-dpu-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    In-Line Data Analytics DPU Market Outlook



    According to our latest research, the global In-Line Data Analytics DPU market size in 2024 stands at USD 1.34 billion, with an impressive compound annual growth rate (CAGR) of 28.2% expected through the forecast period of 2025 to 2033. By the end of 2033, the market is projected to reach USD 13.41 billion. The surge in demand for real-time data processing and advanced analytics in data centers, telecommunications networks, and financial institutions is a primary growth factor driving the expansion of the In-Line Data Analytics DPU market. Organizations across industries are increasingly adopting data processing units (DPUs) to offload and accelerate complex analytics workloads directly within data streams, significantly improving operational efficiency and reducing latency.




    The growth trajectory of the In-Line Data Analytics DPU market is fueled by the exponential increase in data volumes generated by digital transformation initiatives, IoT devices, and cloud-native applications. Enterprises are under immense pressure to derive actionable insights from data in real time, necessitating the deployment of advanced analytics solutions that can process and analyze data at the edge or within the network. DPUs, with their specialized hardware and software capabilities, enable organizations to achieve high-throughput, low-latency data analytics, which is critical for applications such as fraud detection, network security, and dynamic resource allocation. The integration of AI and machine learning algorithms within DPUs further enhances their analytical prowess, making them indispensable in modern IT and business environments.




    Another significant growth driver is the escalating need for robust security analytics and compliance in highly regulated sectors such as BFSI, healthcare, and government. In-Line Data Analytics DPUs enable real-time monitoring and analysis of network traffic, detecting anomalies and potential threats before they can compromise sensitive data or disrupt operations. This proactive approach to security is increasingly favored over traditional, reactive methods, especially as cyber threats become more sophisticated. Additionally, regulatory mandates around data privacy and real-time reporting are compelling organizations to invest in advanced analytics infrastructure, further boosting the adoption of DPUs.




    Technological advancements and the proliferation of cloud computing are also contributing to the rapid expansion of the In-Line Data Analytics DPU market. Cloud service providers are integrating DPU-based analytics solutions to offer scalable, high-performance data processing capabilities to their clients. The shift towards hybrid and multi-cloud environments is creating new opportunities for DPU vendors, as enterprises seek flexible deployment models that can seamlessly support both on-premises and cloud-based analytics workloads. As a result, the market is witnessing a wave of innovation, with vendors introducing DPUs that support a wide array of analytics applications and deployment scenarios.




    From a regional perspective, North America continues to dominate the global In-Line Data Analytics DPU market, accounting for the largest share in 2024. The presence of leading technology companies, robust IT infrastructure, and high adoption rates of advanced analytics solutions are key factors underpinning the region's leadership. However, Asia Pacific is emerging as the fastest-growing market, driven by rapid digitization, expanding telecommunications networks, and increasing investments in smart city initiatives. Europe, Latin America, and the Middle East & Africa are also witnessing steady growth, supported by rising awareness of the benefits of real-time data analytics and increasing regulatory compliance requirements.





    Component Analysis



    The In-Line Data Analytics DPU market by component is segmented into hardware, software, and services, each playing a pivotal role in delivering comprehensive analyti

  14. H

    Replication Data for: "Do Pre-Registration and Pre-Analysis Plans Reduce...

    • datasetcatalog.nlm.nih.gov
    • dataverse.harvard.edu
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heyes, Anthony; Brodeur, Abel; Hartley, Jonathan S.; Cook, Nikolai (2024). Replication Data for: "Do Pre-Registration and Pre-Analysis Plans Reduce p-Hacking and Publication Bias?: Evidence from 15,992 Test Statistics and Suggestions for Improvement" [Dataset]. http://doi.org/10.7910/DVN/F8C4YL
    Explore at:
    Dataset updated
    Jan 9, 2024
    Authors
    Heyes, Anthony; Brodeur, Abel; Hartley, Jonathan S.; Cook, Nikolai
    Description

    This is the replication package for "Do Pre-Registration and Pre-Analysis Plans Reduce p-Hacking and Publication Bias?: Evidence from 15,992 Test Statistics and Suggestions for Improvement," accepted in 2023 by the Journal of Political Economy.

