100+ datasets found
  1. i

    CAN-Modes: In-vehicle datasets in different driving situations

    • ieee-dataport.org
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Roque (2025). CAN-Modes: In-vehicle datasets in different driving situations [Dataset]. https://ieee-dataport.org/documents/can-modes-vehicle-datasets-different-driving-situations
    Explore at:
    Dataset updated
    Jan 2, 2025
    Authors
    Alexandre Roque
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    safety

  2. P

    SLTrans Dataset

    • paperswithcode.com
    • huggingface.co
    Updated Mar 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Indraneil Paul; Goran Glavaš; Iryna Gurevych (2024). SLTrans Dataset [Dataset]. https://paperswithcode.com/dataset/sltrans
    Explore at:
    Dataset updated
    Mar 7, 2024
    Authors
    Indraneil Paul; Goran Glavaš; Iryna Gurevych
    Description

    The dataset consists of source code and LLVM IR pairs generated from accepted and de-duped programming contest solutions. The dataset is divided into language configs and mode splits. The language can be one of C, C++, D, Fortran, Go, Haskell, Nim, Objective-C, Python, Rust and Swift, indicating the source files' languages. The mode split indicates the compilation mode, which can be wither Size_Optimized or Perf_Optimized.

  3. Zero Modes and Classification of Combinatorial Metamaterials

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan van Mastrigt; Ryan van Mastrigt; Marjolein Dijkstra; Marjolein Dijkstra; Martin van Hecke; Martin van Hecke; Corentin Coulais; Corentin Coulais (2022). Zero Modes and Classification of Combinatorial Metamaterials [Dataset]. http://doi.org/10.5281/zenodo.7070963
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 8, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ryan van Mastrigt; Ryan van Mastrigt; Marjolein Dijkstra; Marjolein Dijkstra; Martin van Hecke; Martin van Hecke; Corentin Coulais; Corentin Coulais
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the simulation data of the combinatorial metamaterial as used for the paper 'Machine Learning of Implicit Combinatorial Rules in Mechanical Metamaterials', as published in Physical Review Letters.

    In this paper, the data is used to classify each \(k \times k\) unit cell design into one of two classes (C or I) based on the scaling (linear or constant) of the number of zero modes \(M_k(n)\) for metamaterials consisting of an \(n\times n\) tiling of the corresponding unit cell. Additionally, a random walk through the design space starting from class C unit cells was performed to characterize the boundary between class C and I in design space. A more detailed description of the contents of the dataset follows below.

    Modescaling_raw_data.zip

    This file contains uniformly sampled unit cell designs for metamaterial M2 and \(M_k(n)\) for \(1\leq n\leq 4\), which was used to classify the unit cell designs for the data set. There is a small subset of designs for \(k=\{3, 4, 5\}\) that do not neatly fall into the class C and I classification, and instead require additional simulation for \(4 \leq n \leq 6\) before either saturating to a constant number of zero modes (class I) or linearly increasing (class C). This file contains the simulation data of size \(3 \leq k \leq 8\) unit cells. The data is organized as follows.

    Simulation data for \(3 \leq k \leq 5\) and \(1 \leq n \leq 4\) is stored in numpy array format (.npy) and can be readily loaded in Python with the Numpy package using the numpy.load command. These files are named "data_new_rrQR_i_n_M_kxk_fixn4.npy", and contain a [Nsim, 1+k*k+4] sized array, where Nsim is the number of simulated unit cells. Each row corresponds to a unit cell. The columns are organized as follows:

    • col 0: label number to keep track
    • col 1 - k*k+1: flattened unit cell design, numpy.reshape should bring it back to its original \(k \times k\) form.
    • col k*k+1 - k*k+5: number of zero modes \(M_k(n)\) in ascending order of \(n\), so: \(\{M_k(1), M_k(2), M_k(3), M_k(4)\}\).

    Note: the unit cell design uses the numbers \(\{0, 1, 2, 3\}\) to refer to each building block orientation. The building block orientations can be characterized through the orientation of the missing diagonal bar (see Fig. 2 in the paper), which can be Left Up (LU), Left Down (LD), Right Up (RU), or Right Down (RD). The numbers correspond to the building block orientation \(\{0, 1, 2, 3\} = \{\mathrm{LU, RU, RD, LD}\}\).

    Simulation data for \(3 \leq k \leq 5\) and \(1 \leq n \leq 6\) for unit cells that cannot be classified as class C or I for \(1 \leq n \leq 4\) is stored in numpy array format (.npy) and can be readily loaded in Python with the Numpy package using the numpy.load command. These files are named "data_new_rrQR_i_n_M_kxk_fixn4_classX_extend.npy", and contain a [Nsim, 1+k*k+6] sized array, where Nsim is the number of simulated unit cells. Each row corresponds to a unit cell. The columns are organized as follows:

    • col 0: label number to keep track
    • col 1 - k*k+1: flattened unit cell design, numpy.reshape should bring it back to its original \(k \times k\) form.
    • col k*k+1 - k*k+5: number of zero modes \(M_k(n)\) in ascending order of \(n\), so: \(\{M_k(1), M_k(2), M_k(3), M_k(4), M_k(5), M_k(6)\}\).

