46 datasets found
  1. OpenStreetMap (Blueprint)

    • catalog.data.gov
    • gimi9.com
    • +11more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2024). OpenStreetMap (Blueprint) [Dataset]. https://catalog.data.gov/dataset/openstreetmap-blueprint-653c6
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  2. Working with Lidar Using ArcGIS Pro Book - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Working with Lidar Using ArcGIS Pro Book - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/working-with-lidar-using-arcgis-pro
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Lidar (light detection and ranging) imagery provides valuable information in the field of remote sensing, allowing users to determine elevation, vegetation structure, and terrain with remarkable levels of detail. This manual will lead ArcGIS Pro users through the tools and methods needed to access, process, and analyze lidar data through a series of step-by-step tutorials. By completing this series of tutorials, you will be able to: •Manipulate data to create maps and map templates in ArcGIS Pro •Obtain and display lidar imagery •Use ArcGIS Pro tools to process and analyze lidar data •Classify lidar points using different classification methods • Process lidar point clouds to create digital elevation models

  3. ArcGIS Pro for Student Use

    • teachwithgis.co.uk
    • teach-with-gis-uk-esriukeducation.hub.arcgis.com
    Updated Dec 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). ArcGIS Pro for Student Use [Dataset]. https://teachwithgis.co.uk/datasets/arcgis-pro-for-student-use
    Explore at:
    Dataset updated
    Dec 21, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    ArcGIS Pro is Esri's main desktop GIS software and it is easy to enable student to install and use it on their personal laptops. All you have to do is:set students up with an Esri Identity in ArcGIS Onlinepoint student at the video explaining how to download ArcGIS ProStudent logs into ArcGIS Pro using their identityLets go through those steps in a bit more detail.

  4. f

    Geomorphology model (ArcGIS Pro version), input datasets and legend...

    • uvaauas.figshare.com
    • data.niaid.nih.gov
    • +2more
    zip
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Geomorphology model (ArcGIS Pro version), input datasets and legend symbology files [Dataset]. http://doi.org/10.21942/uva.13693702.v20
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.

  5. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  6. r

    GIS database of archaeological remains on Samoa

    • researchdata.se
    • demo.researchdata.se
    • +1more
    Updated Dec 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olof Håkansson (2023). GIS database of archaeological remains on Samoa [Dataset]. http://doi.org/10.5878/003012
    Explore at:
    (10994657)Available download formats
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Uppsala University
    Authors
    Olof Håkansson
    Area covered
    Samoa
    Description

    Data set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.

    Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472

    Purpose:

    The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.

    Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia

  7. V

    PLACES: Census Tract Data (GIS Friendly Format), 2022 release

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: Census Tract Data (GIS Friendly Format), 2022 release [Dataset]. https://data.virginia.gov/dataset/places-census-tract-data-gis-friendly-format-2022-release
    Explore at:
    rdf, xsl, csv, jsonAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based census tract level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  8. D

    SDOT GIS Datasets

    • data.seattle.gov
    • cos-data.seattle.gov
    • +2more
    csv, xlsx, xml
    Updated May 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SDOT & Seattle ITD (2018). SDOT GIS Datasets [Dataset]. https://data.seattle.gov/widgets/jyjy-n3ap
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    May 8, 2018
    Dataset authored and provided by
    SDOT & Seattle ITD
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The City of Seattle Transportation GIS Datasets | https://data-seattlecitygis.opendata.arcgis.com/datasets?t=transportation | Lifecycle status: Production | Purpose: to enable open access to SDOT GIS data. This website includes over 60 transportation-related GIS datasets from categories such as parking, transit, pedestrian, bicycle, and roadway assets. | PDDL: https://opendatacommons.org/licenses/pddl/

    | The City of Seattle makes no representation or warranty as to its accuracy. The City of Seattle has created this service for our GIS Open Data website. We do reserve the right to alter, suspend, re-host, or retire this service at any time and without notice.

