Facebook
TwitterThe U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency's Long Island Sound Study (https://longislandsoundstudy.net), characterized nitrogen export from forested watersheds and whether nitrogen loading has been increasing or decreasing to help inform Long Island Sound management strategies. The Weighted Regressions on Time, Discharge, and Season (WRTDS; Hirsch and others, 2010) method was used to estimate annual concentrations and fluxes of nitrogen species using long-term records (14 to 37 years in length) of stream total nitrogen, dissolved organic nitrogen, nitrate, and ammonium concentrations and daily discharge data from 17 watersheds located in the Long Island Sound basin or in nearby areas of Massachusetts, New Hampshire, or New York. This data release contains the input water-quality and discharge data, annual outputs (including concentrations, fluxes, yields, and confidence intervals about these estimates), statistical tests for trends between the periods of water years 1999-2000 and 2016-2018, and model diagnostic statistics. These datasets are organized into one zip file (WRTDSeLists.zip) and six comma-separated values (csv) data files (StationInformation.csv, AnnualResults.csv, TrendResults.csv, ModelStatistics.csv, InputWaterQuality.csv, and InputStreamflow.csv). The csv file (StationInformation.csv) contains information about the stations and input datasets. Finally, a short R script (SampleScript.R) is included to facilitate viewing the input and output data and to re-run the model. Reference: Hirsch, R.M., Moyer, D.L., and Archfield, S.A., 2010, Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs: Journal of the American Water Resources Association, v. 46, no. 5, p. 857–880.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data are fully processed but can be used to test each pipeline component. You can download the scripts at https://anonymous.4open.science/r/LabelChecker_Pipeline-2539/README.md
LabelChecker software can be downloaded from https://anonymous.4open.science/r/LabelChecker-4312/README.md
To use the model, unzip the freshwater_phytoplankton_model.zip and place the folder in the respective model folder in the services.
|--services |-- ProcessData.py |-- config.py |-- classification
|-- ObjectClassification
|-- models
|--
Once you unzip the data.zip file, each folder corresponds to the data export of a FlowCam run. You have the TIF collage files, a CSV file with the sample name containing all the parameters measured by the FlowCam, and a LabelChecker_
You can run the preprocessing.py script directly on the files by including the -R (reprocess) argument. Otherwise you can do it by removing the LabelChecker CSV from the folders. The PreprocessingTrue column will remain the same.
When running the classification.py script you can get new predictions on the data. In this case, only the LabelPredicted column will be updated and the validated labels (LabelTrue column) will not be lost.
You could also use these files to try out the train_model.ipynb, although the resulting model will not be very good with so little data. We recommend trying it with your own data.
These files can be used to test LabelChecker. You can open them one by one or all together and try all functionalities. We provide a label_file.csv but you can also make your own.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023
This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.
The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).
## Data sources
Folder 01_SourceData/
- PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)
- ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)
- ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)
- Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)
## Automatic classification
Folder 02_AutomaticClassification/
- (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)
- (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)
- PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)
- oddpub_results_wDOIs.csv (results file of the ODDPub classification)
- PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)
## Manual coding
Folder 03_ManualCheck/
- CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)
- ManualCheck_2023-06-08.csv (Manual coding results file)
- PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)
## Explorative analysis for the discoverability of open data
Folder04_FurtherAnalyses
Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German
## R-Script
Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Abstract: This data set was acquired with a Sippican MK21 Expendable BathyThermograph during R/V Laurence M. Gould expedition LMG1901 conducted in 2018 (Chief Scientist: Dr. William Fraser, Investigator: Dr. William Fraser). These data files are of Sippican MK21 Export Data File format and include Temperature data that have not been processed. Data were acquired as part of the project(s): LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem. Funding was provided by NSF award(s): PLR14-40435.