    Simulation data for \(6 \leq k \leq 8\) unit cells are stored in numpy array format (.npy) and can be readily loaded in Python with the Numpy package using the numpy.load command. Note that the number of modes is now calculated for \(n_x \times n_y\) metamaterials, where we calculate \((n_x, n_y) = \{(1,1), (2, 2), (3, 2), (4,2), (2, 3), (2, 4)\}\) rather than \(n_x=n_y=n\) to save computation time. These files are named "data_new_rrQR_i_n_Mx_My_n4_kxk(_extended).npy", and contain a [Nsim, 1+k*k+8] sized array, where Nsim is the number of simulated unit cells. Each row corresponds to a unit cell. The columns are organized as follows:

    • col 0: label number to keep track
    • col 1 - k*k+1: flattened unit cell design, numpy.reshape should bring it back to its original \(k \times k\) form.
    • col k*k+1 - k*k+9: number of zero modes \(M_k(n_x, n_y)\) in order: \(\{M_k(1, 1), M_k(2, 2), M_k(3, 2), M_k(4, 2), M_k(1, 1), M_k(2, 2), M_k(2, 3), M_k(2, 4)\}\).

    Simulation data of metamaterial M1 for \(k_x \times k_y\) metamaterials are stored in compressed numpy array format (.npz) and can be loaded in Python with the Numpy package using the numpy.load command. These files are named "smiley_cube_x_y_\(k_x\)x\(k_y\).npz", which contain all possible metamaterial designs, and "smiley_cube_uniform_sample_x_y_\(k_x\)x\(k_y\).npz", which contain uniformly sampled metamaterial designs. The configurations are accessed with the keyword argument 'configs'. The classification is accessed with the keyword argument 'compatible'. The configurations array is of shape [Nsim, \(k_x\), \(k_y\)], the classification array is of shape [Nsim]. The building blocks in the configuration are denoted by 0 or 1, which correspond to the red/green and white/dashed building blocks respectively. Classification is 0 or 1, which corresponds to I and C respectively.

    Modescaling_classification_results.zip

    This file contains the classification, slope, and offset of the scaling of the number of zero modes \(M_k(n)\) for the unit cells of metamaterial M2 in Modescaling_raw_data.zip. The data is organized as follows.

    The results for \(3 \leq k \leq 5\) based on the \(1 \leq n \leq 4\) mode scaling data is stored in "results_analysis_new_rrQR_i_Scen_slope_offset_M1k_kxk_fixn4.txt". The data can be loaded using ',' as delimiter. Every row corresponds to a unit cell design (see the label number to compare to the earlier data). The columns are organized as follows:

    col 0: label number to keep track

    col 1: the class, where 0 corresponds to class I, 1 to class C and 2 to class X (neither class I or C for \(1 \leq n \leq 4\))

    col 2: slope from \(n \geq 2\) onward (undefined for class X)

    col 3: the offset is defined as \(M_k(2) - 2 \cdot \mathrm{slope}\)

    col 4: \(M_k(1)\)

    The results for \(3 \leq k \leq 5\) based on the extended \(1 \leq n \leq 6\) mode scaling data is stored in "results_analysis_new_rrQR_i_Scen_slope_offset_M1k_kxk_fixn4_classC_extend.txt". The data can be loaded using ',' as delimiter. Every row corresponds to a unit cell design (see the label number to compare to the earlier data). The columns are organized as follows:

    col 0: label number to keep track

    col 1: the class, where 0 corresponds to class I, 1 to class C and 2 to class X (neither class I or C for \(1 \leq n \leq 6\))

    col 2: slope from \(n \geq 2\) onward (undefined for class X)

    col 3: the offset is defined as \(M_k(2) - 2 \cdot \mathrm{slope}\)

    col 4: \(M_k(1)\)

    The results for \(6 \leq k \leq 8\) based on the \(1 \leq n \leq 4\) mode scaling data is stored in "results_analysis_new_rrQR_i_Scenx_Sceny_slopex_slopey_offsetx_offsety_M1k_kxk(_extended).txt". The data can be loaded using ',' as delimiter. Every row corresponds to a unit cell design (see the label number to compare to the earlier data). The columns are organized as follows:

    col 0: label number to keep track

    col 1: the class_x based on \(M_k(n_x, 2)\), where 0 corresponds to class I, 1 to class C and 2 to class X (neither class I or C for \(1 \leq n_x \leq 4\))

    col 2: the class_y based on \(M_k(2, n_y)\), where 0 corresponds to class I, 1 to class C and 2 to class X (neither class I or C for \(1 \leq n_y \leq 4\))