    | Datasets: 2007 Traffic Flow Counts, 2008 Traffic Flow Counts, 2009 Traffic Flow Counts, 2010 Traffic Flow Counts, 2011 Traffic Flow Counts, 2012 Traffic Flow Counts, 2013 Traffic Flow Counts, 2014 Traffic Flow Counts, 2015 Traffic Flow Counts, 2016 Traffic Flow Counts, 2017 Traffic Flow Counts, 2018 Traffic Flow Counts, Areaways, Bike Racks, Blockface, Bridges, Channelization File Geodatabase, Collisions, Crash Cushions, Curb Ramps, dotMaps Active Projects, Dynamic Message Signs, Existing Bike Facilities, Freight Network, Greater Downtown Alleys, Guardrails, High Impact Areas, Intersections, Marked Crosswalks, One-Way Streets, Paid Area Curbspaces, Pavement Moratoriums, Pay Stations, Peak Hour Parking Restrictions, Planned Bike Facilities, Public Garages or Parking Lots, Radar Speed Signs, Restricted Parking Zone (RPZ) Program, Retaining Walls, SDOT Capital Projects Input, Seattle On Street Paid Parking-Daytime Rates, Seattle On Street Paid Parking-Evening Rates, Seattle On Street Paid Parking-Morning Rates, Seattle Streets, SidewalkObservations, Sidewalks, Snow Ice Routes, Stairways, Street Design Concept Plans, Street Ends (Shoreline), Street Furnishings, Street Signs, Street Use Permits Use Addresses, Streetcar Lines, Streetcar Stations, Traffic Beacons, Traffic Cameras, Traffic Circles, Traffic Detectors, Traffic Lanes, Traffic Signals, Transit Classification, Trees.

  9. i07 Water Shortage Vulnerability Sections

    • data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i07 Water Shortage Vulnerability Sections [Dataset]. https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections
    Explore at:
    arcgis geoservices rest api, geojson, csv, html, zip, kmlAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents a water shortage vulnerability analysis performed by DWR using modified PLSS sections pulled from the Well Completion Report PLSS Section Summaries. The attribute table includes water shortage vulnerability indicators and scores from an analysis done by CA Department of Water Resources, joined to modified PLSS sections. Several relevant summary statistics from the Well Completion Reports are included in this table as well. This data is from the 2024 analysis.

    Water Code Division 6 Part 2.55 Section 8 Chapter 10 (Assembly Bill 1668) effectively requires California Department of Water Resources (DWR), in consultation with other agencies and an advisory group, to identify small water suppliers and “rural communities” that are at risk of drought and water shortage. Following legislation passed in 2021 and signed by Governor Gavin Newsom, the Water Code Division 6, Section 10609.50 through 10609.80 (Senate Bill 552 of 2021) effectively requires the California Department of Water Resources to update the scoring and tool periodically in partnership with the State Water Board and other state agencies. This document describes the indicators, datasets, and methods used to construct this deliverable.  This is a statewide effort to systematically and holistically consider water shortage vulnerability statewide of rural communities, focusing on domestic wells and state small water systems serving between 4 and 14 connections. The indicators and scoring methodology will be revised as better data become available and stake-holders evaluate the performance of the indicators, datasets used, and aggregation and ranking method used to aggregate and rank vulnerability scores. Additionally, the scoring system should be adaptive, meaning that our understanding of what contributes to risk and vulnerability of drought and water shortage may evolve. This understanding may especially be informed by experiences gained while navigating responses to future droughts.”

    A spatial analysis was performed on the 2020 Census Block Groups, modified PLSS sections, and small water system service areas using a variety of input datasets related to drought vulnerability and water shortage risk and vulnerability. These indicator values were subsequently rescaled and summed for a final vulnerability score for the sections and small water system service areas. The 2020 Census Block Groups were joined with ACS data to represent the social vulnerability of communities, which is relevant to drought risk tolerance and resources. These three feature datasets contain the units of analysis (modified PLSS sections, block groups, small water systems service areas) with the model indicators for vulnerability in the attribute table. Model indicators are calculated for each unit of analysis according to the Vulnerability Scoring documents provided by Julia Ekstrom (Division of Regional Assistance).

    All three feature classes are DWR analysis zones that are based off existing GIS datasets. The spatial data for the sections feature class is extracted from the Well Completion Reports PLSS sections to be aligned with the work and analysis that SGMA is doing. These are not true PLSS sections, but a version of the projected section lines in areas where there are gaps in PLSS. The spatial data for the Census block group feature class is downloaded from the Census. ACS (American Communities Survey) data is joined by block group, and statistics calculated by DWR have been added to the attribute table. The spatial data for the small water systems feature class was extracted from the State Water Resources Control Board (SWRCB) SABL dataset, using a definition query to filter for active water systems with 3000 connections or less. None of these datasets are intended to be the authoritative datasets for representing PLSS sections, Census block groups, or water service areas. The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR.

    These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the Drought and Water Shortage Vulnerability Scoring: California's Domestic Wells and State Smalls Systems documentation for more information on indicators and scoring. These estimated indicator scores may sometimes be calculated in several different ways, or may have been calculated from data that has since be updated. Counts of domestic wells may be calculated in different ways. In order to align with DWR SGMO's (State Groundwater Management Office) California Groundwater Live dashboards, domestic wells were calculated using the same query. This includes all domestic wells in the Well Completion Reports dataset that are completed after 12/31/1976, and have a 'RecordType' of 'WellCompletion/New/Production or Monitoring/NA'.