Facebook
TwitterState Harvest Data (csv)Commercial snapping turtle harvest data (in individuals) for eleven states from 1998 - 2013. States reporting are Arkansas, Delaware, Iowa, Maryland, Massachusetts, Michigan, Minnesota, New Jersey, North Carolina, Pennsylvania, and Virginia.StateHarvestData.csvInput and execution code for Colteaux_Johnson_2016Attached R file includes the code described in the listed publication. The companion JAGS (just another Gibbs sampler) code is also stored in this repository under separate cover.ColteauxJohnsonNatureConservation.RJAGS model code for Colteaux_Johnson_2016Attached R file includes the JAGS (just another Gibbs sampler) code described in the listed publication. The companion input and execution code is also stored in this repository under separate cover.ColteauxJohnsonNatureConservationJAGS.R
Facebook
TwitterA routine was developed in R ('bathy_plots.R') to plot bathymetry data over time during individual CEAMARC events. This is so we can analyse benthic data in relation to habitat, ie. did we trawl over a slope or was the sea floor relatively flat. Note that the depth range in the plots is autoscaled to the data, so a small range in depths appears as a scatetring of points. As long as you look at the depth scale though interpretation will be ok. The R files need a file of bathymetry data in '200708V3_one_minute.csv' which is a file containing a data export from the underway PostgreSQL ship database and 'events.csv' which is a stripped down version of the events export from the ship board events database export. If you wish to run the code again you may need to change the pathnames in the R script to relevant locations. If you have opened the csv files in excel at any stage and the R script gets an error you may need to format the date/time columns as yyyy-mm-dd hh;mm:ss, save and close the file as csv without opening it again and then run the R script. However, all output files are here for every CEAMARC event. Filenames contain a reference to CEAMARC event id. Files are in eps format and can be viewed using Ghostview which is available as a free download on the internet.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package
This repository contains data and source files needed to replicate our work described in the paper "Unboxing Default Argument Breaking Changes in Scikit Learn".
Requirements
We recommend the following requirements to replicate our study:
Package Structure
We relied on Docker containers to provide a working environment that is easier to replicate. Specifically, we configure the following containers:
data-analysis, an R-based Container we used to run our data analysis.data-collection, a Python Container we used to collect Scikit's default arguments and detect them in client applications.database, a Postgres Container we used to store clients' data, obtainer from Grotov et al.storage, a directory used to store the data processed in data-analysis and data-collection. This directory is shared in both containers.docker-compose.yml, the Docker file that configures all containers used in the package.In the remainder of this document, we describe how to set up each container properly.
Using VSCode to Setup the Package
We selected VSCode as the IDE of choice because its extensions allow us to implement our scripts directly inside the containers. In this package, we provide configuration parameters for both data-analysis and data-collection containers. This way you can directly access and run each container inside it without any specific configuration.
You first need to set up the containers
$ cd /replication/package/folder
$ docker-compose build
$ docker-compose up
# Wait docker creating and running all containers
Then, you can open them in Visual Studio Code:
If you want/need a more customized organization, the remainder of this file describes it in detail.
Longest Road: Manual Package Setup
Database Setup
The database container will automatically restore the dump in dump_matroskin.tar in its first launch. To set up and run the container, you should:
Build an image:
$ cd ./database
$ docker build --tag 'dabc-database' .
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
dabc-database latest b6f8af99c90d 50 minutes ago 18.5GB
Create and enter inside the container:
$ docker run -it --name dabc-database-1 dabc-database
$ docker exec -it dabc-database-1 /bin/bash
root# psql -U postgres -h localhost -d jupyter-notebooks
jupyter-notebooks=# \dt
List of relations
Schema | Name | Type | Owner
--------+-------------------+-------+-------
public | Cell | table | root
public | Code_cell | table | root
public | Md_cell | table | root
public | Notebook | table | root
public | Notebook_features | table | root
public | Notebook_metadata | table | root
public | repository | table | root
If you got the tables list as above, your database is properly setup.
It is important to mention that this database is extended from the one provided by Grotov et al.. Basically, we added three columns in the table Notebook_features (API_functions_calls, defined_functions_calls, andother_functions_calls) containing the function calls performed by each client in the database.
Data Collection Setup
This container is responsible for collecting the data to answer our research questions. It has the following structure:
dabcs.py, extract DABCs from Scikit Learn source code, and export them to a CSV file.dabcs-clients.py, extract function calls from clients and export them to a CSV file. We rely on a modified version of Matroskin to leverage the function calls. You can find the tool's source code in the `matroskin`` directory.Makefile, commands to set up and run both dabcs.py and dabcs-clients.pymatroskin, the directory containing the modified version of matroskin tool. We extended the library to collect the function calls performed on the client notebooks of Grotov's dataset.storage, a docker volume where the data-collection should save the exported data. This data will be used later in Data Analysis.requirements.txt, Python dependencies adopted in this module.Note that the container will automatically configure this module for you, e.g., install dependencies, configure matroskin, download scikit learn source code, etc. For this, you must run the following commands:
$ cd ./data-collection
$ docker build --tag "data-collection" .
