40 datasets found
  1. a

    Heat Severity - USA 2023

    • giscommons-countyplanning.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/TPL::heat-severity-usa-2023
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  2. Africa Crop Rice - Harvested Area

    • africageoportal.com
    • agriculture.africageoportal.com
    • +2more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Rice - Harvested Area [Dataset]. https://www.africageoportal.com/datasets/a35b683f6ba045b2a4da4eacf58ea642
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Rice (Oryza sativa and O. glaberrima) is one of the world's most important staple food crops. Over half of the world's population relies on rice. The people in some parts of Africa have been cultivating rice for over 3,500 years.Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of rice harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of rice as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:CassavaGroundnut (Peanut)Maize (Corn)MilletPotatoSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - a reintroductionLiving Atlas Discussion Group

  3. World Bioclimates

    • cacgeoportal.com
    • uneca.africageoportal.com
    • +13more
    Updated Dec 3, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Bioclimates [Dataset]. https://www.cacgeoportal.com/datasets/5826b14592ab4ebc99574919165bd860
    Explore at:
    Dataset updated
    Dec 3, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Climate plays a major role in determining the distribution of plants and animals. Bioclimatology, the study of climate as it affects and is affected by living organisms, is key to understanding the patterns of forests and deserts on the landscape, where productive agricultural lands may be found, and how changes in the climate will affect rare species. This layer is part of the Ecophysiographic Project and is one of the four input layers used to create the World Ecological Land Units Map.Dataset Summary This layer provides access to a 250m cell-sized raster with a bioclimatic stratification. The source dataset was a 30-arcsecond resolution raster (equivalent to 0.86 km2 at the equator or about a 920m pixel size). The layer has the following attributes: Temperature Description - Seven classes based on the number of growing degree days (the monthly mean temperature multiplied by number of days in the month summed for all months). The 1950 to 2000 monthly average temperature was used to calculate growing degree days. Values in this field and associated number of growing degree days are:Temperature DescriptionGrowing Degree DaysVery Hot9,000 – 13,500Hot7,000 – 9,000Warm4,500 – 7,000Cool2,500 – 4,500Cold1,000 – 2,500Very Cold300 – 1,000Arctic0 - 300Aridity Description - Six classes based on an index of aridity calculated by dividing precipitation by evapotranspiration. Precipitation and evapotranspiration are average values from 1950 to 2000.Aridity DescriptionAridity IndexVery Wet1.5 – 70Wet1.0 – 1.5Moist0.6 – 1.0Semi-dry0.3 – 0.6Dry0.1 – 0.3Very Dry0.01 – 0.1Bioclimate Class - a 2-part description that combines the value of the Temperature Description field and the Aridity Description field. The alias for this field is ELU Bioclimate Reclass. This layer was created by modifying the dataset documented in the publication: Metzger and others. 2012. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. What can you do with this layer? This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. A service is available providing access to the data table associated with this layer. The data table services can be used by developers to quickly and efficiently query the data and to create custom applications. For more information see the World Ecophysiographic Tables.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  4. World Soils Harmonized World Soil Database - Texture (Mature Support)

    • digital-earth-pacificcore.hub.arcgis.com
    • cacgeoportal.com
    • +4more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Soils Harmonized World Soil Database - Texture (Mature Support) [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/datasets/aa9a3a2dc6924f46adc5a999787f7961
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. Please use the following layers at replacements: World Soils 250m Percent Sand, World Soils 250m Percent Silt, World Soils 250m Percent Clay. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.Soil texture is an important factor determining which kinds of plants can be grown in a particular location. Texture determines a soil's susceptibility to erosion or compaction and how well a soil holds nutrients and water. For example sandy soils tend to be well drained and dry quickly often holding few nutrients while clay soils may hold much more water and many more plant nutrients.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to soil texture derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these attributes related to soil texture:USDA Texture ClassGravel - % volumeSand - % weightSilt - % weightClay - % weightThe layer is symbolized with the topsoil texture class.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil texture attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  5. World Distance to Water

    • iwmi.africageoportal.com
    • digital-earth-pacificcore.hub.arcgis.com
    • +1more
    Updated Dec 3, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Distance to Water [Dataset]. https://iwmi.africageoportal.com/datasets/46cbfa5ac94743e4933b6896f1dcecfd
    Explore at:
    Dataset updated
    Dec 3, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The arrangement of water in the landscape affects the distribution of many species including the distribution of humans. This layer provides a landscape-scale estimate of the distance from large water bodies.Dataset SummaryThis layer provides access to a 250m cell-sized raster of distance to surface water. To facilitate mapping, the values are in units of pixels. To convert this value to meters multiply by 250. The layer was created by extracting surface water values from the World Lithology and World Land Cover layers to produce a surface water layer. The distance from water was calculated using the ArcGIS Euclidian Distance Tool. The layer was created by Esri in 2014.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  6. Africa Crop Groundnut - Harvested Area