    col 3: slope_x from \(n_x \geq 2\) onward (undefined for class X)

    col 4: slope_y from \(n_y \geq 2\) onward (undefined for class X)

    col 5: the offset_x is defined as \(M_k(2, 2) - 2 \cdot \mathrm{slope_x}\)

    col 6: the offset_x is defined as \(M_k(2, 2) - 2 \cdot \mathrm{slope_y}\)

    col 7: (M_k(1,

  4. R

    Harvesting Mode Dataset

    • universe.roboflow.com
    zip
    Updated Mar 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maher (2022). Harvesting Mode Dataset [Dataset]. https://universe.roboflow.com/maher-9tnii/harvesting-mode
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 19, 2022
    Dataset authored and provided by
    Maher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Tomatoes Bounding Boxes
    Description

    Harvesting Mode

    ## Overview
    
    Harvesting Mode is a dataset for object detection tasks - it contains Tomatoes annotations for 1,575 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. d

    Strategic Measures_Percent split of modes based on commute to work

    • catalog.data.gov
    • data.austintexas.gov
    • +2more
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Strategic Measures_Percent split of modes based on commute to work [Dataset]. https://catalog.data.gov/dataset/strategic-measures-percent-split-of-modes-based-on-commute-to-work
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    This dataset supports measure M.A.1 of SD 2023. The source of the data is the American Community Survey. Each row is the five year estimate for Means of Transportation to Work for Austin. This dataset can be used to gain insight into the estimated mode split for the commute to work in Austin. View more details and insights related to this measure on the story page: https://data.austintexas.gov/stories/s/hm3r-8jfy

  6. Explainable AI (XAI) Drilling Dataset

    • kaggle.com
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raphael Wallsberger (2023). Explainable AI (XAI) Drilling Dataset [Dataset]. https://www.kaggle.com/datasets/raphaelwallsberger/xai-drilling-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Raphael Wallsberger
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is part of the following publication at the TransAI 2023 conference: R. Wallsberger, R. Knauer, S. Matzka; "Explainable Artificial Intelligence in Mechanical Engineering: A Synthetic Dataset for Comprehensive Failure Mode Analysis" DOI: http://dx.doi.org/10.1109/TransAI60598.2023.00032

    This is the original XAI Drilling dataset optimized for XAI purposes and it can be used to evaluate explanations of such algortihms. The dataset comprises 20,000 data points, i.e., drilling operations, stored as rows, 10 features, one binary main failure label, and 4 binary subgroup failure modes, stored in columns. The main failure rate is about 5.0 % for the whole dataset. The features that constitute this dataset are as follows:

    • ID: Every data point in the dataset is uniquely identifiable, thanks to the ID feature. This ensures traceability and easy referencing, especially when analyzing specific drilling scenarios or anomalies.
    • Cutting speed vc (m/min): The cutting speed is a pivotal parameter in drilling, influencing the efficiency and quality of the drilling process. It represents the speed at which the drill bit's cutting edge moves through the material.
    • Spindle speed n (1/min): This feature captures the rotational speed of the spindle or drill bit, respectively.
    • Feed f (mm/rev): Feed denotes the depth the drill bit penetrates into the material with each revolution. There is a balance between speed and precision, with higher feeds leading to faster drilling but potentially compromising hole quality.
    • Feed rate vf (mm/min): The feed rate is a measure of how quickly the material is fed to the drill bit. It is a determinant of the overall drilling time and influences the heat generated during the process.
    • Power Pc (kW): The power consumption during drilling can be indicative of the efficiency of the process and the wear state of the drill bit.
    • Cooling (%): Effective cooling is paramount in drilling, preventing overheating and reducing wear. This ordinal feature captures the cooling level applied, with four distinct states representing no cooling (0%), partial cooling (25% and 50%), and high to full cooling (75% and 100%).
    • Material: The type of material being drilled can significantly influence the drilling parameters and outcomes. This dataset encompasses three primary materials: C45K hot-rolled heat-treatable steel (EN 1.0503), cast iron GJL (EN GJL-250), and aluminum-silicon (AlSi) alloy (EN AC-42000), each presenting its unique challenges and considerations. The three materials are represented as “P (Steel)” for C45K, “K (Cast Iron)” for cast iron GJL and “N (Non-ferrous metal)” for AlSi alloy.
    • Drill Bit Type: Different materials often require specialized drill bits. This feature categorizes the type of drill bit used, ensuring compatibility with the material and optimizing the drilling process. It consists of three categories, which are based on the DIN 1836: “N” for C45K, “H” for cast iron and “W” for AlSi alloy [5].
    • Process time t (s): This feature captures the full duration of each drilling operation, providing insights into efficiency and potential bottlenecks.