$ docker run -it -d --name data-collection-1 -v $(pwd)/:/data-collection -v $(pwd)/../storage/:/data-collection/storage/ data-collection
$ docker exec -it data-collection-1 /bin/bash
$ ls
Dockerfile Makefile config.yml dabcs-clients.py dabcs.py matroskin storage requirements.txt utils.py
If you see project files, it means the container is configured accordingly.
Data Analysis Setup
We use this container to conduct the analysis over the data produced by the Data Collection container. It has the following structure:
dependencies.R, an R script containing the dependencies used in our data analysis.data-analysis.Rmd, the R notebook we used to perform our data analysisdatasets, a docker volume pointing to the storage directory.Execute the following commands to run this container:
$ cd ./data-analysis
$ docker build --tag "data-analysis" .
$ docker run -it -d --name data-analysis-1 -v $(pwd)/:/data-analysis -v $(pwd)/../storage/:/data-collection/datasets/ data-analysis
$ docker exec -it data-analysis-1 /bin/bash
$ ls
data-analysis.Rmd datasets dependencies.R Dockerfile figures Makefile
If you see project files, it means the container is configured accordingly.
A note on storage shared folder
As mentioned, the storage folder is mounted as a volume and shared between data-collection and data-analysis containers. We compressed the content of this folder due to space constraints. Therefore, before starting working on Data Collection or Data Analysis, make sure you extracted the compressed files. You can do this by running the Makefile inside storage folder.
$ make unzip # extract files
$ ls
clients-dabcs.csv clients-validation.csv dabcs.csv Makefile scikit-learn-versions.csv versions.csv
$ make zip # compress files
$ ls
csv-files.tar.gz Makefile
Facebook
TwitterThis data set was acquired with a Sippican MK21 Expendable CTD during R/V Laurence M. Gould expedition LMG1603 conducted in 2016 (Chief Scientist: USAP Marine Manager, Investigator: USAP Marine Manager). These data files are of Sippican MK21 Export Data File format and include Temperature data that have not been processed.
Facebook
TwitterThis data set was acquired with a Sippican MK21 Expendable BathyThermograph during R/V Laurence M. Gould expedition LMG1801 conducted in 2017 (Chief Scientist: Dr. William Fraser, Investigator: Dr. William Fraser). These data files are of Sippican MK21 Export Data File format and include Temperature data that have not been processed. Data were acquired as part of the project(s): LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem. Funding was provided by NSF award(s): PLR14-40435.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all COALMOD-World 2.0 data for Hauenstein et al. (in preparation): Stranded Assets in the Coal Export Industry? The Case of the Australian Galilee Basin.
With the input data files and the GAMS scenario file the model (https://github.com/chauenstein/COALMOD-World_v2.0) can be run to reproduce the model results.
Furthermore, the output.zip folder contains the results file, the R code to compile the figures, and PDFs of the figures.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
[Note: Integrated as part of FoodData Central, April 2019.] The database consists of several sets of data: food descriptions, nutrients, weights and measures, footnotes, and sources of data. The Nutrient Data file contains mean nutrient values per 100 g of the edible portion of food, along with fields to further describe the mean value. Information is provided on household measures for food items. Weights are given for edible material without refuse. Footnotes are provided for a few items where information about food description, weights and measures, or nutrient values could not be accommodated in existing fields. Data have been compiled from published and unpublished sources. Published data sources include the scientific literature. Unpublished data include those obtained from the food industry, other government agencies, and research conducted under contracts initiated by USDA’s Agricultural Research Service (ARS). Updated data have been published electronically on the USDA Nutrient Data Laboratory (NDL) web site since 1992. Standard Reference (SR) 28 includes composition data for all the food groups and nutrients published in the 21 volumes of "Agriculture Handbook 8" (US Department of Agriculture 1976-92), and its four supplements (US Department of Agriculture 1990-93), which superseded the 1963 edition (Watt and Merrill, 1963). SR28 supersedes all previous releases, including the printed versions, in the event of any differences. Attribution for photos: Photo 1: k7246-9 Copyright free, public domain photo by Scott Bauer Photo 2: k8234-2 Copyright free, public domain photo by Scott Bauer Resources in this dataset:Resource Title: READ ME - Documentation and User Guide - Composition of Foods Raw, Processed, Prepared - USDA National Nutrient Database for Standard Reference, Release 28. File Name: sr28_doc.pdfResource Software Recommended: Adobe Acrobat Reader,url: http://www.adobe.com/prodindex/acrobat/readstep.html Resource Title: ASCII (6.0Mb; ISO/IEC 8859-1). File Name: sr28asc.zipResource Description: Delimited file suitable for importing into many programs. The tables are organized in a relational format, and can be used with a relational database management system (RDBMS), which will allow you to form your own queries and generate custom reports.Resource Title: ACCESS (25.2Mb). File Name: sr28db.zipResource Description: This file contains the SR28 data imported into a Microsoft Access (2007 or later) database. It includes relationships between files and a few sample queries and reports.Resource Title: ASCII (Abbreviated; 1.1Mb; ISO/IEC 8859-1). File Name: sr28abbr.zipResource Description: Delimited file suitable for importing into many programs. This file contains data for all food items in SR28, but not all nutrient values--starch, fluoride, betaine, vitamin D2 and D3, added vitamin E, added vitamin B12, alcohol, caffeine, theobromine, phytosterols, individual amino acids, individual fatty acids, or individual sugars are not included. These data are presented per 100 grams, edible portion. Up to two household measures are also provided, allowing the user to calculate the values per household measure, if desired.Resource Title: Excel (Abbreviated; 2.9Mb). File Name: sr28abxl.zipResource Description: For use with Microsoft Excel (2007 or later), but can also be used by many other spreadsheet programs. This file contains data for all food items in SR28, but not all nutrient values--starch, fluoride, betaine, vitamin D2 and D3, added vitamin E, added vitamin B12, alcohol, caffeine, theobromine, phytosterols, individual amino acids, individual fatty acids, or individual sugars are not included. These data are presented per 100 grams, edible portion. Up to two household measures are also provided, allowing the user to calculate the values per household measure, if desired.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/ Resource Title: ASCII (Update Files; 1.1Mb; ISO/IEC 8859-1). File Name: sr28upd.zipResource Description: Update Files - Contains updates for those users who have loaded Release 27 into their own programs and wish to do their own updates. These files contain the updates between SR27 and SR28. Delimited file suitable for import into many programs.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Abstract: This data set was acquired with a Sippican MK21 Expendable BathyThermograph during R/V Nathaniel B. Palmer expedition NBP1808 conducted in 2018 (Chief Scientist: Dr. Anthony Koppers, Investigator: Dr. Anthony Koppers). These data files are of Sippican MK21 Export Data File format and include Temperature data that have not been processed.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Abstract: This data set was acquired with a Sippican MK21 Expendable CTD during R/V Laurence M. Gould expedition LMG1612 conducted in 2016 (Chief Scientist: Dr. Elizabeth Shadwick, Investigator: Dr. Elizabeth Shadwick). These data files are of Sippican MK21 Export Data File format and include Temperature data that have not been processed. Data were acquired as part of the project(s): Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations. Funding was provided by NSF award(s): PLR15-43380.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Electoral Commission of Queensland is responsible for the Electronic Disclosure System (EDS), which provides real-time reporting of political donations. It aims to streamline the disclosure process while increasing transparency surrounding gifts.\r \r All entities conducting or supporting political activity in Queensland are required to submit a disclosure return to the Electoral Commission of Queensland. These include reporting of gifts and loans, as well as periodic reporting of other dealings such as advertising and expenditure. EDS makes these returns readily available to the public, providing faster and easier access to political financial disclosure information.\r \r The EDS is an outcome of the Electoral Commission of Queensland's ongoing commitment to the people of Queensland, to drive improvements to election services and meet changing community needs.\r \r To export the data from the EDS as a CSV file, consult this page: https://helpcentre.disclosures.ecq.qld.gov.au/hc/en-us/articles/115003351428-Can-I-export-the-data-I-can-see-in-the-map-\r \r For a detailed glossary of terms used by the EDS, please consult this page: https://helpcentre.disclosures.ecq.qld.gov.au/hc/en-us/articles/115002784587-Glossary-of-Terms-in-EDS\r \r For other information about how to use the EDS, please consult the FAQ page here: https://helpcentre.disclosures.ecq.qld.gov.au/hc/en-us/categories/115000599068-FAQs
Facebook
TwitterAttribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
\r The dataset was derived by the Bioregional Assessment Programme. This dataset was derived from multiple datasets. You can find a link to the parent datasets in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived.\r \r \r \r To ensure efficiency for processing speed and rendering this is a clip of the Vector Reference grid for the GAL region.\r \r It was created with a 50km buffer of the extent of the Hunter PAE and then selecting all grid cells that intersect with the extent.\r \r The unique ID field for each grid cell is AUID and starts from 1 in the reference grid. The grid also has a column id and row for easy reference\r \r The grid is in Australia Albers (GDA94) (EPSG 3577)\r \r
\r This is an attempt to standardise (where possible) outputs of models from BA assessments and is the template to be used for GAL (clipped from whole of BA reference Grid) for the groundwater and potentially surface water model outputs.\r \r