  15. Data from: Retail Sales Analysis

    • kaggle.com
    Updated Jun 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sahir Maharaj (2024). Retail Sales Analysis [Dataset]. https://www.kaggle.com/datasets/sahirmaharajj/retail-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sahir Maharaj
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset contains a list of sales and movement data by item and department appended monthly.

    It is rich in information that can be leveraged for various data science applications. For instance, analyzing this dataset can offer insights into consumer behavior, such as preferences for specific types of beverages (e.g., wine, beer) during different times of the year. Furthermore, the dataset can be used to identify trends in sales and transfers, highlighting seasonal effects or the impact of certain suppliers on the market.

    One could start with exploratory data analysis (EDA) to understand the basic distribution of sales and transfers across different item types and suppliers. Time series analysis can provide insights into seasonal trends and sales forecasts. Cluster analysis might reveal groups of suppliers or items with similar sales patterns, which can be useful for targeted marketing and inventory management.

  16. Sales Intelligence Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Sales Intelligence Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/sales-intelligence-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Germany, Canada, United States
    Description

    Snapshot img

    Sales Intelligence Market Size 2025-2029

    The sales intelligence market size is forecast to increase by USD 4.86 billion at a CAGR of 17.6% between 2024 and 2029.

    The market is experiencing significant growth, driven primarily by the increasing demand for custom-made solutions that cater to the unique needs of businesses. This trend is fueled by the rapid advancements in cloud technology, enabling real-time access to comprehensive and accurate sales data from anywhere. However, the high initial cost of implementing sales intelligence solutions can act as a barrier to entry for smaller organizations. Furthermore, regulatory hurdles impact adoption in certain industries, requiring strict compliance with data privacy regulations. With the advent of cloud computing and SaaS customer relationship management (CRM) systems, businesses are able to store and access customer information more efficiently. Moreover, the exponential growth of marketing intelligence, driven by big data and natural language processing (NLP) technologies, enables organizations to gain valuable insights from customer interactions.
    Despite these challenges, the market's potential is vast, with opportunities for growth in sectors such as healthcare, finance, and retail. Companies seeking to capitalize on these opportunities must navigate these challenges effectively, investing in cost-effective solutions and ensuring regulatory compliance. By doing so, they can gain a competitive edge through improved lead generation, enhanced customer insights, and streamlined sales processes.
    

    What will be the Size of the Sales Intelligence Market during the forecast period?

    Request Free Sample

    In today's business landscape, sales intelligence has become a critical driver of revenue growth. The go-to-market strategy of companies relies heavily on predictive lead scoring and sales pipeline analysis to prioritize opportunities and optimize resource allocation. Sales operations teams leverage revenue intelligence to gain insights into sales performance and identify trends. Data quality is paramount in sales analytics dashboards, ensuring accurate sales negotiation and closing. Sales teams collaborate using sales enablement platforms, which integrate CRM systems and provide sales performance reporting. Sales process mapping and sales engagement tools enable effective communication and productivity. Conversational AI and sales automation software streamline sales outreach and prospecting efforts. Messaging and alerting features help sales teams engage with potential customers effectively, while chatbots facilitate efficient communication.
    Sales forecasting models and intent data inform sales management decisions, while salesforce automation and data governance ensure data security and compliance. Sales effectiveness is enhanced through sales negotiation training and sales enablement training. The sales market is dynamic, with trends shifting towards advanced analytics and AI-driven solutions. Companies must adapt to stay competitive, focusing on data-driven strategies and continuous improvement.
    

    How is this Sales Intelligence Industry segmented?