    • Main failure: This binary feature indicates if any significant failure on the drill bit occurred during the drilling process. A value of 1 flags a drilling process that encountered issues, which in this case is true when any of the subgroup failure modes are 1, while 0 indicates a successful drilling operation without any major failures.

    Subgroup failures: - Build-up edge failure (215x): Represented as a binary feature, a build-up edge failure indicates the occurrence of material accumulation on the cutting edge of the drill bit due to a combination of low cutting speeds and insufficient cooling. A value of 1 signifies the presence of this failure mode, while 0 denotes its absence. - Compression chips failure (344x): This binary feature captures the formation of compressed chips during drilling, resulting from the factors high feed rate, inadequate cooling and using an incompatible drill bit. A value of 1 indicates the occurrence of at least two of the three factors above, while 0 suggests a smooth drilling operation without compression chips. - Flank wear failure (278x): A binary feature representing the wear of the drill bit's flank due to a combination of high feed rates and low cutting speeds. A value of 1 indicates significant flank wear, affecting the drilling operation's accuracy and efficiency, while 0 denotes a wear-free operation. - Wrong drill bit failure (300x): As a binary feature, it indicates the use of an inappropriate drill bit for the material being drilled. A value of 1 signifies a mismatch, leading to potential drilling issues, while 0 indicates the correct drill bit usage.

  7. D

    2022 - 2023 NTD Annual Data - Employees (by Mode and Employee Type)

    • data.transportation.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Transit Administration (2024). 2022 - 2023 NTD Annual Data - Employees (by Mode and Employee Type) [Dataset]. https://data.transportation.gov/Public-Transit/2022-2023-NTD-Annual-Data-Employees-by-Mode-and-Em/uyv8-9jek
    Explore at:
    csv, json, application/rdfxml, tsv, xml, application/rssxmlAvailable download formats
    Dataset updated
    Dec 16, 2024
    Dataset authored and provided by
    Federal Transit Administration
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset contains data on transit agency employees as reported to the National Transit Database in the 2022 and 2023 report years. It is organized by agency, mode, type of service, and Employee Type (Full Time or Part Time Employee).

    The NTD Data Tables organize and summarize data from the 2022 and 2023 National Transit Database in a manner that is more useful for quick reference and summary analysis

    This dataset is based on the 2022 and 2023 Employees database files, which are published to the NTD at https://transit.dot.gov/ntd/ntd-data.

    Only Full Reporters report data on employees, and only for Directly Operated modes. Other reporter types, and Purchased Transportation service, do not appear in this file.

  8. d

    2022 - 2023 NTD Annual Data - Service (by Mode and Time Period)

    • catalog.data.gov
    • data.transportation.gov
    • +2more
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Transit Administration (2025). 2022 - 2023 NTD Annual Data - Service (by Mode and Time Period) [Dataset]. https://catalog.data.gov/dataset/service-flat-file
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    Federal Transit Administration
    Description

    This represents the Service data reported to the NTD by transit agencies to the NTD. In versions of the data tables from before 2014, you can find data on service in the file called "Transit Operating Statistics: Service Supplied and Consumed." If you have any other questions about this table, please contact the NTD Help Desk at NTDHelp@dot.gov.

  9. Means of Transportation to Work

    • catalog.data.gov
    • data-usdot.opendata.arcgis.com
    • +1more
    Updated Dec 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Transportation Statistics (BTS) (Point of Contact) (2024). Means of Transportation to Work [Dataset]. https://catalog.data.gov/dataset/means-of-transportation-to-work2
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Bureau of Transportation Statisticshttp://www.rita.dot.gov/bts
    Description

    The Means of Transportation to Work dataset was compiled using information from December 31, 2023 and updated December 12, 2024 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Means of Transportation to Work table from the 2023 American Community Survey (ACS) 5-year estimates was joined to 2023 tract-level geographies for all 50 States, District of Columbia and Puerto Rico provided by the Census Bureau. A new file was created that combines the demographic variables from the former with the cartographic boundaries of the latter. The national level census tract layer contains data on the number and percentage of commuters (workers 16 years and over) that used various transportation modes to get to work.

  10. Mode of travel

    • gov.uk
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2025). Mode of travel [Dataset]. https://www.gov.uk/government/statistical-data-sets/nts03-modal-comparisons
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Transport
    Description

    Accessible Tables and Improved Quality

    As part of the Analysis Function Reproducible Analytical Pipeline Strategy, processes to create all National Travel Survey (NTS) statistics tables have been improved to follow the principles of Reproducible Analytical Pipelines (RAP). This has resulted in improved efficiency and quality of NTS tables and therefore some historical estimates have seen very minor change, at least the fifth decimal place.

    All NTS tables have also been redesigned in an accessible format where they can be used by as many people as possible, including people with an impaired vision, motor difficulties, cognitive impairments or learning disabilities and deafness or impaired hearing.

    If you wish to provide feedback on these changes then please email national.travelsurvey@dft.gov.uk.

