8 datasets found
  1. Sales Dashboard in Microsoft Excel

    • kaggle.com
    zip
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavana Joshi (2023). Sales Dashboard in Microsoft Excel [Dataset]. https://www.kaggle.com/datasets/bhavanajoshij/sales-dashboard-in-microsoft-excel/discussion
    Explore at:
    zip(253363 bytes)Available download formats
    Dataset updated
    Apr 14, 2023
    Authors
    Bhavana Joshi
    Description

    This interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.

    Dashboard Overview

    1. Sales dashboard ==> basically, it is designed for the B2C type of business. like Dmart, Walmart, Amazon, Shops & supermarkets, etc.
    2. Slices ==> slices are used to drill down the data, on the basis of yearly, monthly, by sales type, and by mode of payment.
    3. Total Sales/Total Profits ==> here is, the total sales, total profit, and profit percentage these all are combined into a monthly format and we can hide or unhide it to view it as individually or comparative.
    4. Product Visual ==> the visual indicates product-wise sales for the selected period. Only 10 products are visualized at a glance, and you can scroll up & down to view other products in the list.
    5. Daily Sales ==> It shows day-wise sales. (Area Chart)
    6. Sales Type/Payment Mode ==> It shows sales percentage contribution based on the type of selling and mode of payment.
    7. Top Product & Category ==> this is for the top-selling product and product category.
    8. Category ==> the final one is the category-wise sales contribution.

    Datasheets Overview

    1. The dataset has the master data sheet or you can call it a catalog. It is added in the table form.
    2. The first column is the product ID the list of items in this column is unique.
    3. Then we have the product column instead of these two columns, we can manage with only one also but I kept it separate because sometimes product names can be the same, but some parameters will be different, like price, supplier, etc.
    4. The next column is the category column, which is the product category. like cosmetics, foods, drinks, electronics, etc.
    5. Then we have 4th column which is the unit of measure (UOM) you can update it also, based on the products you have.
    6. And the last two columns are buying price and selling price, which means unit purchasing price and unit selling price.

    Input Sheet

    The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.

    Analysis Sheet: where all backend calculations are performed.

    So, basically these are the four sheets mentioned above with different tasks.

    However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.

    A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.

    Questions & Answers

    1. What percentage of profit ratio of sales are displayed in the year 2021 and year 2022? ==> Total profit ratio of sales in the year 2021 is 19% with large sales of PRODUCT42, whereas profit ratio of sales for 2022 is 22% with large sales of PRODUCT30.
    2. Which is the top product that have large number of sales in year 2021-2022? ==> The top product in the year 2021 is PRODUCT42 with the total sales of $12,798 whereas in the year 2022 the top product is PRODUCT30 with the total sales of $13,888.
    3. In Area Chart which product is highly sold on 28th April 2022? ==> The large number of sales on 28th April 2022 is for PRODUCT14 with a 24% of profit ratio.
    4. What is the sales type and payment mode present? ==> The sale type and payment modes show the sales percentage contribution based on the type of selling and mode of payment. Here, the sale types are Direct Sales with 52%, Online Sales with 33% and Wholesaler with 15%. Also, the payment modes are Online mode and Cash equally distributed with 50%.
    5. In which month the direct sales are highest in the year 2022? ==> The highest direct sales can be easily identified which is designed by monthly format and it’s the November month where direct sales are highest with 28% as compared with other months.
    6. Which payment mode is highly received in the year 2021 and year 2022? ==> The payments received in the year 2021 are the cash payments with 52% as compared with online transactions which are 48%. Also, the cash payment highly received is in the month of March, July and October with direct sales of 42%, Online with 45% and wholesaler with 13% with large sales of PRODUCT24. ==> The payments received in the year 2022 are the Online payments with 52% as compared with cash payments which are 48%. Also, the online payment highly received is in the month of Jan, Sept and December with direct sales of 45%, Online with 37% and whole...
  2. Project Data analysis using excel

