A Baseflow Filter for Hydrologic Models in R Resources in this dataset:Resource Title: A Baseflow Filter for Hydrologic Models in R. File Name: Web Page, url: https://www.ars.usda.gov/research/software/download/?softwareid=383&modecode=20-72-05-00 download page
The Rosenberg Self-Esteem Scale (RSE) is a 10-item scale that measures global self-worth in adolescents by measuring both positive (5 items) and negative (5 items) feelings about the self. Although originally constructed as a Guttman-type scale (i.e., items with an ordinal pattern on the attribute), most researchers use a 4-point response format ranging from strongly agree to strongly disagree.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set contains the Raw SNP output files for each of the three diadromous species studied within this manuscript. Additionally the covariates file containing all environmental and individual data about all individuals is included. All R code used to filter SNP's to the quality thresholds within this paper is additionally provided
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data presented here were used to produce the following paper:
Archibald, Twine, Mthabini, Stevens (2021) Browsing is a strong filter for savanna tree seedlings in their first growing season. J. Ecology.
The project under which these data were collected is: Mechanisms Controlling Species Limits in a Changing World. NRF/SASSCAL Grant number 118588
For information on the data or analysis please contact Sally Archibald: sally.archibald@wits.ac.za
Description of file(s):
File 1: cleanedData_forAnalysis.csv (required to run the R code: "finalAnalysis_PostClipResponses_Feb2021_requires_cleanData_forAnalysis_.R"
The data represent monthly survival and growth data for ~740 seedlings from 10 species under various levels of clipping.
The data consist of one .csv file with the following column names:
treatment Clipping treatment (1 - 5 months clip plus control unclipped) plot_rep One of three randomised plots per treatment matrix_no Where in the plot the individual was placed species_code First three letters of the genus name, and first three letters of the species name uniquely identifies the species species Full species name sample_period Classification of sampling period into time since clip. status Alive or Dead standing.height Vertical height above ground (in mm) height.mm Length of the longest branch (in mm) total.branch.length Total length of all the branches (in mm) stemdiam.mm Basal stem diameter (in mm) maxSpineLength.mm Length of the longest spine postclipStemNo Number of resprouting stems (only recorded AFTER clipping) date.clipped date.clipped date.measured date.measured date.germinated date.germinated Age.of.plant Date measured - Date germinated newtreat Treatment as a numeric variable, with 8 being the control plot (for plotting purposes)
File 2: Herbivory_SurvivalEndofSeason_march2017.csv (required to run the R code: "FinalAnalysisResultsSurvival_requires_Herbivory_SurvivalEndofSeason_march2017.R"
The data consist of one .csv file with the following column names:
treatment Clipping treatment (1 - 5 months clip plus control unclipped) plot_rep One of three randomised plots per treatment matrix_no Where in the plot the individual was placed species_code First three letters of the genus name, and first three letters of the species name uniquely identifies the species species Full species name sample_period Classification of sampling period into time since clip. status Alive or Dead standing.height Vertical height above ground (in mm) height.mm Length of the longest branch (in mm) total.branch.length Total length of all the branches (in mm) stemdiam.mm Basal stem diameter (in mm) maxSpineLength.mm Length of the longest spine postclipStemNo Number of resprouting stems (only recorded AFTER clipping) date.clipped date.clipped date.measured date.measured date.germinated date.germinated Age.of.plant Date measured - Date germinated newtreat Treatment as a numeric variable, with 8 being the control plot (for plotting purposes) genus Genus MAR Mean Annual Rainfall for that Species distribution (mm) rainclass High/medium/low
File 3: allModelParameters_byAge.csv (required to run the R code: "FinalModelSeedlingSurvival_June2021_.R"
Consists of a .csv file with the following column headings
