Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Coordinate System: Web Mercator Auxiliary Sphere Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Resolution/Tolerance: 1 meter/2 meters Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinksFeature Request Limit: 5,000Source: EPA and USGSPublication Date: March 13, 2019ArcGIS Server URL: https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/NHDPlusV21/FeatureServerPrior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThis layer provides a hillshaded surface (single band grayscale image) generated dynamically using the hillshade server-side function on the Terrain layer. The hillshading is based on a solar altitude angle of 45 degrees, and solar aspect angle of 315 degrees. The z factor is varied based on scale so that a suitable hillshade is visible at all scales. This layer is useful for simple visualization of the Terrain because it is easy to interpret and use as a base layer in applications and maps. Update Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. Hillshade provides a quick indication of the shape of the terrain at a range of map scales. The image service can be added to web applications or other maps to enhance contextual understanding. Use for Analysis: No. A hillshade is generally not used for analysis. For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterThe Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.
Facebook
Twitter**THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.
Facebook
TwitterThis layer provides slope percent rise values calculated dynamically from the elevation data (within the current extents) using the server-side slope function applied on the Terrain layer. Percent of slope is determined by dividing the amount of elevation change by the amount of horizontal distance covered (sometimes referred to as "the rise divided by the run"), and then multiplying the result by 100. The values range from 0 to essentially infinity. When the slope angle equals 45 degrees, the rise is equal to the run. Expressed as a percentage, the slope of this angle is 100 percent. As the slope approaches vertical (90 degrees), the percentage slope approaches infinity.Units: Percent (%)Update Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.
WARNING: Slope is computed in the projection specified by the client software. The server resamples the elevation data to the requested projection and pixel size and then computes slope. Slope should be requested in a projection that maintains correct scale in x and y directions for the area of interest. Using geographic coordinates will give incorrect results. For the WGS84 Mercator and WGS Web Mercator (auxiliary sphere) projections used by many web applications, a correction factor has been included to correct for latitude-dependent scale changes.What can you do with this layer?Use for Visualization: No. This image service provides numeric values indicating terrain characteristics. Due to the limited range of values, this service is not generally appropriate for visual interpretation, unless the client application applies an additional color map. Use for Analysis: Yes. This layer provides numeric values indicating slope percent, calculated based on the defined cell size. Cell size has an effect on the slope values. There is a limit of 5000 rows x 5000 columns. For Slope values in degrees, use Terrain - Slope Degrees layer. For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of the French Gulch 15' Quadrangle, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (freg_geology.gdb), a 10.1 ArcMap (.mxd) map document (freg_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (whis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (whis_geology_gis_readme.pdf). Please read the whis_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (freg_geology_metadata.txt or freg_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Whiskeytown National Recreation Area.
Facebook
TwitterThis World Elevation TopoBathy service combines topography (land elevation) and bathymetry (water depths) from various authoritative sources from across the globe. Heights are orthometric (sea level = 0), and bathymetric values are negative downward from sea level. The source data of land elevation in this service is same as in the Terrain layer. When possible, the water areas are represented by the best available bathymetry. Height/Depth units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select additional functions, applied on the server, that return rendered data. For visualizations such as hillshade or elevation tinted hillshade, consider using the appropriate server-side function defined on this service. Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns. NOTE: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the max extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percentage Hillshade Multi-Directional Hillshade Elevation Tinted HillshadeSlope MapMosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 is included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks. Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of Fort Laramie National Historic Site and Vicinity, Wyoming is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (fola_geology.gdb), a 10.1 ArcMap (.mxd) map document (fola_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (fola_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (fola_geology_gis_readme.pdf). Please read the fola_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fola_geology_metadata.txt or fola_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:31,680 and United States National Map Accuracy Standards features are within (horizontally) 16.1 meters or 52.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Fort Laramie National Historic Site.
Facebook
TwitterThe Unpublished Digital Geologic Map of Chickasaw National Recreation Area and Vicinity, Oklahoma is composed of GIS data layers and GIS tables in a 10.0 file geodatabase (chic_geology.gdb), a 10.0 ArcMap (.MXD) map document (chic_geology.mxd), and individual 10.0 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chic_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chic_gis_readme.pdf). Please read the chic_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.0 shapefile format contact Stephanie O’Meara (stephanie_o’meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (chic_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chic/chic_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Chickasaw National Recreation Area.