    The sales intelligence industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      Cloud-based
      On-premises
    
    
    Component
    
      Software
      Services
    
    
    Application
    
      Data management
      Lead management
    
    
    End-user
    
      IT and Telecom
      Healthcare and life sciences
      BFSI
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The cloud-based segment is estimated to witness significant growth during the forecast period. In today's business landscape, sales intelligence platforms have become indispensable tools for organizations seeking to optimize their sales processes and gain a competitive edge. These solutions offer various features, including deal tracking, win-loss analysis, data mining, sales efficiency, customer journey mapping, sales process optimization, pipeline management, sales cycle analysis, revenue optimization, market research, data integration, customer segmentation, sales engagement, sales coaching, sales playbook, sales process automation, business intelligence (BI), predictive analytics, target account identification, lead generation, account-based marketing (ABM), sales strategy, sales velocity, real-time data, artificial intelligence (AI), sales insights, sales enablement content, sales enablement, sales funnel optimization, sales performance metrics, competitive intelligence, sales methodology, customer churn, and machine learning (ML) for sales forecasting and buyer persona deve

  17. f

    Analysis and Interpretation of Imaging Mass Spectrometry Data by Clustering...

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Theodore Alexandrov; Ilya Chernyavsky; Michael Becker; Ferdinand von Eggeling; Sergey Nikolenko (2023). Analysis and Interpretation of Imaging Mass Spectrometry Data by Clustering Mass-to-Charge Images According to Their Spatial Similarity [Dataset]. http://doi.org/10.1021/ac401420z.s002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    ACS Publications
    Authors
    Theodore Alexandrov; Ilya Chernyavsky; Michael Becker; Ferdinand von Eggeling; Sergey Nikolenko
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Imaging mass spectrometry (imaging MS) has emerged in the past decade as a label-free, spatially resolved, and multipurpose bioanalytical technique for direct analysis of biological samples from animal tissue, plant tissue, biofilms, and polymer films., Imaging MS has been successfully incorporated into many biomedical pipelines where it is usually applied in the so-called untargeted mode-capturing spatial localization of a multitude of ions from a wide mass range. An imaging MS data set usually comprises thousands of spectra and tens to hundreds of thousands of mass-to-charge (m/z) images and can be as large as several gigabytes. Unsupervised analysis of an imaging MS data set aims at finding hidden structures in the data with no a priori information used and is often exploited as the first step of imaging MS data analysis. We propose a novel, easy-to-use and easy-to-implement approach to answer one of the key questions of unsupervised analysis of imaging MS data: what do all m/z images look like? The key idea of the approach is to cluster all m/z images according to their spatial similarity so that each cluster contains spatially similar m/z images. We propose a visualization of both spatial and spectral information obtained using clustering that provides an easy way to understand what all m/z images look like. We evaluated the proposed approach on matrix-assisted laser desorption ionization imaging MS data sets of a rat brain coronal section and human larynx carcinoma and discussed several scenarios of data analysis.

  18. Data from: Is Burglary a Crime of Violence? An Analysis of National Data...

    • icpsr.umich.edu
    • datasets.ai
    • +1more
    Updated Sep 22, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kopp, Phillip; Culp, Richard; McCoy, Candace (2016). Is Burglary a Crime of Violence? An Analysis of National Data 1998-2007 [United States] [Dataset]. http://doi.org/10.3886/ICPSR34971.v1
    Explore at:
    Dataset updated
    Sep 22, 2016
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Kopp, Phillip; Culp, Richard; McCoy, Candace
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34971/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34971/terms

    Time period covered
    1998 - 2007
    Area covered
    United States
    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. This study was a secondary analysis of data from the National Crime Victimization Survey (NCVS) and National Incidents Based Reporting System (NIBRS) for the period 1998-2007. The analysis calculates two separate measures of the incidents of violence that occurred during burglaries. The study addressed the following research questions: Is burglary a violent crime? Are different levels of violence associated with residential versus nonresidential burglaries? How frequently is a household member present during a residential burglary? How frequently does violence occur in the commission of a burglary? What forms does burglary-related violence take? Are there differences in rates of violence between attempted and completed burglaries? What constitutes the crime of burglary in current statutory law? How do the federal government and the various states define burglary (grades and elements)? Does statutory law comport with empirical observations of what the typical characteristics of acts of burglary are? The SPSS code distributed here alters an existing dataset drawn from pre-existing studies. In order to use this code users must first create the original data file drawn from National Crime Victimization Survey (NCVS) and National Incidents Based Reporting System (NIBRS) data from the period of 1998-2007. All data used for this study are publicly available through ICPSR. See the variable description section for a comprehensive list of, and direct links to, all datasets used to create this original dataset.