Age.of.plant Age in days species_code Species pred_SD_mm Predicted stem diameter in mm pred_SD_up top 75th quantile of stem diameter in mm pred_SD_low bottom 25th quantile of stem diameter in mm treatdate date when clipped pred_surv Predicted survival probability pred_surv_low Predicted 25th quantile survival probability pred_surv_high Predicted 75th quantile survival probability species_code species code Bite.probability Daily probability of being eaten max_bite_diam_duiker_mm Maximum bite diameter of a duiker for this species duiker_sd standard deviation of bite diameter for a duiker for this species max_bite_diameter_kudu_mm Maximum bite diameer of a kudu for this species kudu_sd standard deviation of bite diameter for a kudu for this species mean_bite_diam_duiker_mm mean etc duiker_mean_sd standard devaition etc mean_bite_diameter_kudu_mm mean etc kudu_mean_sd standard deviation etc genus genus rainclass low/med/high
File 4: EatProbParameters_June2020.csv (required to run the R code: "FinalModelSeedlingSurvival_June2021_.R"
Consists of a .csv file with the following column headings
shtspec species name
species_code species code
genus genus
rainclass low/medium/high
seed mass mass of seed (g per 1000seeds)
Surv_intercept coefficient of the model predicting survival from age of clip for this species
Surv_slope coefficient of the model predicting survival from age of clip for this species
GR_intercept coefficient of the model predicting stem diameter from seedling age for this species
GR_slope coefficient of the model predicting stem diameter from seedling age for this species
species_code species code
max_bite_diam_duiker_mm Maximum bite diameter of a duiker for this species
duiker_sd standard deviation of bite diameter for a duiker for this species
max_bite_diameter_kudu_mm Maximum bite diameer of a kudu for this species
kudu_sd standard deviation of bite diameter for a kudu for this species
mean_bite_diam_duiker_mm mean etc
duiker_mean_sd standard devaition etc
mean_bite_diameter_kudu_mm mean etc
kudu_mean_sd standard deviation etc
AgeAtEscape_duiker[t] age of plant when its stem diameter is larger than a mean duiker bite
AgeAtEscape_duiker_min[t] age of plant when its stem diameter is larger than a min duiker bite
AgeAtEscape_duiker_max[t] age of plant when its stem diameter is larger than a max duiker bite
AgeAtEscape_kudu[t] age of plant when its stem diameter is larger than a mean kudu bite
AgeAtEscape_kudu_min[t] age of plant when its stem diameter is larger than a min kudu bite
AgeAtEscape_kudu_max[t] age of plant when its stem diameter is larger than a max kudu bite
Affective and cognitive wellbeing consisted of two questions: "How happy did you feel this past week?", and "How satisfied were you with your life in the past week?". The items were assessed during the Covid-19 pandemic.
Small form factor filter based PM collection data from both co-located ambient sampling and chamber studies conducted on controlled smoke environments. Metadata is contained within files. This dataset is associated with the following publication: Krug, J.D., R. Long, M. Colon, A. Habel, S. Urbanski, and M. Landis. Evaluation of Small Form Factor, Filter-Based PM2.5 Samplers for Temporary Non-Regulatory Monitoring During Wildland Fire Smoke Events. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 265: 0, (2021).
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade Frequency content of Input Signal Low-pass Filter Cutoff Frequency Freuency Content of Low-pass Output Signal Filter Bank Frequency Band 0 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz Only available for 16,384 Hz sampling.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistical models and data. Unzip files and open datafiles in R using the readRDS function. Access models and data using the brms package. Data are stored in model_name$dataCustom made R package Argiope to process RAW images.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The COVID-19 pandemic lockdown worldwide provided a unique research opportunity for ecologists to investigate the human-wildlife relationship under abrupt changes in human mobility, also known as Anthropause. Here we chose 15 common non-migratory bird species with different levels of synanthrope and we aimed to compare how human mobility changes could influence the occupancy of fully synanthropic species such as House Sparrow (Passer domesticus) versus casual to tangential synanthropic species such as White-breasted Nuthatch (Sitta carolinensis). We extracted data from the eBird citizen science project during three study periods in the spring and summer of 2020 when human mobility changed unevenly across different counties in North Carolina. We used the COVID-19 Community Mobility reports from Google to examine how community mobility changes towards workplaces, an indicator of overall human movements at the county level, could influence bird occupancy. Methods The data source we used for bird data was eBird, a global citizen science project run by the Cornell Lab of Ornithology. We used the COVID-19 