Downloadable Address Points & Road Segments data from the Countywide Address Management System (CAMS) Program. (Data Updated: Week of November 25, 2024)For detailed information, please review the contents and information available on the HUB site for the CAMS Program. https://cams-lacounty.hub.arcgis.com/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
This layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Imagery. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. See World Imagery for more details.The map service supporting this layer will enable you to export up to 150,000 tiles in a single request. For estimation purposes, this is large enough to support the export of:Large city (e.g. San Francisco) down to full level of detail at ~1:1,000 scale (Level 19)Medium size state or province (e.g. Colorado) down to scale of ~1:36,000 (Level 14)Medium to large country (e.g. Continental United States) down to scale of ~1:288,000 (Level 11)This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Imagery basemap.Service Information for DevelopersTo export tiles for World Imagery, you must use the instance of the World_Imagery service hosted on the tiledbasemaps.arcgis.com server referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
8786 Global export shipment records of Gis Switchgear with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature layer contains the locations of Natural Gas Import/Export Pipeline Facilities along the borders between the Continental United States, Canada, and Mexico for the Homeland Infrastructure Foundation-Level (HIFLD) Database (https://hifld-dhs-gii.gov/HIFLD) as well as the Energy modeling and simulation community. A Natural Gas Import/Export Pipeline Facility delivers natural gas in and out of the Continental United States between foreign countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Export of data available in the Open Street map database from the weekly extraction by Geofabrik. This extraction can be imported into Osmium, Osmosis, Imposm, osm2pgsql, mkgmap, or ArcGis or Quantis GIS tools.
This is the extraction of the collaborative database produced by the OpenStreetMap project. This database is extremely rich and mainly focused on human activity: roads, streets, paths, extremely varied points of interest (town halls, churches, administrative services, tourist points, shops, etc.), etc. The OpenStreetMap project is somehow the wikipedia of mapping.
In the United States, the federal government manages approximately 28% of the land in the United States. Most federal lands are west of the Mississippi River, where almost half of the land by area is managed by the federal government. Federal lands include 193 million acres managed by the US Forest Service in 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service, and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources. The agencies included in this layer are:Bureau of Land ManagementDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States federal lands managed by six federal agenciesGeographic Extent: 50 United States and the District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DOD, USFS, USFWS, NPS, PADUS 3.0Publication Date: Various - Esri compiled and published this layer in May 2025. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The Global Landslide Catalog (GLC) was developed with the goal of identifying rainfall-triggered landslide events around the world, regardless of size, impacts or location. The GLC considers all types of mass movements triggered by rainfall, which have been reported in the media, disaster databases, scientific reports, or other sources. The GLC has been compiled since 2007 at NASA Goddard Space Flight Center. This is a unique data set with the ID tag “GLC” in the landslide editor. This dataset on data.nasa.gov was a one-time export from the Global Landslide Catalog maintained separately. It is current as of March 7, 2016. The original catalog is available here: http://www.arcgis.com/home/webmap/viewer.html?url=https%3A%2F%2Fmaps.nccs.nasa.gov%2Fserver%2Frest%2Fservices%2Fglobal_landslide_catalog%2Fglc_viewer_service%2FFeatureServer&source=sd To export GLC data, you must agree to the “Terms and Conditions”. We request that anyone using the GLC cite the two sources of this database: Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., & Lerner-Lam, A. (2010). A global landslide catalog for hazard applications: method, results, and limitations. Natural Hazards, 52(3), 561–575. doi:10.1007/s11069-009-9401-4. [1] Kirschbaum, D.B., T. Stanley, Y. Zhou (In press, 2015). Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology. doi:10.1016/j.geomorph.2015.03.016. [2]
The Unpublished Digital Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (tuzi_geology.gdb), a 10.1 ArcMap (.MXD) map document (tuzi_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tuzi_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/tuzi_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.
The Unpublished Digital Geologic-GIS Map of the Schoodic Head Area, Acadia National Park, Maine is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (sche_geology.gdb), a 10.1 ArcMap (.mxd) map document (sche_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (acad_surficial_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (acad_geology_gis_readme.pdf). Please read the acad_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Maine Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sche_geology_metadata.txt or sche_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 19N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Acadia National Park.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Esri Southern Africa Company Export Import Records. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Downloadable Address Points & Road Segments data from the Countywide Address Management System (CAMS) Program. (Data Updated: Week of November 25, 2024)For detailed information, please review the contents and information available on the HUB site for the CAMS Program. https://cams-lacounty.hub.arcgis.com/