Facebook
TwitterThis dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterThis layer provides slope values in degrees calculated dynamically from the elevation data (within the current extents) using the server-side slope function applied on the Terrain layer. The values are integer and represent the angle of the downward sloping terrain (0 to 90 degrees). Note: slope is a function of the pixel size of the request, so at smaller scales the slope values are smaller as pixel sizes increase. Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.WARNING: Slope is computed in the projection specified by the client software. The server resamples the elevation data to the requested projection and pixel size and then computes slope. Slope should be requested in a projection that maintains correct scale in x and y directions for the area of interest. Using geographic coordinates will give incorrect results. For the WGS84 Mercator and WGS Web Mercator (auxiliary sphere) projections used by many web applications, a correction factor has been included to correct for latitude-dependent scale changes.What can you do with this layer?Use for Visualization: No. This image service provides numeric values indicating terrain characteristics. Due to the limited range of values, this service is not generally appropriate for visual interpretation, unless the client application applies an additional color map. For use in visualization, use the Terrain: Slope Map. Use for Analysis: Yes. This layer provides numeric values indicating the average slope angle within a raster cell, calculated based on the defined cell size. Cell size has an effect on the slope values. There is a limit of 5000 rows x 5000 columns. For Slope values in Percent, use Terrain - Slope Percent layer.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterThis dynamic image service provides float values representing ground heights in meters, based on 3DEP seamless 1 arc-second data from USGS 3D Elevation Program (3DEP). Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: AnnuallyCoverage: conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico.Data Source: The data for this layer comes from 3DEP seamless 1 arc-second dataset from the USGS's 3D Elevation Program with original source data in its native coordinate system.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as hillshade, slope, consider using the appropriate server-side function defined on this service.
Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. The layer is restricted to a 24,000 x 24,000 pixel limit.
NOTE: The image service uses North America Albers Equal Area Conic projection (WKID: 102008) and resamples the data dynamically to the requested projection, extent and pixel size. For analyses requiring the highest accuracy, when using ArcGIS Desktop, you will need to use native coordinates (GCS_North_American_1983, WKID: 4269) and specify the native resolutions (0.0002777777777779 degrees) as the cell size geoprocessing environment setting and ensure that the request is aligned with the source pixels.
Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates. Slope Degrees Slope Percentage Aspect Hillshade Slope Degrees MapThis layer has query, identify, and export image services available. The layer is restricted to a 24,000 x 24,000 pixel limit.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American SamoaVisible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.Source: Federal Emergency Management AgencyPublication Date: April 1, 2019This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.A web map featuring this layer is available for you to use.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas. Add labels and set their propertiesCustomize the pop-upUse in analysis tools to discover patterns in the dataArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (mocr_geology.gdb), a 10.1 ArcMap (.mxd) map document (mocr_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (mocr_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (mocr_geology_gis_readme.pdf). Please read the mocr_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mocr_geology_metadata.txt or mocr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Moores Creek National Battlefield.
Facebook
TwitterVector polygon map data of city limits from Houston, Texas containing 731 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Facebook
TwitterThe Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gwsf_geology.gdb), a 10.1 ArcMap (.MXD) map document (gwsf_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gwsf_gis_readme.pdf). Please read the gwsf_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey and New York State Museum. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gwsf_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gwsf_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.
Facebook
TwitterThe Unpublished Digital Bedrock Geologic-GIS Map of the Sandy Hook and Longbranch Quadrangles, New Jersey is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (shbr_geology.gdb), a 10.1 ArcMap (.MXD) map document (shbr_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (shbr_gis_readme.pdf). Please read the shbr_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shbr_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/shbr_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.
Facebook
TwitterThe Unpublished Digital Surficial Geologic Map of Saratoga National Historical Site and Vicinity, New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (sara_geology.gdb), a 10.1 ArcMap (.MXD) map document (sara_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (sara_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (sara_gis_readme.pdf). Please read the sara_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: De Simone Geological Investigations. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sara_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/sara/sara_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Saratoga National Historical Site.