\r The minimum bounding geometry tool in ArcGIS 10.1 was used to return the extent of the Bioregion boundary. This was then buffered with a 50km radius.\r \r The select location tool in ArcGIS 10.1 was then used to select all gridcells within the buffered extent.\r \r An export of the grid cells was then created to produce a rectangle reference grid of the GAL region.\r \r The file contains 2 shape files \r \r 1) The grid cells clipped to the boundary\r \r 2) The boundary extents as a reference of the Region\r \r
\r Bioregional Assessment Programme (XXXX) GAL Assessment Units 1000m 20160522 v01. Bioregional Assessment Derived Dataset. Viewed 12 December 2018, http://data.bioregionalassessments.gov.au/dataset/96dffeea-5208-4cfc-8c5d-408af9ac508e.\r \r
\r * Derived From BA ALL Assessment Units 1000m Reference 20160516_v01\r \r * Derived From BA ALL Assessment Units 1000m 'super set' 20160516_v01\r \r
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2014-12-09...Table Name.Export Series: Shipment Characteristics by Commodity by Export Mode: 2012 and 2007....ReleaseSchedule. The data in this file are scheduled for release in December 2014.....Key TableInformation.None.....Universe. The 2012 Commodity Flow Survey (CFS) covers business establishments with paid employees that are located in the United States and are classified using the 2007 North American Industry Classification System (NAICS) in mining, manufacturing, wholesale trade, and selected retail trade and services industries, namely, electronic shopping and mail-order houses, fuel dealers, and publishers. Establishments classified in transportation, construction, and all other retail and services industries are excluded from the survey. Farms, fisheries, foreign establishments, and most government-owned establishments are also excluded. The survey also covers auxiliary establishments (i.e., warehouses and managing offices) of multi-establishments companies. For the 2012 CFS, an advance survey (pre-canvass) of approximately 100,000 establishments was conducted to identify establishments with shipping activity and to try and obtain an accurate measure of their shipping activity. Surveyed establishments that indicated undertaking shipping activities and the non-respondents to the pre-canvass were included in the CFS sample universe....GeographyCoverage.The data are shown at the U.S. level only.....IndustryCoverage.None.....Data ItemsandOtherIdentifyingRecords. This file contains data on:..Value ($ Millions).Tons (Thousands).Ton-miles (Millions).Percent change from 2007, and coefficient of variation or standard error for all above data items. .The data are shown by commodity code (COMM) and export mode of transportation (XMODE)......Sort Order.Data are presented in ascending YEAR by COMM by XMODE sequence.....FTP Download. Download the entire table at Table E1 FTP. ....ContactInformation.U.S. Census Bureau.Commodity Flow Survey.Tel: (301)763-2108.Email: erd.cfs@census.gov...The estimates presented are based on data from the 2012 and 2007 Commodity Flow Surveys (CFS) and supersede data previously released in the 2012 CFS Preliminary Report. These estimates only cover businesses with paid employees. All dollar values are expressed in current dollars relative to each sample year (2012 and 2007), i.e., they are based on price levels in effect at the time of each sample. Estimates may not be additive due to rounding. ...For information on Commodity Flow Survey geographies, including changes for 2012, see Census Geographies. .Symbols:.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..Z - Rounds to Zero..X - Not Applicable..For a complete list of all economic programs symbols, see the Symbols Glossary..Source: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Census Bureau, 2012 Commodity Flow Survey. .Note: The noise infusion data protection method has been applied to prevent data disclosure, and to protect respondent's confidentiality. Estimates are based on a sample of establishments and are subject to both sampling and nonsampling error. Estimated measures of sampling variability are provided in the tables. For information on confidentiality protection, sampling error, and nonsampling error see Survey Methodology..Commodity Code changes for 2012 CFS.. (CFS10) 07-R - Prior to the 2012 CFS, oils and fats treated for use as biodiesel were included in Commodity Code 07. In the 2012 CFS, oils and fats treated for use as biodiesel moved to Commodity Code 18. . (CFS20) 08-R - Prior to the 2012 CFS, alcohols intended for use as fuel such as ethanol, although not specifically identified, were included in Commodity Code 08. In the 2012 CFS, ethanol moved to Commodity Code 17. . (CFS30) 17-R - Prior to the 2012 CFS, fuel alcohols such as ethanol were included in Commodity Code 08, although not specifically identified. Also, kerosene was included in Commodity Code 19. In the 2012 CFS, ethanol, fuel alcohols and kerosene moved to Commodity Code 17. . (CFS40) 18-R - Prior to the 2012 CFS, biodiesel, although not specifically identified, was included in Commodity Code 07. In the 2012 CFS, biodiesel moved to Commodity Code 18. . (CFS11) 074-R - Prior to the 2012 CFS, oils and fats treated for use as biodiesel were included in Commodity Code 074. In the 2012 CFS, oils and fats treated for use as biodiesel moved to Commodity Code 182. . (CFS21) 083-R - Prior to the 2012 CFS, denatured alcohol of more than 80% by volume was included in Commodity Code 083. In the 2012 CFS, denatured alcohol of mor...