    • kaggle.com
    zip
    Updated Jul 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Samir (2023). Project Data analysis using excel [Dataset]. https://www.kaggle.com/datasets/ahmedsamir11111/project-data-analysis-using-excel/discussion
    Explore at:
    zip(4912987 bytes)Available download formats
    Dataset updated
    Jul 2, 2023
    Authors
    Ahmed Samir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    In the beginning, the case was just data for a company that did not indicate any useful information that would help decision-makers. In this case, I had to ask questions that could help extract and explore information that would help decision-makers improve and evaluate performance. But before that, I did some operations in the data to help me to analyze it accurately: 1- Understand the data. 2- Clean the data “By power query”. 3- insert some calculation and columns like “COGS” cost of goods sold by power query. 4- Modeling the data and adding some measures and other columns to help me in analysis. Then I asked these questions: To Enhance Customer Loyalty What is the most used ship mode by our customer? Who are our top 5 customers in terms of sales and order frequency? To monitor our strength and weak points Which segment of clients generates the most sales? Which city has the most sales value? Which state generates the most sales value? Performance measurement What are the top performing product categories in terms of sales and profit? What is the most profitable product that we sell? What is the lowest profitable product that we sell? Customer Experience On Average how long does it take the orders to reach our clients? Based on each Shipping Mode

    Then started extracting her summaries and answers from the pivot tables and designing the data graphics in a dashboard for easy communication and reading of the information as well. And after completing these operations, I made some calculations related to the KPI to calculate the extent to which sales officials achieved and the extent to which they achieved the target.

  3. School Mode of Travel - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Oct 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2019). School Mode of Travel - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/school-mode-of-travel
    Explore at:
    Dataset updated
    Oct 18, 2019
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    The Influencing Travel Behaviour Team (ITB) provide road safety education, training and publicity to schools, communities, businesses and Leeds residents. We promote sustainable travel throughout Leeds along with helping schools and businesses to develop and implement their travel plans (which promote safe, sustainable and less car dependent patterns of travel). Each year we request mode of travel data from schools in Leeds via a SIMS report or excel spreadsheet. The 10 modes of travel specified in the data collection are: Bus (type not known), Car Share (children travelling together from different households), Car/Van, Cycle, Dedicated School Bus, Other, Public Bus Service, Taxi, Train, Walk (including scooting) This collection forms part of the Statutory duty local authorities have to monitor the success of promoting sustainable travel, and in some cases is linked to a school’s planning obligated travel plan. It is an important part of improving road safety and promoting healthy lifestyles among children in Leeds but since the council declared a climate emergency in March of this year the data is even more valuable. The data helps us understand the environmental context in Leeds and work to effectively limit carbon emissions wherever possible. We strongly encourage all schools to provide the data but not all of them respond to the request and we do not always receive a response for every pupil/student so some school response rates may be low.

  4. Survey on Interest Rate Controls 2019 - Albania, Algeria, Anguilla...and 103...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group - Finance, Competitiveness and Innovation Global Practice (2023). Survey on Interest Rate Controls 2019 - Albania, Algeria, Anguilla...and 103 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/3812
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank Group - Finance, Competitiveness and Innovation Global Practice
    Time period covered
    2019
    Area covered
    Algeria, Albania, Anguilla...and 103 more
    Description

    Abstract

    The Survey on Interest Rate Controls 2020 was conducted as a World Bank Group study on interest rate controls (IRCs) in lending and deposit markets around the world. The study aims to identify the different types of formal (or de jure) controls, the countries that apply then, how they implement them, and the reasons for doing so. The objective of the study is to advance knowledge on this topic by providing an evidence base for investigating the impact of IRCs on economic outcomes.

    The survey investigates present IRCs in each surveyed country, the reasons why they have been applied, the framework and resources associated with their application and the details as to their level and functioning. The focus is on legal forms of control (i.e. codified into law) as opposed to de facto controls. The new database on interest rate controls, a popular form of financial repression is based on a survey of 108 countries, representing 88 percent of global gross domestic product. The interest rate controls presented in this dataset were in effect in 2019.

    Geographic coverage

    Global Survey, covering 108 countries, representing 88 percent of global GDP.

    Analysis unit

    Regulation at the national level.

    Universe

    Banking supervisors and Local Banking Associations.