    Please refer to the Well Completion Reports metadata for more information. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data.

    DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  10. e

    World - Diffuse Horizontal Irradiation (DIF) GIS Data, (Global Solar Atlas)...

    • energydata.info
    Updated Nov 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - Diffuse Horizontal Irradiation (DIF) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-diffuse-horizontal-irradiation-dif-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains diffuse horizontal irradiation (DIF) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: DIF LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 198.94 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  11. V

    PLACES: ZCTA Data (GIS Friendly Format), 2022 release

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: ZCTA Data (GIS Friendly Format), 2022 release [Dataset]. https://data.virginia.gov/dataset/places-zcta-data-gis-friendly-format-2022-release
    Explore at:
    csv, json, xsl, rdfAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  12. a

    BLM Natl MLRS Mining Claims - Not Closed

    • gbp-blm-egis.hub.arcgis.com
    • catalog.data.gov
    Updated Sep 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2020). BLM Natl MLRS Mining Claims - Not Closed [Dataset]. https://gbp-blm-egis.hub.arcgis.com/datasets/BLM-EGIS::blm-natl-mlrs-mining-claims-not-closed
    Explore at:
    Dataset updated
    Sep 11, 2020
    Dataset authored and provided by
    Bureau of Land Management
    Area covered
    Description

    This dataset contains mining claim cases with the case disposition (status) of anything other than closed from US Bureau of Land Management's, BLM, Mineral and Land Record System(MLRS). The BLM only requires that mining claims be identified down to the affected quarter section(s)—as such, that is what the MLRS research map and public reports will reflect, most commonly. Claim boundaries, as staked and monumented, are found in the accepted Notice/Certificate of Location as part of the official case file, managed by the BLM State Office having jurisdiction over the claim.The geometries are created in multiple ways but are primarily derived from Legal Land Descriptions (LLD) for the case and geocoded (mapped) using the Public Land Survey System (PLSS) derived from the most accurate survey data available through BLM Cadastral Survey workforce. Geospatial representations might be missing for some cases that can not be geocoded using the MLRS algorithm. Each case is given a data quality score based on how well it mapped. These can be lumped into seven groups to provide a simplified way to understand the scores. Group 1: Direct PLSS Match. Scores “0”, “1”, “2”, “3” should all have a match to the PLSS data. There are slight differences, but the primary expectation is that these match the PLSS. Group 2: Calculated PLSS Match. Scores “4”, “4.1”, “5”, “6”, “7” and “8” were generated through a process of creating the geometry that is not a direct capture from the PLSS. They represent a best guess based on the underlining PLSS Group 3 – Mapped to Section. Score of “8.1”, “8.2”, “8.3”, “9” and “10” are mapped to the Section for various reasons (refer to log information in data quality field). Group 4- Combination of mapped and unmapped areas. Score of 15 represents a case that has some portions that would map and others that do not. Group 5 – No NLSDB Geometry, Only Attributes. Scores “11”, “12”, “20”, “21” and “22” do not have a match to the PLSS and no geometry is in the NLSDB, and only attributes exist in the data. Group 6 – Mapped to County. Scores of “25” map to the County. Group 7 – Improved Geometry. Scores of “100” are cases that have had their geometry edited by BLM staff using ArcGIS Pro or MLRS bulk upload tool.

  13. h

    County Parks (Hawaii County)

    • geoportal.hawaii.gov
    • opendata.hawaii.gov
    • +3more
    Updated May 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2023). County Parks (Hawaii County) [Dataset]. https://geoportal.hawaii.gov/datasets/2deea5c799a749dc852973849cae3492
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Parks, open spaces and outdoor recreational facilities managed and maintained by the County of Hawaii. Dataset created by the Department of Research and Development; received by the Hawaii Statewide GIS Program March 2023. This dataset features Parks and Recreation locations on Hawaii Island. In addition to location, the data set attribute features information about the 2022 Summer Fun Program locations, types of activities, and tabulation of number of people for each activity, Note: Parks locations joined with dataset: TMK Parcel Boundaries for the County of Hawaii as of April, 2022. Source: County of Hawaii.The parcel boundaries are intended to provide a visual reference only and do not represent legal or survey level accuracy. Attributes are for assessment purposes only and are subject to change at any time.For additional information, including attribute information, please refer to metadata at https://files.hawaii.gov/dbedt/op/gis/data/parks_county_haw.pdf or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  14. World Continents

    • hub.arcgis.com
    • rwanda.africageoportal.com
    • +1more
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). World Continents [Dataset]. https://hub.arcgis.com/datasets/esri::world-continents/about
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Continents represents the boundaries for the continents of the world.This layer is best viewed out beyond a maximum scale (zoomed in) of 1:3,000,000. The sources of this dataset are Esri, Global Mapping International (GMI), U.S. Central Intelligence Agency (The World Factbook), and Garmin. It is updated as country boundaries coincident to continental boundaries change. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Continents.