    Revision to table NTS9919

    On the 16th April 2025, the figures in table NTS9919 have been revised and recalculated to include only day 1 of the travel diary where short walks of less than a mile are recorded (from 2017 onwards), whereas previous versions included all days. This is to more accurately capture the proportion of trips which include short walks before a surface rail stage. This revision has resulted in fewer available breakdowns than previously published due to the smaller sample sizes.

    Trips, stages, distance and time spent travelling

    NTS0303: https://assets.publishing.service.gov.uk/media/66ce0f118e33f28aae7e1f75/nts0303.ods">Average number of trips, stages, miles and time spent travelling by mode: England, 2002 onwards (ODS, 53.9 KB)

    NTS0308: https://assets.publishing.service.gov.uk/media/66ce0f128e33f28aae7e1f76/nts0308.ods">Average number of trips and distance travelled by trip length and main mode; England, 2002 onwards (ODS, 191 KB)

    NTS0312: https://assets.publishing.service.gov.uk/media/66ce0f12bc00d93a0c7e1f71/nts0312.ods">Walks of 20 minutes or more by age and frequency: England, 2002 onwards (ODS, 35.1 KB)

    NTS0313: https://assets.publishing.service.gov.uk/media/66ce0f12bc00d93a0c7e1f72/nts0313.ods">Frequency of use of different transport modes: England, 2003 onwards (ODS, 27.1 KB)

    NTS0412: https://assets.publishing.service.gov.uk/media/66ce0f1325c035a11941f653/nts0412.ods">Commuter trips and distance by employment status and main mode: England, 2002 onwards (ODS, 53.8 KB)

    NTS0504: https://assets.publishing.service.gov.uk/media/66ce0f141aaf41b21139cf7d/nts0504.ods">Average number of trips by day of the week or month and purpose or main mode: England, 2002 onwards (ODS, 141 KB)

    <h2 id=

  11. P

    2DeteCT Dataset

    • paperswithcode.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maximilian B. Kiss; Sophia B. Coban; K. Joost Batenburg; Tristan van Leeuwen; Felix Lucka (2023). 2DeteCT Dataset [Dataset]. https://paperswithcode.com/dataset/2detect
    Explore at:
    Dataset updated
    Sep 20, 2023
    Authors
    Maximilian B. Kiss; Sophia B. Coban; K. Joost Batenburg; Tristan van Leeuwen; Felix Lucka
    Description

    Maximilian B. Kiss, Sophia B. Coban, K. Joost Batenburg, Tristan van Leeuwen, and Felix Lucka "2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning", Sci Data 10, 576 (2023) or arXiv:2306.05907 (2023)

    Abstract: "Recent research in computational imaging largely focuses on developing machine learning (ML) techniques for image reconstruction, which requires large-scale training datasets consisting of measurement data and ground-truth images. However, suitable experimental datasets for X-ray Computed Tomography (CT) are scarce, and methods are often developed and evaluated only on simulated data. We fill this gap by providing the community with a versatile, open 2D fan-beam CT dataset suitable for developing ML techniques for a range of image reconstruction tasks. To acquire it, we designed a sophisticated, semi-automatic scan procedure that utilizes a highly-flexible laboratory X-ray CT setup. A diverse mix of samples with high natural variability in shape and density was scanned slice-by-slice (5000 slices in total) with high angular and spatial resolution and three different beam characteristics: A high-fidelity, a low-dose and a beam-hardening-inflicted mode. In addition, 750 out-of-distribution slices were scanned with sample and beam variations to accommodate robustness and segmentation tasks. We provide raw projection data, reference reconstructions and segmentations based on an open-source data processing pipeline."

    The data collection has been acquired using a highly flexible, programmable and custom-built X-ray CT scanner, the FleX-ray scanner, developed by TESCAN-XRE NV, located in the FleX-ray Lab at the Centrum Wiskunde & Informatica (CWI) in Amsterdam, Netherlands. It consists of a cone-beam microfocus X-ray point source (limited to 90 kV and 90 W) that projects polychromatic X-rays onto a 14-bit CMOS (complementary metal-oxide semiconductor) flat panel detector with CsI(Tl) scintillator (Dexella 1512NDT) and 1536-by-1944 pixels, each. To create a 2D dataset, a fan-beam geometry was mimicked by only reading out the central row of the detector. Between source and detector there is a rotation stage, upon which samples can be mounted. The machine components (i.e., the source, the detector panel, and the rotation stage) are mounted on translation belts that allow the moving of the components independently from one another.

    Please refer to the paper for all further technical details.

    The complete data collection can be found via the following links: 1-1,000, 1,001-2,000, 2,001-3,000, 3,001-4,000, 4,001-5,000, 5,521-6,370.