    Kind of data

    Sample survey data [ssd]

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    Bank supervisors and banking associations were provided with a standard excel file with five parts. The survey was structured in five parts, each placed in a different excel sheet. Part A: Introduction. Countries with no IRCs in place were asked to only answer this sheet and leave the rest blank. Part B: Presented the definitions of controls, institutions, products and additional aspects that will be covered in the survey. Part C: Introduced a set of qualitative questions to describe the IRCs in place. Part D: Displayed a set of tables to quantitatively describe the IRCs in place. Part E: Laid out the final set of questions, covering sanctions and control mechanisms that support the IRCs' enforcement. The questionnaire is provided in the Documentation section in pdf and excel.

  5. Z

    Dataset assoziated with the paper "Optimisation of mobility hub locations...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stadnichuk, Vladimir; Merten, Laura; Larisch, Christian; Walther, Grit (2024). Dataset assoziated with the paper "Optimisation of mobility hub locations for a sustainable mobility system" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10778028
    Explore at:
    Dataset updated
    May 23, 2024
    Dataset provided by
    RWTH Aachen University
    Authors
    Stadnichuk, Vladimir; Merten, Laura; Larisch, Christian; Walther, Grit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is supplementary data for the paper 'Optimisation of mobility hub locations for a sustainable mobility system'. The Excel file 'InputParameters' contains the parameters used as input for the bilevel optimization model. Note that it contains two sheets: one for the calibrated parameters in the utility function, and one for the mode-specific input parameters. The external cost data are based on the study by Bieler, C. & Sutter, D. (2019), whereas the cost parameters were derived from the websites of the local service providers.

    The result folder contains the result files of all the experiments discussed in the paper. Each subfolder corresponds to one test instance. The subfolders contain the information on the built mobility hubs (build_mobilityhubs.csv), the modal split information (wegcount.rating.csv for both absolute and proportional data), the number of transfers for each mode at each station (transfercount.csv), and also the full list of modes that each user group used in their travels (user_paths.csv). Note that the stations are given by ID, and the ID is taken from the GTFS data for Aachen.

    The additional experiments from Section 5.5 on the modal split for a higher number of bike- and car-sharing stations are contained in the "Further Maximization of Sharing Modes Test.zip." Each subfolder contains specific data for the test instances, while the Excel sheet modal_split_Percent.xlsx summarizes and visualizes the modal split data.

    Further result data can be provided upon request.

    Bieler, C., Sutter, D., 2019. Externe Kosten des Verkehrs in Deutschland: Straßen-, Schienen-, Luft- und Binnenschiffverkehr 2017.

  6. T

    WATER: Dataset of ground truth measurement synchronizing with the airborne...

    • data.tpdc.ac.cn
    • poles.tpdc.ac.cn
    • +1more
    zip
    Updated Jul 21, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yingjie YU; Songchuang DING; Yi SONG; Yang WANG; Qiaodi YAN; Shijie ZHU; Tingting XIE; Hao JIANG; Shihua LI; Jun LIU (2008). WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Envisat ASAR in the Linze station foci experimental area on July 11, 2008 [Dataset]. http://doi.org/10.3972/water973.0108.db
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 21, 2008
    Dataset provided by
    TPDC
    Authors
    Yingjie YU; Songchuang DING; Yi SONG; Yang WANG; Qiaodi YAN; Shijie ZHU; Tingting XIE; Hao JIANG; Shihua LI; Jun LIU
    Area covered
    Description

    The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Envisat ASAR was obtained in the Linze station foci experimental area on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:26 BJT. The simultaneous ground data included the following items: (1) soil moisture (0-5cm) measured once by the cutting ring method at the corner points of the 40 subplots of the west-east desert transit zone strip , once by the cutting ring method in the nine subplots of the north-south desert transit zone, nine times in the LY06 and LY07 strips quadrates,and once by the cutting ring and once by ML2X Soil Moisture Tachometer in the Wulidun farmland. The preprocessed soil volumetric moisture data were archived as Excel files. (2) the surface radiative temperature measured by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips (49 points and repeated three times), and Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU and the reference board (40% before Jun. 15 and 20% hereafter) in Wulidun farmland. Raw spectral data were binary files , which were recorded daily in detail, and pre-processed data on reflectance (by ViewSpecPro) were archived as Excel files. (4) maize BRDF measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). (5) LAI measured in the maize quadrate, poplar quadrate and desert scrub quadrate in Wulidun farmland, the desert transit zone strips and the poplar forest quadrate by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (6) LAI of maize measured by LAI2000 in Linze station quadrates and Wulidun farmland quadrates. Data educed from LAI2000 periodically were archived as text files (.txt) and marked with one ID. Raw data (table of word and txt) and processed data (Excel) were included. Besides, observation time, the observation method and the repetition were all archived. (7) LAI measured by the ruler and the set square in B2 and B3 of Linze station quadrates. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