Facebook
Twitter
Facebook
TwitterThis dataset is associated with the publication “Disinfection byproducts formed during drinking water treatment reveal an export control point for dissolved organic matter in a subalpine headwater stream” published in Water Research X (Leonard et al. 2022; https://doi.org/10.1016/j.wroa.2022.100144). The associated study analyzed temporal trends from the Town of Crested Butte water treatment facility and synoptic sampling at Coal Creek in Crested Butte, Colorado, US. This work demonstrates how drinking water quality archives combined with synoptic sampling and targeted analyses can be used to identify and understand export control points for dissolved organic matter. This dataset is comprised of one main data folder containing (1) file-level metadata; (2) data dictionary; (3) metadata and international geo-sample number (IGSN) mapping file; (4) dissolved organic carbon (DOC), ultraviolet absorbance at 254 nanometers (UV254), total nitrogen (TN), and specific ultraviolet absorbance (SUVA) data; (5) disinfection bioproduct formation potential (DBP-FP) data; (6) readme; (7) methods codes; (8) water collection protocol; (9) folder of high resolution characterization of organic matter via 12 Tesla Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) through the Environmental Molecular Sciences Laboratory (EMSL; https://www.pnnl.gov/environmental-molecular-sciences-laboratory); and (10) folder of excitation emissions matrix (EEM) spectra. The FTICR folder contains a file of DOC (measured as non-purgeable organic carbon; NPOC) used for FTICR sample preparation. The FTICR folder also contains three subfolders: one subfolder containing the raw .xml data files, one containing the processed data, and the other containing instructions for using Formularity (https://omics.pnl.gov/software/formularity) and an R script to process the data based on the user's specific needs. All files are .csv, .pdf, .dat, .R, .ref, or .xml
Facebook
TwitterThe U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency's Long Island Sound Study (https://longislandsoundstudy.net), characterized nitrogen export from forested watersheds and whether nitrogen loading has been increasing or decreasing to help inform Long Island Sound management strategies. The Weighted Regressions on Time, Discharge, and Season (WRTDS; Hirsch and others, 2010) method was used to estimate annual concentrations and fluxes of nitrogen species using long-term records (14 to 37 years in length) of stream total nitrogen, dissolved organic nitrogen, nitrate, and ammonium concentrations and daily discharge data from 17 watersheds located in the Long Island Sound basin or in nearby areas of Massachusetts, New Hampshire, or New York. This data release contains the input water-quality and discharge data, annual outputs (including concentrations, fluxes, yields, and confidence intervals about these estimates), statistical tests for trends between the periods of water years 1999-2000 and 2016-2018, and model diagnostic statistics. These datasets are organized into one zip file (WRTDSeLists.zip) and six comma-separated values (csv) data files (StationInformation.csv, AnnualResults.csv, TrendResults.csv, ModelStatistics.csv, InputWaterQuality.csv, and InputStreamflow.csv). The csv file (StationInformation.csv) contains information about the stations and input datasets. Finally, a short R script (SampleScript.R) is included to facilitate viewing the input and output data and to re-run the model. Reference: Hirsch, R.M., Moyer, D.L., and Archfield, S.A., 2010, Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs: Journal of the American Water Resources Association, v. 46, no. 5, p. 857–880.