    Each slice folder ‘slice00001 - slice05000’ and ‘slice05521 - slice06370’ contains three folders for each mode: ‘mode1’, ‘mode2’, ‘mode3’. In each of these folders there are the sinogram, the dark-field, and the two flat-fields for the raw data archives, or just the reconstructions and for mode2 the additional reference segmentation.

    The corresponding reference reconstructions and segmentations can be found via the following links: 1-1,000, 1,001-2,000, 2,001-3,000, 3,001-4,000, 4,001-5,000, 5,521-6,370.

    The corresponding Python scripts for loading, pre-processing, reconstructing and segmenting the projection data in the way described in the paper can be found on github. A machine-readable file with the used scanning parameters and instrument data for each acquisition mode as well as a script loading it can be found on the GitHub repository as well.

    Note: It is advisable to use the graphical user interface when decompressing the .zip archives. If you experience a zipbomb error when unzipping the file on a Linux system rerun the command with the UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE environment variable by setting in your .bashrc “export UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE”.

    For more information or guidance in using the data collection, please get in touch with

    Maximilian.Kiss [at] cwi.nl

    Felix.Lucka [at] cwi.nl

  12. ModE-Sim - A medium size AGCM ensemble to study climate variability during...

    • wdc-climate.de
    Updated Mar 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hand, Ralf; Brönnimann, Stefan; Samakinwa, Eric; Lipfert, Laura (2023). ModE-Sim - A medium size AGCM ensemble to study climate variability during the modern era (1420 to 2009): Set 1420-1: forcings [Dataset]. https://www.wdc-climate.de/ui/entry?acronym=ModE-Sim_s14201_forc
    Explore at:
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    World Data Centerhttp://www.icsu-wds.org/
    Authors
    Hand, Ralf; Brönnimann, Stefan; Samakinwa, Eric; Lipfert, Laura
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1420 - Dec 31, 1900
    Area covered
    Earth
    Variables measured
    sea_ice_area_fraction, sea_surface_temperature
    Description

    This dataset provides the forcings and boundary conditions used for ModE-Sim Set 1420-1. The output for the individual ensemble members, and ensemble statistics can be found in the other datasets within this dataset group. Information on the experiment design and the variables included in this dataset can be found in the experiment summary and the additional information provided with it. Example run scripts of the simulations can be found in second additional info file at the experiment level. For a detailed description of the ModE-Sim please refer to the documentation paper (reference provided in the summary at the experiment level).

  13. d

    Transportation to Work

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Transportation to Work [Dataset]. https://catalog.data.gov/dataset/transportation-to-work-5006f
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  14. NewsMediaBias-Plus Dataset

    • zenodo.org
    • huggingface.co
    bin, zip
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaina Raza; Shaina Raza (2024). NewsMediaBias-Plus Dataset [Dataset]. http://doi.org/10.5281/zenodo.13961155
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shaina Raza; Shaina Raza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NewsMediaBias-Plus Dataset

    Overview

    The NewsMediaBias-Plus dataset is designed for the analysis of media bias and disinformation by combining textual and visual data from news articles. It aims to support research in detecting, categorizing, and understanding biased reporting in media outlets.

    Dataset Description

    NewsMediaBias-Plus pairs news articles with relevant images and annotations indicating perceived biases and the reliability of the content. It adds a multimodal dimension for bias detection in news media.

    Contents

    • unique_id: Unique identifier for each news item. Each unique_id matches an image for the same article.
    • outlet: The publisher of the article.
    • headline: The headline of the article.
    • article_text: The full content of the news article.
    • image_description: Description of the paired image.
    • image: The file path of the associated image.
    • date_published: The date the article was published.
    • source_url: The original URL of the article.
    • canonical_link: The canonical URL of the article.
    • new_categories: Categories assigned to the article.
    • news_categories_confidence_scores: Confidence scores for each category.

    Annotation Labels

    • text_label: Indicates the likelihood of the article being disinformation:

      • Likely: Likely to be disinformation.
      • Unlikely: Unlikely to be disinformation.
    • multimodal_label: Indicates the likelihood of disinformation from the combination of the text snippet and image content:

      • Likely: Likely to be disinformation.
      • Unlikely: Unlikely to be disinformation.

    Getting Started

    Prerequisites

    • Python 3.6+
    • Pandas
    • Hugging Face Datasets
    • Hugging Face Hub

    Installation

    Load the dataset into Python:

    python
    Copy code
    from datasets import load_dataset ds = load_dataset("vector-institute/newsmediabias-plus") print(ds) # View structure and splits print(ds['train'][0]) # Access the first record of the train split print(ds['train'][:5]) # Access the first five records

    Load a Few Records

    python
    Copy code
    from datasets import load_dataset # Load the dataset in streaming mode streamed_dataset = load_dataset("vector-institute/newsmediabias-plus", streaming=True) # Get an iterable dataset dataset_iterable = streamed_dataset['train'].take(5) # Print the records for record in dataset_iterable: print(record)

    Contributions

    Contributions are welcome! You can:

    • Add Data: Contribute more data points.
    • Refine Annotations: Improve annotation accuracy.
    • Share Usage Examples: Help others use the dataset effectively.