    • africageoportal.com
    • agriculture.africageoportal.com
    • +2more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Groundnut - Harvested Area [Dataset]. https://www.africageoportal.com/datasets/b6ff9a8a0a134e308b1aa4b889a0fb74
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Groundnut (Arachis hypogaea), also known as peanut, is grown around the world in a broad region between 40 degrees north and south latitude. Originally from South America, major producers of groundnut include China, India and the United States. Producing 30% of Africa's total, Nigeria leads the continent's production followed by Senegal, Sudan, Ghana, and Chad. Groundnut is a valuable source of protein and oil. It has the additional benefit of enriching depleted soils by converting nitrogen from the air into a form that is required by most plants.Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of groundnut harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of casava as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:Groundnut (Peanut)Maize (Corn)MilletPotatoRiceSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - a reintroductionLiving Atlas Discussion Group

  7. a

    India: Surface Water

    • hub.arcgis.com
    Updated Mar 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Surface Water [Dataset]. https://hub.arcgis.com/maps/eb39a8e28df54968b1a1cdccbf92a55f
    Explore at:
    Dataset updated
    Mar 22, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use in landscape-scale analysis.Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  8. World Lithology

    • hub.arcgis.com
    • cacgeoportal.com
    • +5more
    Updated Dec 3, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Lithology [Dataset]. https://hub.arcgis.com/datasets/53c82af69cae4c1f99902c0e0d456bf8
    Explore at:
    Dataset updated
    Dec 3, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The description of the chemistry, mineral composition, and physical properties of rocks is known as lithology. The study of lithology can yield valuable insights into the formation and productivity of soils, agricultural suitability, the movement of water, and other important properties of the environment that are influenced by underlying rock type.Dataset SummaryThe data for this layer comes from the Global Lithological map (GLiM). Esri obtained the data in late 2013 and rasterized it at 250m resolution to produce the data in this layer. The basis for lithological types in this layer was the Level1 field value in the GLiM attribute data, which contained these potential values (see below for index of values and Lithology Classes):Unconsolidated SedimentCarbonate Sedimentary RocksMixed Sedimentary RocksSiliclastic Sedimentary RocksEvaporitesPyroclasticMetamorphic RockAcid PlutonicsIntermediate PlutonicsBasic PlutonicsAcid VolcanicsIntermediate VolcanicsBasic VolcanicsIce and GlaciersWater BodiesNo DataThe GLiM represents the rock types of the Earth surface with 1,235,400 polygons that were characterized by the authors as being of an average mapping scale of 1:3,750,000 and over 100 times more detailed than previous global lithological maps.The recommended citation for source data is:Hartmann, Jörg; Moosdorf, Nils (2012): Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution). doi:10.1594/PANGAEA.788537,Supplement to: Hartmann, Jens; Moosdorf, Nils (2012): The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13, Q12004, doi:10.1029/2012GC004370This layer is part of the Ecophysiographic Project and is one of the four input layers used to create the World Ecological Land Units Map.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.A service is available providing access to the data table associated with this layer. The data table services can be used by developers to quickly and efficiently query the data and to create custom applications. For more information see the World Ecophysiographic Tables.Value,EF Lithology Class,ELU Lithology Class1,Unconsolidated Sediment,Unconsolidated Sediment2,Siliciclastic Sedimentary Rock,Non-Carbonate Sedimentary Rock3,Pyroclastics,Pyroclastics4,Mixed Sedimentary Rock,Mixed Sedimentary Rock5,Carbonate Sedimentary Rock,Carbonate Sedimentary Rock6,Evaporite,Evaporite7,Acid Volcanic,Acidic Volcanics8,Intermediate Volcanics,Non-Acidic Volcanics9,Basic Volcanics,Non-Acidic Volcanics10,Acid Plutonics,Acidic Plutonics11,Intermediate Plutonics,Non-Acidic Plutonics12,Basic Plutonics,Non-Acidic Plutonics13,Metamorphics,Metamorphic Rock14,Unconsolidated Sediment,Unconsolidated Sediment15,Ice and Glaciers,Ice and Glaciers16,Non-defined,Non-Defined

  9. World Elevation GMTED

    • pacificgeoportal.com
    • hub.arcgis.com
    • +3more
    Updated Dec 3, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Elevation GMTED [Dataset]. https://www.pacificgeoportal.com/datasets/e393da08765940e49e27e30e1df02b58
    Explore at:
    Dataset updated
    Dec 3, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) dataset provides a 7.5 arcsecond (approximately 250 meter resolution) digital elevation model with world-wide coverage at a resolution suitable for regional to continental scale analyses. Dataset SummaryThis layer provides access to a 250m cell-sized raster created from the Global Multi-resolution Terrain Elevation Data 2010 7.5 arcsecond mean elevation product. The dataset represents a compilation and synthesis of 11 different existing raster data sources. The data were published in 2011 by the USGS and the National Geospatial-Intelligence Agency.The dataset is documented in the publication: Danielson and Gesch. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 p.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  10. A

    Landsat Layers

    • data.amerigeoss.org
    • amerigeo.org
    • +6more
    html
    Updated Aug 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Landsat Layers [Dataset]. https://data.amerigeoss.org/nl/dataset/landsat-layers3
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 7, 2019
    Dataset provided by
    AmeriGEOSS
    Description

    This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).