Facebook
TwitterThe Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) dataset provides a 7.5 arcsecond (approximately 250 meter resolution) digital elevation model with world-wide coverage at a resolution suitable for regional to continental scale analyses. This layer provides access to a 250m cell-sized raster created from the Global Multi-resolution Terrain Elevation Data 2010 7.5 arcsecond mean elevation product. The dataset represents a compilation and synthesis of 11 different existing raster data sources. The data were published in 2011 by the USGS and the National Geospatial-Intelligence Agency. The dataset is documented in the publication: Danielson and Gesch. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 p. Dataset SummaryAnalysis: Restricted single source analysis. Maximum size of analysis is 16,000 x 16,000 pixels. What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks. The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group. The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) EmergencyE911_RDS was originally derived from RDSnn (now called TransRoad_RDS). "Zero-length ranges" in the ROADS layer pertain to grand-fathered towns that have not yet provided the Enhanced 9-1-1 Board road segment range information. RDSnn was originally developed using a combination of paper and RC Kodak RF 5000 orthophotos (visual image interpretation and manual digitizing of centerlines). Road attributes (RTNO and CLASS) were taken from the official VT Agency of Transportation (VTrans) highway maps. New roads not appearing on the photos were digitized with locations approximated from the VTrans highway maps. State Forest maps were used to determine both location and attributes of state forest roads. Some data updates have used RF 2500 or RF 1250 orthophotos and GPS, or other means for adding new roads and improving road locations. The Enhanced E911 program added new roads from GPS and orthos between 1996-1998. Also added road name and address geocoding. VCGI PROCESSING (Tiling and Added items); E911 provides the EmergencyE911_RDS data to VCGI in a statewide format. It lacks FIPS6 coding, making it difficult to extract data on the basis of town/county boundaries. As a result, VCGI has added FIPS6 to the attribute table. This field was originally populated by extracting MCODE value from RDNAME and relating to TBPOLY.PAT to bring over matching MCODE values. FIPS6 problems along the interstates and "Gores & Grants" in the Northeast Kingdom, were corrected. All features with an MCODE equal to 200 or 579 were assigned a FIPS6 equal to 0. The center point of these arcs were then intersected with BoundaryTown_TBHASH to assign a FIPS6 value. This information was then transfered back into the RDS.AAT file via a relate. A relate was established between the ROADNAMES.DBF file (road name lookup table) and the RDS.AAT file. The RDFLNAME attribute was populated by transfering the NAME value in the ROADNAMES.DBF table. The RDFLNAME item was then parsed into SUF.DIR, STREET.NAME, STREET.TYPE, and PRE.DIR, making addressing matching functions a little easier. See the "VT Road Centerline Data FAQ" for more information about TransRoad_RDS and EmergencyE911_RDS. https://vcgi.vermont.gov/techres/?page=./white_papers/default_content.cfmField Descriptions:OBJECTID: Internal feature number, automatically generated by Esri software.SEGMENTID: Unique segment ID.ARCID: Arc identifier, unique statewide. The ARCID is a unique identifier for every ARC in the EmergencyE911_RDS data layer.PD: Prefix Direction, previously name PRE.DIR.PT: Prefix Type.SN: Street Name. Previously named STREET.ST: Street Type.SD: Suffix Direction, i.e., W for West, E for East, etc.GEONAMEID: Unique ID for each road name.PRIMARYNAME: Primary name.ALIAS1: Alternate road name 1.ALIAS2: Alternate road name 2.ALIAS3: Alternate road name 3.ALIAS4: Alternate road name 4.ALIAS5: Alternate road name 5.COMMENTS: Free text field for miscellaneous comments.ONEWAY: One-way street. Uses the Oneway domain*.NO_MSAG:MCODE: Municipal code.LESN: Left side of road Emergency Service Number.RESN: Right side of road Emergency Service Number.LTWN: Left side of road town.RTWN: Right side of road town.LLO_A: Low address for left side of road.RLO_A: Low address for right side of road.LHI_A: High address for left side of road.RHI_A: High address