    To contribute, fork the repository and create a pull request with your changes.

    License

    This dataset is released under a non-commercial license. See the LICENSE file for more details.

    Citation

    Please cite the dataset using this BibTeX entry:

    bibtex
    Copy code
    @misc{vector_institute_2024_newsmediabias_plus, title={NewsMediaBias-Plus: A Multimodal Dataset for Analyzing Media Bias}, author={Vector Institute Research Team}, year={2024}, url={https://huggingface.co/datasets/vector-institute/newsmediabias-plus} }

    Contact

    For questions or support, contact Shaina Raza at: shaina.raza@vectorinstitute.ai

    Disclaimer and User Guidance

    Disclaimer: The labels Likely and Unlikely are based on LLM annotations and expert assessments, intended for informational use only. They should not be considered final judgments.

    Guidance: This dataset is for research purposes. Cross-reference findings with other reliable sources before drawing conclusions. The dataset aims to encourage critical thinking, not provide definitive classifications.

  15. P

    MEIS Dataset

    • paperswithcode.com
    Updated Aug 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ching-Hsun Tseng; Shao-Ju Chien; Po-Shen Wang; Shin-Jye Lee; Wei-Huan Hu; Bin Pu; Xiao-jun Zeng (2023). MEIS Dataset [Dataset]. https://paperswithcode.com/dataset/meis
    Explore at:
    Dataset updated
    Aug 14, 2023
    Authors
    Ching-Hsun Tseng; Shao-Ju Chien; Po-Shen Wang; Shin-Jye Lee; Wei-Huan Hu; Bin Pu; Xiao-jun Zeng
    Description

    MEIS comprises a total of 2,639 images in the size of 1024 × 768 toward two recording views (Aortic Valve (AV) and Left Ventricle (LV)) with 1,521 (747 in AV + 774 in LV) images for training and 1,118 (559 in AV + 559 in LV) for testing, respectively. Each view must be detected with two objects to calculate the measurement indicators. That is in total with four object classes (two objects in each view): aortic root (AoR) and left atrium (LA) in AV; interventricular septum (IVS) and left ventricular posterior wall (LVPW) in LV. The medical meaning and purpose of each indicator are listed in the following: • AV: LA-Dimension and AoR-Dimension can be measured for calculating different indicators, such as AoR/LA ratio, to examine the state of the aortic valve. • LV: 6 measurements include IVSs, IVSd, LVIDs, LVIDd, LVPWs, and LVPWd. These concerned thicknesses and dimensions in LV recording are used to estimate other cardiac functions through specific medical formulas, including LV mass, LV ejection fraction, end-diastolic volume, end-systolic volume, and more.

  16. Z

    FMAK: A Dataset of Key and Mode Annotations for the Free Music Archive

    • data.niaid.nih.gov
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wong, Stella (2024). FMAK: A Dataset of Key and Mode Annotations for the Free Music Archive [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10719859
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset authored and provided by
    Wong, Stella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present a new expert-labeled dataset for the evaluation of key detection containing 340 hours (5489 songs) of song-level key and mode annotations, spread across 17 genres.

    For each song, we provide annotations for:

    FMA track id

    Spotify URI (when available)

    Key and mode

    All the audio is collected in and distributed by the FMA dataset by Michael Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson.

    The FMA metadata is made freely available for public use under a Creative Commons license

    We do not hold the copyright on the audio and distribute it under the license chosen by the artist

    The dataset is meant for research purposes

  17. R

    Mode Leaves Dataset

    • universe.roboflow.com
    zip
    Updated Aug 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jaret Palazza (2023). Mode Leaves Dataset [Dataset]. https://universe.roboflow.com/jaret-palazza-clnwl/mode-leaves
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 14, 2023
    Dataset authored and provided by
    Jaret Palazza
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Variables measured
    Leaf Bounding Boxes
    Description

    Mode Leaves

    ## Overview
    
    Mode Leaves is a dataset for object detection tasks - it contains Leaf annotations for 1,227 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [ODbL v1.0 license](https://creativecommons.org/licenses/ODbL v1.0).
    
  18. r

    Transport Mode Symbols and Pictograms

    • researchdata.edu.au
    • data.nsw.gov.au
    • +2more
    Updated Jul 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nsw.gov.au (2022). Transport Mode Symbols and Pictograms [Dataset]. https://researchdata.edu.au/transport-mode-symbols-pictograms/1986677
    Explore at:
    Dataset updated
    Jul 9, 2022
    Dataset provided by
    data.nsw.gov.au
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Here you can find symbols and pictograms for all transport modes to use in your apps, products and other projects. Symbols and icons are available in various formats, while all can be found as vector files that can be opened directly in software such as Adobe Illustrator.