    The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range.

    This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.

    Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.

    For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.

    *The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.

    For more information on each of the individual layers, see

    http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ;

    http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ;

    http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6

  11. a

    Heat Severity - USA 2022

    • keep-cool-global-community.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    United States
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  12. World Biomass (Mature Support)

    • pacificgeoportal.com
    • cacgeoportal.com
    • +3more
    Updated Dec 3, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Biomass (Mature Support) [Dataset]. https://www.pacificgeoportal.com/datasets/265ffc95d7f74280b6952752244b8f81
    Explore at:
    Dataset updated
    Dec 3, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Plants play a central role in the carbon cycle by absorbing carbon dioxide from the atmosphere and incorporating it in the structure of the plant. Globally living plants contain 500 billion metric tons of carbon, more than 60 times the amount of carbon released to the atmosphere by humans each year. Understanding the distribution of the carbon stored in living plants, known as biomass, is key to estimating the effects of land use change on the climate.Dataset SummaryThis layer provides access to a 1-km cell-sized raster with data on the density of carbon stored in living plants in metric tons per hectare for the year 2000. It was published by the Oak Ridge National Laboratory Carbon Dioxide Information Analysis Center in 2008.The authors of these data request that they be cited as:Ruesch, Aaron, and Holly K. Gibbs. 2008. New IPCC Tier-1 Global Biomass Carbon Map For the Year 2000. Available online from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  13. World Soils Harmonized World Soil Database - Chemistry (Mature Support)

    • hub.arcgis.com
    • pacificgeoportal.com
    • +1more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Soils Harmonized World Soil Database - Chemistry (Mature Support) [Dataset]. https://hub.arcgis.com/datasets/0e71d0e63c494d75b2bc897b7515f89a
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. Please use the following layers as replacements: World Soils 250m pH, World Soils 250m Cation Exchange Capacity, World Soils 250m Nitrogen, World Soils 250m Organic Carbon Density, World Soils 250m Organic Carbon Stocks, World Soils 250m Soil Organic Carbon. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.The mineral composition of underlying rock, the amount and type of organic material from plants and climatic and other environmental factors affect the chemistry of the soil. Chemical composition and processes determine how and what type of soil forms at a given location and what type of agriculture the areas wil support.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to the chemistry of soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these soil chemistry attributes:Organic Carbon - % weightCalcium Carbonate - % weightGypsum - % weightSalinity - Electrical Conductivity - dS/mpHAdditionally, 4 class description fields were added by Esri based on the document Harmonized World Soil Database Version 1.2 for use in web map pop-ups:pH Class DescriptionCalcium Carbonate Class DescriptionGypsum Class DescriptionSalinity - Electrical Conductivity - Class DescriptionThe layer is symbolized with the Topsoil pH field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil chemistry attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  14. Africa Crop Millet - Harvested Area

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • africageoportal.com
    • +5more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Millet - Harvested Area [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/5ef402b9fc2d4544bf72dfe740282bcf
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Millet is a group of grass species that produce small-seeded grains used for food and animal feed around the world. Common species include finger millet (Eleusine coracana), proso millet (Panicum miliaceum), pearl millet (Pennisetum glaucum), and foxtail millet (Setaria italica). Africa is a major producer growing 56% of the worlds millet. Pearl millet is an important food source in Africa and is known for its tolerance of hot and dry climates.Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of millet harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of millet as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:CassavaGroundnut (Peanut)Maize (Corn)PotatoRiceSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - a reintroductionLiving Atlas Discussion Group