for right side of road.LZIP: Left side of road zip code.RZIP: Right side of road zip code.LLO_TRLO_TLHI_TRHI_TRTNAME: Route name.RTNUMBER: Route number.HWYSIGN: Highway sign.RPCCLASSAOTCLASS: Agency of Transportation class. Uses AOTClass domain**.ARCMILES: ESRI ArcGIS miles.AOTMILES: Agency of Transportation miles.AOTMILES_CALC:UPDACT:SCENICHWY: Scenic highway.SCENICBYWAY: Scenic byway.FORMER_RTNAME: Former route name.PROVISIONALYEAR: Provisional year.ANCIENTROADYEAR: Ancient road year.TRUCKROUTE: Truck route.CERTYEAR:MAPYEAR:UPDATEDATE: Update date.GPSUPDATE: Uses GPSUpdate domain***.GlobalID: GlobalID.STATE: State.GAP: Gap.GAPMILES: Gap miles.GAPSTREETID: Gap street ID.FIPS8:FAID_S:RTNUMBER_N:LCOUNTY:RCOUNTY:PRIMARYNAME1:SOURCEOFDATA: Source of data.COUNTRY: Country.PARITYLEFT:PARITYRIGHT:LFIPS:RFIPS:LSTATE:RSTATE:LESZ:RESZ:SPEED_SOURCE: Speed source.SPEEDLIMIT: Speed limit.MILES: Miles.MINUTES: Minutes.Shape: Feature geometry.Shape_Length: Length of feature in internal units. Automatically computed by Esri software.*Oneway Domain:N: NoY: Yes - Direction of arcX: Yes - Opposite direction of arc**AOTClass Domain:1: Town Highway Class 1 - undivided2: Town Highway Class 2 - undivided3: Town Highway Class 3 - undivided4: Town Highway Class 4 - undivided5: State Forest Highway6: National Forest Highway7: Legal Trail. Legal Trail Mileage Approved by Selectboard after the enactment of Act 178 (July 1, 2006). Due to the introduction of Act 178, the Mapping Unit needed to differentiate between officially accepted and designated legal trail versus trails that had traditionally been shown on the maps. Towns have until 2015 to map all Class 1-4 and Legal Trails, based on new changes in VSA Title 19.8: Private Road - No Show. Private road, but not for display on local maps. Some municipalities may prefer not to show certain private roads on their maps, but the roads may need to be maintained in the data for emergency response or other purposes.9: Private road, for display on local maps10: Driveway (put in driveway)11: Town Highway Class 1 - North Bound12: Town Highway Class 1 - South Bound13: Town Highway Class 1 - East Bound14: Town Highway Class 1 - West Bound15: Town Highway Class 1 - On/Off Ramp16: Town Highway Class 1 - Emergency U-Turn20: County Highway21: Town Highway Class 2 - North Bound22: Town Highway Class 2 - South Bound23: Town Highway Class 2 - East Bound24: Town Highway Class 2 - West Bound25: Town Highway Class 2 - On/Off Ramp30: State Highway31: State Highway - North Bound32: State Highway - South Bound33: State Highway - East Bound34: State Highway - West Bound35: State Highway - On/Off Ramp40: US Highway41: US Highway - North Bound42: US Highway - South Bound43: US Highway - East Bound44: US Highway - West Bound45: US Highway - On/Off Ramp46: US Highway - Emergency U-Turn47: US Highway - Rest Area50: Interstate Highway51: Interstate Highway - North Bound52: Interstate Highway - South Bound53: Interstate Highway - East Bound54: Interstate Highway - West Bound55: Interstate Highway - On/Off Ramp56: Interstate Highway - Emergency U-Turn57: Interstate Highway - Rest Area59: Interstate Highway - Other65: Ferry70: Unconfirmed Legal Trail71: Unidentified Corridor80: Proposed Highway Unknown Class81: Proposed Town Highway Class 182: Proposed Town Highway Class 283: Proposed Town Highway Class 384: Proposed State Highway85: Proposed US Highway86: Proposed Interstate Highway87: Proposed Interstate Highway - Ramp88: Proposed Non-Interstate Highway - Ramp89: Proposed Private Road91: New - Class Unknown92: Military - no public access93: Public - Class Unknown95: Class Under Review96: Discontinued Road97: Discontinued Now Private98: Not a Road99: Unknown***GPSUpdate Domain:Y: Yes - Needs GPS UpdateN: No - Does not need GPS UpdateG: GPS Update CompleteV: GPS Update Complete - New RoadX: Unresolved Segment
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Coordinate System: Web Mercator Auxiliary Sphere Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Resolution/Tolerance: 1 meter/2 meters Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinksFeature Request Limit: 5,000Source: EPA and USGSPublication Date: March 13, 2019ArcGIS Server URL: https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/NHDPlusV21/FeatureServerPrior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.