Community Mobility Reports by Google to represent the pause of human activities at the county level in North Carolina. These data are publicly available and were last updated on 10/15/2022. We used forest land cover data from NC One Map that has a high resolution (1-meter pixel) raster data from 2016 imagery to represent canopy cover at each eBird checklist location. We also used the raster data of the 2019 National Land Cover Database to represent the degree of development/impervious surface at each eBird checklist location. All three measurements were used for the highest resolution that was available to use. We downloaded the eBird Basic Dataset (EBD) that contains the 15 study species from February to June 2020. We also downloaded the sampling event data that contains the checklist efforts information. First, we used the R package Auk (version 0.6.0) in R (version 4.2.1) to filter data in the following conditions: (1) Date: 02/19/2020 - 03/29/2020; (2) Checklist type: stationary; (3) Complete checklist; (4) Time: 07:00 am - 06:00 pm; (5) Checklist duration: 5-20 mins; (6) Location: North Carolina. After filtering data, we used the zero fill function from Auk to create detection/non-detection data of each study species in NC. Then we used the repeat visits filter from Auk to filter eBird checklist locations where at least 2 checklists (max 10 checklists) have been submitted to the same location by the same observer, allowing us to create a hierarchical data frame where both detection and state process can be analyzed using Occupancy Modeling. This data frame was in a matrix format that each row represents a sampling location and the columns represent the detection and non-detection of the 2-10 repeat sampling events. For the Google Community Mobility data, we chose the “Workplaces” categoriy of mobility data to analyze the Anthropause effect because it was highly relevant to the pause of human activities in urban areas. The mobility data from Google is a percentage change compared to a baseline for each day. A baseline day represents a normal value for the day of the week from the 5-week period (01/03/2020-02/06/2020). For example, a mobility value of -30.0 for Wake County on Apr 15, 2020, means the overall mobility in Wake County on that day decreased by 30% compared to the baseline day a few months ago. Because the eBird data we used covers a wider range of dates rather than each day, we took the average value of mobility before lockdown, during lockdown, and after lockdown in each county in NC. For the environmental variables, we calculated the values in ArcGIS Pro (version 3.1.0). We created a 200 m buffer at each eligible eBird checklist location. For the forest cover data, we used “Zonal Statistics as Table” to extract the percentage of forest cover at each checklist location’s 200-meter circular buffer. For the National Land Cover Database (NLCD) data, we combined low-intensity, medium-intensity, and high-intensity development as development covers and used “Summarize Within” to extract the percentage of development cover using the polygon version of NLCD. We used a correlation matrix of the three predictors (workplace mobility, percent forest cover, and percent development cover) and found no co-linearity. Thus, these three predictors plus the interaction between workplace mobility and percent development cover were the site covariates of the Occupancy Models. For the detection covariates, four predictors were considered including time of observation, checklist duration, number of observers, and workplace mobility. These detection covariates were also not highly correlated. We then merged all data into an unmarked data frame using the “unmarked” R package (version 1.2.5). The unmarked data frame has eBird sampling locations as sites (rows in the data frame) and repeat checklists at the same sampling locations as repeat visits (columns in the data frame).
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
The Generation R Study is a population-based prospective cohort study from fetal life until adulthood. The study is designed to identify early environmental and genetic pathways...
Data on vegetated filter strips, sediment loading into and out of riparian corridors/buffers (VFS), removal efficiency of sediment, meta-analysis of removal efficiencies, dimensional analysis of predictor variables, and regression modeling of VFS removal efficiencies. This dataset is associated with the following publication: Ramesh, R., L. Kalin, M. Hantush, and A. Chaudhary. A secondary assessment of sediment trapping effectiveness by vegetated buffers. ECOLOGICAL ENGINEERING. Elsevier Science Ltd, New York, NY, USA, 159: 106094, (2021).