  19. Replication Package: Unboxing Default Argument Breaking Changes in 1 + 2...

    • zenodo.org
    application/gzip
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi; João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi (2024). Replication Package: Unboxing Default Argument Breaking Changes in 1 + 2 Data Science Libraries in Python [Dataset]. http://doi.org/10.5281/zenodo.11584961
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi; João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Replication Package

    This repository contains data and source files needed to replicate our work described in the paper "Unboxing Default Argument Breaking Changes in Scikit Learn".

    Requirements

    We recommend the following requirements to replicate our study:

    1. Internet access
    2. At least 100GB of space
    3. Docker installed
    4. Git installed

    Package Structure

    We relied on Docker containers to provide a working environment that is easier to replicate. Specifically, we configure the following containers:

    • data-analysis, an R-based Container we used to run our data analysis.
    • data-collection, a Python Container we used to collect Scikit's default arguments and detect them in client applications.
    • database, a Postgres Container we used to store clients' data, obtainer from Grotov et al.
    • storage, a directory used to store the data processed in data-analysis and data-collection. This directory is shared in both containers.
    • docker-compose.yml, the Docker file that configures all containers used in the package.

    In the remainder of this document, we describe how to set up each container properly.

    Using VSCode to Setup the Package

    We selected VSCode as the IDE of choice because its extensions allow us to implement our scripts directly inside the containers. In this package, we provide configuration parameters for both data-analysis and data-collection containers. This way you can directly access and run each container inside it without any specific configuration.

    You first need to set up the containers

    $ cd /replication/package/folder
    $ docker-compose build
    $ docker-compose up
    # Wait docker creating and running all containers
    

    Then, you can open them in Visual Studio Code:

    1. Open VSCode in project root folder
    2. Access the command palette and select "Dev Container: Reopen in Container"
      1. Select either Data Collection or Data Analysis.
    3. Start working

    If you want/need a more customized organization, the remainder of this file describes it in detail.

    Longest Road: Manual Package Setup

    Database Setup

    The database container will automatically restore the dump in dump_matroskin.tar in its first launch. To set up and run the container, you should:

    Build an image:

    $ cd ./database
    $ docker build --tag 'dabc-database' .
    $ docker image ls
    REPOSITORY  TAG    IMAGE ID    CREATED     SIZE
    dabc-database latest  b6f8af99c90d  50 minutes ago  18.5GB
    

    Create and enter inside the container:

    $ docker run -it --name dabc-database-1 dabc-database
    $ docker exec -it dabc-database-1 /bin/bash
    root# psql -U postgres -h localhost -d jupyter-notebooks
    jupyter-notebooks=# \dt
           List of relations
     Schema |    Name    | Type | Owner
    --------+-------------------+-------+-------
     public | Cell       | table | root
     public | Code_cell     | table | root
     public | Md_cell      | table | root
     public | Notebook     | table | root
     public | Notebook_features | table | root
     public | Notebook_metadata | table | root
     public | repository    | table | root
    

    If you got the tables list as above, your database is properly setup.

    It is important to mention that this database is extended from the one provided by Grotov et al.. Basically, we added three columns in the table Notebook_features (API_functions_calls, defined_functions_calls, andother_functions_calls) containing the function calls performed by each client in the database.

    Data Collection Setup

    This container is responsible for collecting the data to answer our research questions. It has the following structure:

    • dabcs.py, extract DABCs from Scikit Learn source code, and export them to a CSV file.
    • dabcs-clients.py, extract function calls from clients and export them to a CSV file. We rely on a modified version of Matroskin to leverage the function calls. You can find the tool's source code in the `matroskin`` directory.
    • Makefile, commands to set up and run both dabcs.py and dabcs-clients.py
    • matroskin, the directory containing the modified version of matroskin tool. We extended the library to collect the function calls performed on the client notebooks of Grotov's dataset.
    • storage, a docker volume where the data-collection should save the exported data. This data will be used later in Data Analysis.
    • requirements.txt, Python dependencies adopted in this module.