  7. u

    University of Cape Town Student Admissions Data 2006-2014 - South Africa

    • datafirst.uct.ac.za
    Updated Jul 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCT Student Administration (2020). University of Cape Town Student Admissions Data 2006-2014 - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/556
    Explore at:
    Dataset updated
    Jul 28, 2020
    Dataset authored and provided by
    UCT Student Administration
    Time period covered
    2006 - 2014
    Area covered
    South Africa
    Description

    Abstract

    This dataset was generated from a set of Excel spreadsheets from an Information and Communication Technology Services (ICTS) administrative database on student applications to the University of Cape Town (UCT). This database contains information on applications to UCT between the January 2006 and December 2014. In the original form received by DataFirst the data were ill suited to research purposes. This dataset represents an attempt at cleaning and organizing these data into a more tractable format. To ensure data confidentiality direct identifiers have been removed from the data and the data is only made available to accredited researchers through DataFirst's Secure Data Service.

    The dataset was separated into the following data files:

    1. Application level information: the "finest" unit of analysis. Individuals may have multiple applications. Uniquely identified by an application ID variable. There are a total of 1,714,669 applications on record.
    2. Individual level information: individuals may have multiple applications. Each individual is uniquely identified by an individual ID variable. Each individual is associated with information on "key subjects" from a separate data file also contained in the database. These key subjects are all separate variables in the individual level data file. There are a total of 285,005 individuals on record.
    3. Secondary Education Information: individuals can also be associated with row entries for each subject. This data file does not have a unique identifier. Instead, each row entry represents a specific secondary school subject for a specific individual. These subjects are quite specific and the data allows the user to distinguish between, for example, higher grade accounting and standard grade accounting. It also allows the user to identify the educational authority issuing the qualification e.g. Cambridge Internal Examinations (CIE) versus National Senior Certificate (NSC).
    4. Tertiary Education Information: the smallest of the four data files. There are multiple entries for each individual in this dataset. Each row entry contains information on the year, institution and transcript information and can be associated with individuals.

    Analysis unit

    Applications, individuals

    Kind of data

    Administrative records [adm]

    Mode of data collection

    Other [oth]

    Cleaning operations

    The data files were made available to DataFirst as a group of Excel spreadsheet documents from an SQL database managed by the University of Cape Town's Information and Communication Technology Services . The process of combining these original data files to create a research-ready dataset is summarised in a document entitled "Notes on preparing the UCT Student Application Data 2006-2014" accompanying the data.

  8. 2019-2020 National Survey on Drug Use and Health: Comparison of Population...

    • catalog.data.gov
    • data.virginia.gov
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Substance Abuse and Mental Health Services Administration (2025). 2019-2020 National Survey on Drug Use and Health: Comparison of Population Percentages from the United States, Census Regions, States, and the District of Columbia (Documentation for CSV and Excel Files) [Dataset]. https://catalog.data.gov/dataset/2019-2020-national-survey-on-drug-use-and-health-comparison-of-population-percentages-from
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Substance Abuse and Mental Health Services Administrationhttps://www.samhsa.gov/
    Area covered
    Washington, United States
    Description