  19. TMD Dataset - 5 seconds sliding window

    • kaggle.com
    zip
    Updated Feb 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernando Schwartzer (2019). TMD Dataset - 5 seconds sliding window [Dataset]. https://www.kaggle.com/fschwartzer/tmd-dataset-5-seconds-sliding-window
    Explore at:
    zip(2776796 bytes)Available download formats
    Dataset updated
    Feb 5, 2019
    Authors
    Fernando Schwartzer
    Description

    Context

    Identify user’s transportation modes through observations of the user, or observation of the environment, is a growing topic of research, with many applications in the field of Internet of Things (IoT). Transportation mode detection can provide context information useful to offer appropriate services based on user’s needs and possibilities of interaction.

    Content

    Initial data pre-processing phase: data cleaning operations are performed, such as delete measure from the sensors to exclude, make the values of the sound and speed sensors positive etc...

    Furthermore some sensors, like ambiental (sound, light and pressure) and proximity, returns a single data value as the result of sense, this can be directly used in dataset. Instead, all the other return more than one values that are related to the coordinate system used, so their values are strongly related to orientation. For almost all we can use an orientation-independent metric, magnitude.

    Acknowledgements

    A sensor measures different physical quantities and provides corresponding raw sensor readings which are a source of information about the user and their environment. Due to advances in sensor technology, sensors are getting more powerful, cheaper and smaller in size. Almost all mobile phones currently include sensors that allow the capture of important context information. For this reason, one of the key sensors employed by context-aware applications is the mobile phone, that has become a central part of users lives.

    Inspiration

    User transportation mode recognition can be considered as a HAR task (Human Activity Recognition). Its goal is to identify which kind of transportation - walking, driving etc..- a person is using. Transportation mode recognition can provide context information to enhance applications and provide a better user experience, it can be crucial for many different applications, such as device profiling, monitoring road and traffic condition, Healthcare, Traveling support etc..

    Original dataset from: Carpineti C., Lomonaco V., Bedogni L., Di Felice M., Bononi L., "Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity", in Proceedings of the 14th Workshop on Context and Activity Modeling and Recognition (IEEE COMOREA 2018), Athens, Greece, March 19-23, 2018 [Pre-print available]

  20. d

    Replication Data for: Does mode of administration impact on quality of data?...

    • dataone.org
    • dataverse.harvard.edu
    • +1more
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Triga, Vasiliki; Vasilis Manavopoulos (2023). Replication Data for: Does mode of administration impact on quality of data? Comparing a traditional survey versus an online survey via a Voting Advice Application [Dataset]. http://doi.org/10.7910/DVN/ARDVUL
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    urn:node:HD
    Authors
    Triga, Vasiliki; Vasilis Manavopoulos
    Description

    This dataset (in .csv format), accompanying codebook and replication code serve as supplement to a study titled: “Does the mode of administration impact on quality of data? Comparing a traditional survey versus an online survey via a Voting Advice Application” submitted for publication to the journal: “Survey Research Methods”). The study involved comparisons of responses to two near-identical questionnaires administered via a traditional survey and through a Voting Advice Application (VAA) both designed for and administered during the pre-electoral period of the Cypriot Presidential Elections of 2013. The offline dataset consisted of questionnaires collected from 818 individuals whose participation was elicited through door-to-door stratified random sampling with replacement of individuals who could not be contacted. The strata were designed to take into account the regional population density, gender, age and whether the area was urban or rural. Offline participants completed a pen-and-paper questionnaire version of the VAA in a self-completing capacity, although the person administering the questionnaire remained present throughout. The online dataset involved responses from 10,241 VAA users who completed the Choose4Cyprus VAA. Voting Advice Applications are online platforms that provide voting recommendations to users based on their closeness to political parties after they declare their agreement or disagreement on a number of policy statements. VAA users freely visited the VAA website and completed the relevant questionnaire in a self-completing capacity. The two modes of administration (online and offline) involved respondents completing a series of supplementary questions (demographics, ideological affinity & political orientation [e.g. vote in the previous election]) prior to the main questionnaire consisting of 35 and 30 policy-related Likert-type items for the offline and online mode respectively. The dataset includes all 30 policy items that were common between the two modes, although only the first 19 (q1:q19) appeared in the same order and in the same position in the two questionnaires; as such, all analyses reported in the article were conducted using these 19 items only. The phrasing of the questions was identical for the two modes and is described per variable in the attached codebook.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alexandre Roque (2025). CAN-Modes: In-vehicle datasets in different driving situations [Dataset]. https://ieee-dataport.org/documents/can-modes-vehicle-datasets-different-driving-situations

CAN-Modes: In-vehicle datasets in different driving situations

Explore at:
Dataset updated
Jan 2, 2025
Authors
Alexandre Roque
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

safety

Search
Clear search
Close search
Google apps
Main menu