The Sloan Digital Sky Survey is a project to survey a 10000 square degree area on the Northern sky over a 5 year period. A dedicated 2.5m telescope is specially designed to take wide field (3 degrees in diameter) images using a 5x6 mosaic of 2048x2048 CCD`s, in five wavelength bands, operating in drift scan mode. The total raw data will exceed 40 TB. A processed subset, of about 1 TB in size, will consist of 1 million spectra, positions and image parameters for over 100 million objects, plus a mini-image centered on each object in every color. The data will be made available to the public after the completion of the survey
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global automotive oil strainer market is experiencing robust growth, driven by the increasing demand for vehicles and the rising adoption of advanced filtration technologies. While precise market size figures aren't provided, a logical estimation based on typical CAGR values for this sector (let's assume a conservative 5% CAGR) and a 2025 market value of $1.5 billion (a reasonable estimate for a mature but growing market segment) suggests significant expansion over the forecast period (2025-2033). Key drivers include stringent emission regulations globally, pushing for enhanced engine protection and longevity, and the growing adoption of advanced filter media, such as synthetic materials offering superior performance and durability compared to traditional options. Further fueling market expansion are technological advancements leading to higher engine efficiency and the increasing prevalence of electric and hybrid vehicles, which despite different engine architectures, still require robust filtration systems. Market trends indicate a shift towards higher-performance oil strainers capable of handling the demands of modern, high-performance engines. The rise of connected vehicles and predictive maintenance technologies is also impacting the market, creating demand for smart oil strainer solutions that provide real-time data on filter performance. However, potential restraints include price fluctuations in raw materials and increased competition from manufacturers in emerging economies. The market is segmented by filter type (e.g., full-flow, bypass), vehicle type (passenger cars, commercial vehicles), and material (paper, synthetic). Key players in this competitive market include a mix of established international players and regional manufacturers, constantly innovating to meet the evolving needs of the automotive industry. The presence of multiple Japanese companies points to their significant technological advancements and market leadership in filtration technology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary:
Marine geophysical exchange files for R/V Kilo Moana: 2002 to 2018 includes 328 geophysical archive files spanning km0201, the vessel's very first expedition, through km1812, the last survey included in this data synthesis.
Data formats (you will likely require only one of these):
MGD77T (M77T): ASCII - the current standard format for marine geophysical data exchange, tab delimited, low human readability
MGD77: ASCII - legacy format for marine geophysical data exchange (no longer recommended due to truncated data precision and low human readability)
GMT DAT: ASCII - the Generic Mapping Tools format in which these archive files were built, best human readability but largest file size
MGD77+: highly flexible and disk space saving binary NetCDF-based format, enables adding additional columns and application of errata-based data correction methods (i.e., Chandler et al, 2012), not human readable
The process by which formats were converted is explained below.
Data Reduction and Explanation:
R/V Kilo Moana routinely acquired bathymetry data using two concurrently operated sonar systems hence, for this analysis, a best effort was made to extract center beam depth values from the appropriate sonar system. No resampling or decimation of center beam depth data has been performed with the exception that all depth measurements were required to be temporally separated by at least 1 second. The initial sonar systems were the Kongsberg EM120 for deep and EM1002 for shallow water mapping. The vessel's deep sonar system was upgraded to Kongsberg EM122 in January of 2010 and the shallow system to EM710 in March 2012.
The vessel deployed a Lacoste and Romberg spring-type gravity meter (S-33) from 2002 until March 2012 when it was replaced with a Bell Labs BGM-3 forced feedback-type gravity meter. Of considerable importance is that gravity tie-in logs were by and large inadequate for the rigorous removal of gravity drift and tares. Hence a best effort has been made to remove gravity meter drift via robust regression to satellite-derived gravity data. Regression slope and intercept are analogous to instrument drift and DC shift hence their removal markedly improves the agreement between shipboard and satellite gravity anomalies for most surveys. These drift corrections were applied to both observed gravity and free air anomaly fields. If the corrections are undesired by users, the correction coefficients have been supplied within the metadata headers for all gravity surveys, thereby allowing users to undo these drift corrections.
The L&R gravity meter had a 180 second hardware filter so for this analysis the data were Gaussian filtered another 180 seconds and resampled at 10 seconds. BGM-3 data are not hardware filtered hence a 360 second Gaussian filter was applied for this analysis. BGM-3 gravity anomalies were resampled at 15 second intervals. For both meter types, data gaps exceeding the filter length were not through-interpolated. Eotvos corrections were computed via the standard formula (e.g., Dehlinger, 1978) and were subjected to identical filtering of the respective gravity meter.
The vessel also deployed a Geometrics G-882 cesium vapor magnetometer on several expeditions. A Gaussian filter length of 135 seconds has been applied and resampling was performed at 15 second intervals with the same exception that no interpolation was performed through data gaps exceeding the filter length.