    State estimates for these years are no longer available due to methodological concerns with combining 2019 and 2020 data. We apologize for any inconvenience or confusion this may causeBecause of the COVID-19 pandemic, most respondents answered the survey via the web in Quarter 4 of 2020, even though all responses in Quarter 1 were from in-person interviews. It is known that people may respond to the survey differently while taking it online, thus introducing what is called a mode effect.When the state estimates were released, it was assumed that the mode effect was similar for different groups of people. However, later analyses have shown that this assumption should not be made. Because of these analyses, along with concerns about the rapid societal changes in 2020, it was determined that averages across the two years could be misleading.For more detail on this decision, see the 2019-2020state data page.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bhavana Joshi (2023). Sales Dashboard in Microsoft Excel [Dataset]. https://www.kaggle.com/datasets/bhavanajoshij/sales-dashboard-in-microsoft-excel/discussion
Organization logo

Sales Dashboard in Microsoft Excel

Explore at:
zip(253363 bytes)Available download formats
Dataset updated
Apr 14, 2023
Authors
Bhavana Joshi
Description

This interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.

Dashboard Overview

  1. Sales dashboard ==> basically, it is designed for the B2C type of business. like Dmart, Walmart, Amazon, Shops & supermarkets, etc.
  2. Slices ==> slices are used to drill down the data, on the basis of yearly, monthly, by sales type, and by mode of payment.
  3. Total Sales/Total Profits ==> here is, the total sales, total profit, and profit percentage these all are combined into a monthly format and we can hide or unhide it to view it as individually or comparative.
  4. Product Visual ==> the visual indicates product-wise sales for the selected period. Only 10 products are visualized at a glance, and you can scroll up & down to view other products in the list.
  5. Daily Sales ==> It shows day-wise sales. (Area Chart)
  6. Sales Type/Payment Mode ==> It shows sales percentage contribution based on the type of selling and mode of payment.
  7. Top Product & Category ==> this is for the top-selling product and product category.
  8. Category ==> the final one is the category-wise sales contribution.

Datasheets Overview

  1. The dataset has the master data sheet or you can call it a catalog. It is added in the table form.
  2. The first column is the product ID the list of items in this column is unique.
  3. Then we have the product column instead of these two columns, we can manage with only one also but I kept it separate because sometimes product names can be the same, but some parameters will be different, like price, supplier, etc.
  4. The next column is the category column, which is the product category. like cosmetics, foods, drinks, electronics, etc.
  5. Then we have 4th column which is the unit of measure (UOM) you can update it also, based on the products you have.
  6. And the last two columns are buying price and selling price, which means unit purchasing price and unit selling price.

Input Sheet

The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.

Analysis Sheet: where all backend calculations are performed.

So, basically these are the four sheets mentioned above with different tasks.

However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.

A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.

Questions & Answers

  1. What percentage of profit ratio of sales are displayed in the year 2021 and year 2022? ==> Total profit ratio of sales in the year 2021 is 19% with large sales of PRODUCT42, whereas profit ratio of sales for 2022 is 22% with large sales of PRODUCT30.
  2. Which is the top product that have large number of sales in year 2021-2022? ==> The top product in the year 2021 is PRODUCT42 with the total sales of $12,798 whereas in the year 2022 the top product is PRODUCT30 with the total sales of $13,888.
  3. In Area Chart which product is highly sold on 28th April 2022? ==> The large number of sales on 28th April 2022 is for PRODUCT14 with a 24% of profit ratio.
  4. What is the sales type and payment mode present? ==> The sale type and payment modes show the sales percentage contribution based on the type of selling and mode of payment. Here, the sale types are Direct Sales with 52%, Online Sales with 33% and Wholesaler with 15%. Also, the payment modes are Online mode and Cash equally distributed with 50%.
  5. In which month the direct sales are highest in the year 2022? ==> The highest direct sales can be easily identified which is designed by monthly format and it’s the November month where direct sales are highest with 28% as compared with other months.
  6. Which payment mode is highly received in the year 2021 and year 2022? ==> The payments received in the year 2021 are the cash payments with 52% as compared with online transactions which are 48%. Also, the cash payment highly received is in the month of March, July and October with direct sales of 42%, Online with 45% and wholesaler with 13% with large sales of PRODUCT24. ==> The payments received in the year 2022 are the Online payments with 52% as compared with cash payments which are 48%. Also, the online payment highly received is in the month of Jan, Sept and December with direct sales of 45%, Online with 37% and whole...
Search
Clear search
Close search
Google apps
Main menu