    Note that the container will automatically configure this module for you, e.g., install dependencies, configure matroskin, download scikit learn source code, etc. For this, you must run the following commands:

    $ cd ./data-collection
    $ docker build --tag "data-collection" .
    $ docker run -it -d --name data-collection-1 -v $(pwd)/:/data-collection -v $(pwd)/../storage/:/data-collection/storage/ data-collection
    $ docker exec -it data-collection-1 /bin/bash
    $ ls
    Dockerfile Makefile config.yml dabcs-clients.py dabcs.py matroskin storage requirements.txt utils.py
    

    If you see project files, it means the container is configured accordingly.

    Data Analysis Setup

    We use this container to conduct the analysis over the data produced by the Data Collection container. It has the following structure:

    • dependencies.R, an R script containing the dependencies used in our data analysis.
    • data-analysis.Rmd, the R notebook we used to perform our data analysis
    • datasets, a docker volume pointing to the storage directory.

    Execute the following commands to run this container:

    $ cd ./data-analysis
    $ docker build --tag "data-analysis" .
    $ docker run -it -d --name data-analysis-1 -v $(pwd)/:/data-analysis -v $(pwd)/../storage/:/data-collection/datasets/ data-analysis
    $ docker exec -it data-analysis-1 /bin/bash
    $ ls
    data-analysis.Rmd datasets dependencies.R Dockerfile figures Makefile
    

    If you see project files, it means the container is configured accordingly.

    A note on storage shared folder

    As mentioned, the storage folder is mounted as a volume and shared between data-collection and data-analysis containers. We compressed the content of this folder due to space constraints. Therefore, before starting working on Data Collection or Data Analysis, make sure you extracted the compressed files. You can do this by running the Makefile inside storage folder.

    $ make unzip # extract files
    $ ls
    clients-dabcs.csv clients-validation.csv dabcs.csv Makefile scikit-learn-versions.csv versions.csv
    $ make zip # compress files
    $ ls
    csv-files.tar.gz Makefile
  20. Data to Support the Development of Rapid GC-MS Methods for Seized Drug...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2023). Data to Support the Development of Rapid GC-MS Methods for Seized Drug Analysis [Dataset]. https://catalog.data.gov/dataset/data-to-support-the-development-of-rapid-gc-ms-methods-for-seized-drug-analysis
    Explore at:
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    This dataset contains raw datafiles that support the development of rapid gas chromatography mass spectrometry (GC-MS) methods for seized drug analysis. Files are provided in the native ".D" format collected from an Agilent GC-MS system. Files can be opened using Agilent proprietary software or freely available software such as AMDIS (which can be downloaded at chemdata.nist.gov). Included here is data of seized drug mixtures and adjudicated case samples that were analyzed as part of the method development process for rapid GC-MS. Information about the naming of datafiles and the contents of each mixture and case sample can be found in the associated Excel sheet ("File Names and Comments.xlsx").

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Monis Amir (2024). Coffee Shop Sales Analysis [Dataset]. https://www.kaggle.com/datasets/monisamir/coffee-shop-sales-analysis
Organization logo

Coffee Shop Sales Analysis

In my first Data Analytics Project, I Discover the secrets of a fictional coffee

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 25, 2024
Dataset provided by
Kaggle
Authors
Monis Amir
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Analyzing Coffee Shop Sales: Excel Insights 📈

In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕

DATA CLEANING 🧹

• REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.

• FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.

• CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.

DATA MANIPULATION 🛠️

• UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.

• IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.

• APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.

• CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.

PIVOTING THE DATA 𝄜

• CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.

• FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.

VISUALIZATION 📊

• KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.

• SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.

• PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.

• TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.

*I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.

While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.

THANKS TO: WsCube Tech Mo Chen Alex Freberg

TOOLS USED: Microsoft Excel

DataAnalytics #DataAnalyst #ExcelProject #DataVisualization #BusinessIntelligence #SalesAnalysis #DataAnalysis #DataDrivenDecisions

Search
Clear search
Close search
Google apps
Main menu