  15. Monthly Soil Moisture

    • afghanistan-uneplive.hub.arcgis.com
    • colorado-river-portal.usgs.gov
    • +8more
    Updated Jul 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2022). Monthly Soil Moisture [Dataset]. https://afghanistan-uneplive.hub.arcgis.com/datasets/monthly-soil-moisture
    Explore at:
    Dataset updated
    Jul 28, 2022
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    Soils and soil moisture greatly influence the water cycle and have impacts on runoff, flooding and agriculture. Soil type and soil particle composition (sand, clay, silt) affect soil moisture and the ability of the soil to retain water. Soil moisture is also affected by levels of evaporation and plant transpiration, potentially leading to near dryness and eventual drought.Measuring and monitoring soil moisture can ensure the fitness of your crops and help predict or prepare for flash floods and drought. The GLDAS soil moisture data is useful for modeling these scenarios and others, but only at global scales. Dataset SummaryThe GLDAS Soil Moisture layer is a time-enabled image service that shows average monthly soil moisture from 2000 to the present at four different depth levels. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. The GLDAS soil moisture data is useful for modeling, but only at global scales. Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is one year.Depth: This layer has four depth levels. By default they are summed, but you can view each using the multidimensional filter. You must disable time animation on the layer before using its multidimensional filter. It is also possible to toggle between depth layers using raster functions, accessed through the Image Display tab.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.This layer has query, identify, and export image services available. This layer is part of a larger collection of earth observation maps that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about earth observations layers and the Living Atlas of the World. Follow the Living Atlas on GeoNet.

  16. Africa Crop Maize - Harvested Area

    • cartong-esriaiddev.opendata.arcgis.com
    • africageoportal.com
    • +4more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Maize - Harvested Area [Dataset]. https://cartong-esriaiddev.opendata.arcgis.com/datasets/6fab7020446c43b0b44727d6cb134ae8
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Maize (Zea mays), also known as corn, is a crop of world wide importance. Originally domesticated in what is now Mexico, its tolerance of diverse climates has lead to its widespread cultivation. Globally, it is tied with rice as the second most widely grown crop. Only wheat is more widely grown. In Africa it is grown throughout the agricultural regions of the continent from the Nile Delta in the north to the country of South Africa in the south. In sub-Saharan Africa it is relied on as a staple crop for 50% of the population.Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of maize harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of maize as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:CassavaGroundnut (Peanut)MilletPotatoRiceSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - a reintroductionLiving Atlas Discussion Group

  17. Africa Crop Cassava - Harvested Area

    • ecowas.africageoportal.com
    • africageoportal.com
    • +1more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Cassava - Harvested Area [Dataset]. https://ecowas.africageoportal.com/datasets/1f7863773c2649e5bb290b406c4d36f2
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Cassava (Manihot esculenta) also known as manioc in South America, is grown world-wide in tropical and sub-tropical regions providing an important staple for the diet of over half a billion people. It is drought tolerant and grows well in marginal soils. More than half of the world's cassava production is from Africa and Nigeria is the world's largest producer. In Ghana, cassava accounts for roughly 30% of the calories eaten. The root of the cassava plant must be prepared to remove harmful compounds prior to eating. Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of cassava harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of casava as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:Groundnut (Peanut)Maize (Corn)MilletPotatoRiceSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  18. Africa Crop Sorghum - Harvested Area

    • cartong-esriaiddev.opendata.arcgis.com
    • agriculture.africageoportal.com
    • +9more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Sorghum - Harvested Area [Dataset]. https://cartong-esriaiddev.opendata.arcgis.com/datasets/f64fbb5ac501469a8ae13543af55632b
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Sorghum (Sorghum bicolor) is an important grass species used for human and animal food. It was first cultivated in Africa and currently 53% of the world's production is in sub-Saharan Africa. Millions of farmers in arid regions rely on this crop due to its drought tolerant qualities.Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of sorghum harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of sorghum as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:CassavaGroundnut (Peanut)Maize (Corn)MilletPotatoRiceSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - a reintroductionLiving Atlas Discussion Group

  19. Monthly Precipitation

    • crb-open-data-usgs.hub.arcgis.com
    • climat.esri.ca
    • +10more
    Updated Jun 24, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Monthly Precipitation [Dataset]. https://crb-open-data-usgs.hub.arcgis.com/maps/esri::monthly-precipitation
    Explore at:
    Dataset updated
    Jun 24, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is one year.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.This layer has query, identify, and export image services available.This layer is part of a larger collection of earth observation maps that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about earth observations layers and the Living Atlas of the World. Follow the Living Atlas on GeoNet.

  20. Africa Crop Wheat - Harvested Area

    • africageoportal.com
    • rwanda.africageoportal.com
    • +3more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Wheat - Harvested Area [Dataset]. https://www.africageoportal.com/datasets/db028cfc90a342d7b2f16ac7a9ad779b
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Wheat (Triticum spp.) is one of the world's most important crops. In the developing world only rice is more important as a food source. In Africa, Ethiopia and South Africa are important producers.Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of wheat harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of wheat as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:CassavaGroundnut (Peanut)Maize (Corn)MilletPotatoRiceSorghumSweet Potato and YamData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - a reintroductionLiving Atlas Discussion Group

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/TPL::heat-severity-usa-2023

Heat Severity - USA 2023

Explore at:
Dataset updated
Apr 23, 2024
Dataset authored and provided by
The Trust for Public Land
Area covered
Description

Notice: this is the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

Search
Clear search
Close search
Google apps
Main menu