  15. M

    Metro Regional Parcel Dataset - (Updated Quarterly)

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2025). Metro Regional Parcel Dataset - (Updated Quarterly) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regional-parcels
    Explore at:
    gpkg, fgdb, html, shp, ags_mapserver, jpegAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    MetroGIS
    Description

    This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.

    This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
    https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    See section 5 of the metadata for an attribute summary.

    Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    This is a MetroGIS Regionally Endorsed dataset.

    Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.

    Anoka = http://www.anokacounty.us/315/GIS
    Caver = http://www.co.carver.mn.us/GIS
    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
    Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
    Scott = http://opendata.gis.co.scott.mn.us/
    Washington: http://www.co.washington.mn.us/index.aspx?NID=1606

  16. c

    Wildlife Corridors - San Joaquin Valley [ds423] GIS Dataset

    • map.dfg.ca.gov
    Updated Jun 9, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2009). Wildlife Corridors - San Joaquin Valley [ds423] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds0423.html
    Explore at:
    Dataset updated
    Jun 9, 2009
    Area covered
    San Joaquin Valley
    Description

    CDFW BIOS GIS Dataset, Contact: Patrick Huber, Description: Potential corridors were identified using a modified version of the least cost corridor ArcMap tool. This tool identifies a connectivity surface rather than single line - we then selected the highest rated raster cells from the resulting surfaces and converted them to polygons. The model included current land cover and management, road density, urban area density, natural area density, waterway density, and a surface of three broad suites of species - forest, open/shrub, and aquatic/riparian.

  17. d

    Digital Geologic-GIS Map of Eisenhower National Historic Site, Pennsylvania...

    • datasets.ai
    • catalog.data.gov
    33, 57
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). Digital Geologic-GIS Map of Eisenhower National Historic Site, Pennsylvania (NPS, GRD, GRI, GETT, EISE, EISE digital map) adapted from a U.S. Geological Survey Geologic Atlas of the United States Folio map by Stose and Bascom (1929) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-eisenhower-national-historic-site-pennsylvania-nps-grd-gri-get
    Explore at:
    33, 57Available download formats
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Pennsylvania, United States
    Description

    The Digital Geologic-GIS Map of Eisenhower National Historic Site, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (eise_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (eise_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (eise_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (gett_eise_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (gett_eise_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (eise_geology_metadata_faq.pdf). Please read the gett_eise_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (eise_geology_metadata.txt or eise_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. World Cities

    • hub.arcgis.com
    • data.lojic.org
    • +4more
    Updated Jun 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). World Cities [Dataset]. https://hub.arcgis.com/datasets/esri::world-cities
    Explore at:
    Dataset updated
    Jun 30, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Cities provides a basemap layer for the cities of the world. The cities include national capitals, provincial capitals, major population centers, and landmark cities. Population estimates are provided for those cities listed in open source data from the United Nations Statistics Division, United Nations Human Settlements Programme, and U.S. Census Bureau.

  19. c

    California Fish Passage Assessment Database [ds69] GIS Dataset

    • map.dfg.ca.gov
    Updated Sep 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). California Fish Passage Assessment Database [ds69] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds0069.html
    Explore at:
    Dataset updated
    Sep 30, 2019
    Area covered
    California
    Description

    CDFW BIOS GIS Dataset, Contact: Anne Elston, Description: The Passage Assessment Database (PAD) is an ongoing inventory of known and possible barriers to anadromous fish in California. It compiles currently available fish passage information from more than 100 data sources, and allows past and future barrier assessments to be standardized and stored in one place. It is to be used to identify barriers suitable for removal or modification to restore spawning and riparian habitat for salmon and steelhead, and to enhance aquatic and riparian habitat.

  20. a

    Connecticut 3D Lidar Viewer

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    Updated Jan 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 8, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2024). OpenStreetMap (Blueprint) [Dataset]. https://catalog.data.gov/dataset/openstreetmap-blueprint-653c6
Organization logo

OpenStreetMap (Blueprint)

Explore at:
Dataset updated
Jun 8, 2024
Dataset provided by
Esrihttp://esri.com/
Description

This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

Search
Clear search
Close search
Google apps
Main menu