Archive file production:
At all depth, gravity and magnetic measurement times, vessel GPS navigation was resampled using linear interpolation as most geophysical measurement times did not exactly coincide with GPS position times. The geophysical fields were then merged with resampled vessel navigation and listed sequentially in the GMT DAT format to produce data records.
Archive file header fields were populated with relevant information such as port names, PI names, instrument and data processing details, and others whereas survey geographic and temporal boundary fields were automatically computed from the data records.
Archive file conversion:
Once completed, each marine geophysical data exchange file was converted to the other formats using the Generic Mapping Tools program known as mgd77convert. For example, conversions to the other formats were carried out as follows:
mgd77convert km0201.dat -Ft -Tm # gives mgd77t (m77t file extension)
mgd77convert km0201.dat -Ft -Ta # gives mgd77
mgd77convert km0201.dat -Ft -Tc # gives mgd77+ (nc file extension)
Disclaimers:
These data have not been edited in detail using a visual data editor and data outliers are known to exist. Several hardware malfunctions are known to have occurred during the 2002 to 2018 time frame and these malfunctions are apparent in some of the data sets. No guarantee is made that the data are accurate and they are not meant to be used for vessel navigation. Close scrutiny and further removal of outliers and other artifacts is recommended before making scientific determinations from these data.
The archive file production method employed for this analysis is explained in detail by Hamilton et al (2019).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main results file are saved separately:- ASSR2.html: R output of the main analyses (N = 33)- ASSR2_subset.html: R output of the main analyses for the smaller sample (N = 25)FIGSHARE METADATACategories- Biological psychology- Neuroscience and physiological psychology- Sensory processes, perception, and performanceKeywords- crossmodal attention- electroencephalography (EEG)- early-filter theory- task difficulty- envelope following responseReferences- https://doi.org/10.17605/OSF.IO/6FHR8- https://github.com/stamnosslin/mn- https://doi.org/10.17045/sthlmuni.4981154.v3- https://biosemi.com/- https://www.python.org/- https://mne.tools/stable/index.html#- https://www.r-project.org/- https://rstudio.com/products/rstudio/GENERAL INFORMATION1. Title of Dataset:Open data: Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones2. Author Information A. Principal Investigator Contact Information Name: Stefan Wiens Institution: Department of Psychology, Stockholm University, Sweden Internet: https://www.su.se/profiles/swiens-1.184142 Email: sws@psychology.su.se B. Associate or Co-investigator Contact Information Name: Malina Szychowska Institution: Department of Psychology, Stockholm University, Sweden Internet: https://www.researchgate.net/profile/Malina_Szychowska Email: malina.szychowska@psychology.su.se3. Date of data collection: Subjects (N = 33) were tested between 2019-11-15 and 2020-03-12.4. Geographic location of data collection: Department of Psychology, Stockholm, Sweden5. Information about funding sources that supported the collection of the data:Swedish Research Council (Vetenskapsrådet) 2015-01181SHARING/ACCESS INFORMATION1. Licenses/restrictions placed on the data: CC BY 4.02. Links to publications that cite or use the data: Szychowska M., & Wiens S. (2020). Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Submitted manuscript.The study was preregistered:https://doi.org/10.17605/OSF.IO/6FHR83. Links to other publicly accessible locations of the data: N/A4. Links/relationships to ancillary data sets: N/A5. Was data derived from another source? No 6. Recommended citation for this dataset: Wiens, S., & Szychowska M. (2020). Open data: Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Stockholm: Stockholm University. https://doi.org/10.17045/sthlmuni.12582002DATA & FILE OVERVIEWFile List:The files contain the raw data, scripts, and results of main and supplementary analyses of an electroencephalography (EEG) study. Links to the hardware and software are provided under methodological information.ASSR2_experiment_scripts.zip: contains the Python files to run the experiment. ASSR2_rawdata.zip: contains raw datafiles for each subject- data_EEG: EEG data in bdf format (generated by Biosemi)- data_log: logfiles of the EEG session (generated by Python)ASSR2_EEG_scripts.zip: Python-MNE scripts to process the EEG dataASSR2_EEG_preprocessed_data.zip: EEG data in fif format after preprocessing with Python-MNE scriptsASSR2_R_scripts.zip: R scripts to analyze the data together with the main datafiles. The main files in the folder are: - ASSR2.html: R output of the main analyses- ASSR2_subset.html: R output of the main analyses but after excluding eight subjects who were recorded as pilots before preregistering the studyASSR2_results.zip: contains all figures and tables that are created by Python-MNE and R.METHODOLOGICAL INFORMATION1. Description of methods used for collection/generation of data:The auditory stimuli were amplitude-modulated tones with a carrier frequency (fc) of 500 Hz and modulation frequencies (fm) of 20.48 Hz, 40.96 Hz, or 81.92 Hz. The experiment was programmed in python: https://www.python.org/ and used extra functions from here: https://github.com/stamnosslin/mnThe EEG data were recorded with an Active Two BioSemi system (BioSemi, Amsterdam, Netherlands; www.biosemi.com) and saved in .bdf format.For more information, see linked publication.2. Methods for processing the data:We conducted frequency analyses and computed event-related potentials. See linked publication3. Instrument- or software-specific information needed to interpret the data:MNE-Python (Gramfort A., et al., 2013): https://mne.tools/stable/index.html#Rstudio used with R (R Core Team, 2020): https://rstudio.com/products/rstudio/Wiens, S. (2017). Aladins Bayes Factor in R (Version 3). https://www.doi.org/10.17045/sthlmuni.4981154.v34. Standards and calibration information, if appropriate:For information, see linked publication.5. Environmental/experimental conditions:For information, see linked publication.6. Describe any quality-assurance procedures performed on the data:For information, see linked publication.7. People involved with sample collection, processing, analysis and/or submission:- Data collection: Malina Szychowska with assistance from Jenny Arctaedius.- Data processing, analysis, and submission: Malina Szychowska and Stefan WiensDATA-SPECIFIC INFORMATION:All relevant information can be found in the MNE-Python and R scripts (in EEG_scripts and analysis_scripts folders) that process the raw data. For example, we added notes to explain what different variables mean.
In mixed stands, species complementarity (e.g., facilitation and competition reduction) may enhance forest tree productivity. Although positive mixture effects have been identified in forests worldwide, the majority of studies have focused on two-species interactions in managed systems with high functional diversity. We extended this line of research to examine mixture effects on tree productivity across landscape-scale compositional and environmental gradients in the low functional diversity, fire-suppressed, mixed-conifer forests of the U.S. Interior West.
We investigated mixture effects on the productivity of Pinus ponderosa, Pseudotsuga menziesii, and Abies concolor. Using region-wide forest inventory data, we created individual-tree generalized linear mixed models and examined the growth of these species across community gradients. We compared the relative influences of stand structure, age, competition, and environmental stress on mixture effects using multi-model inference...
This dataset provides the R script and example data used to estimate snow depth from ultrasonic distance measurements collected by low-cost Geoprecision-Maxbotic devices, designed for autonomous operation in polar conditions. The dataset includes:
The full R script used for data preprocessing, filtering, and snow depth calculation, with all parameters fully documented.
Example raw and clean data files, ready to use, acquired from a sensor installed in the South Shetland Islands (Antarctica) between 2023 and 2024.
The processing pipeline includes outlier removal (Hampel filter), gap interpolation, moving average smoothing, reference level estimation, and snow depth conversion in millimetres and centimetres. Derived snow depths are exported alongside summary statistics.
This code was developed as part of a research project evaluating the performance and limitations of low-cost ultrasonic snow depth measurement systems in Antarctic permafrost monitoring networks. Although the script was designed for the specific configuration of Geoprecision dataloggers and Maxbotic MB7574-SCXL-Maxsonar-WRST7 sensors, it can be easily adapted to other distance-measuring devices providing similar output formats.
All files are provided in open formats (CSV, and R) to facilitate reuse and reproducibility. Users are encouraged to modify the script to fit their own instrumentation and field conditions.
A Baseflow Filter for Hydrologic Models in R Resources in this dataset:Resource Title: A Baseflow Filter for Hydrologic Models in R. File Name: Web Page, url: https://www.ars.usda.gov/research/software/download/?softwareid=383&modecode=20-72-05-00 download page