The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
The pathway representation consists of segments and intersection elements. A segment is a linear graphic element that represents a continuous physical travel path terminated by path end (dead end) or physical intersection with other travel paths. Segments have one street name, one address range and one set of segment characteristics. A segment may have none or multiple alias street names. Segment types included are Freeways, Highways, Streets, Alleys (named only), Railroads, Walkways, and Bike lanes. SNDSEG_PV is a linear feature class representing the SND Segment Feature, with attributes for Street name, Address Range, Alias Street name and segment Characteristics objects. Part of the Address Range and all of Street name objects are logically shared with the Discrete Address Point-Master Address File layer. Appropriate uses include: Cartography - Used to depict the City's transportation network location and connections, typically on smaller scaled maps or images where a single line representation is appropriate. Used to depict specific classifications of roadway use, also typically at smaller scales. Used to label transportation network feature names typically on larger scaled maps. Used to label address ranges with associated transportation network features typically on larger scaled maps. Geocode reference - Used as a source for derived reference data for address validation and theoretical address location Address Range data repository - This data store is the City's address range repository defining address ranges in association with transportation network features. Polygon boundary reference - Used to define various area boundaries is other feature classes where coincident with the transportation network. Does not contain polygon features. Address based extracts - Used to create flat-file extracts typically indexed by address with reference to business data typically associated with transportation network features. Thematic linear location reference - By providing unique, stable identifiers for each linear feature, thematic data is associated to specific transportation network features via these identifiers. Thematic intersection location reference - By providing unique, stable identifiers for each intersection feature, thematic data is associated to specific transportation network features via these identifiers. Network route tracing - Used as source for derived reference data used to determine point to point travel paths or determine optimal stop allocation along a travel path. Topological connections with segments - Used to provide a specific definition of location for each transportation network feature. Also provides a specific definition of connection between each transportation network feature. (defines where the streets are and the relationship between them ie. 4th Ave is west of 5th Ave and 4th Ave does intersect with Cherry St) Event location reference - Used as source for derived reference data used to locate event and linear referencing.Data source is TRANSPO.SNDSEG_PV. Updated weekly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27
It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.
Laatste update: 07 december 2023In ArcGIS Desktop en ArcGIS Pro is het mogelijk om bestaande database views direct toe te voegen aan een kaart. De database view wordt toegevoegd als een ‘query layer’. Een ‘query layer’ is read-only en kan dus wel worden bekeken en als input dienen voor geoprocessing tools, maar er kunnen geen edits op worden uitgevoerd.Een view toevoegen aan de kaart kan op 3 manieren.
New Group Layer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interesting, largely unexplored data analysis and information retrieval opportunities exist for GIS data. In their current form, traditional data usage patterns for data persisted in shapefiles or spatially-enabled relational databases are limited. Opportunities exist to achieve ESIP’s Winter 2019 theme of ‘increasing the use and value of Earth science data and information’ by transforming geospatial data from their original formats into their Resource Description Framework (RDF) manifestation. This work establishes an innovative workflow enabling the publication for Geospatial data persisted in geospatially enabled databases (PostGIS and MonetDB), ESRI shapefiles and XML, GML, KML, JSON, GeoJSON and CSV documents as graphs of linked open geospatial data. This affords the capability to identify implicit connections between related data that wasn't previously linked e.g. automating the detection of features present within large hydrography datasets as well as smaller regional examples and resolving features in a consistent fashion. This previously unavailable capability is achieved through the use of a semantic technology stack which leverages well matured standards within the Semantic Web space such as RDF as the data model, GeoSPARQL as the data access language and International Resource Identifier’s (IRI) for uniquely identifying and referencing entities such as rivers, streams and other water bodies. In anticipation of NASA’s forthcoming Surface Water Ocean Topography (SWOT – https://swot.jpl.nasa.gov) mission, which once launched in 2021 will make NASA’s first-ever global survey of Earth’s surface water, this work uses Hydrography data products (USGS’s National Hydrography Dataset and other topically relevant examples) as the topic matter. The compelling result is a new, innovative data analysis and information retrieval capability which will increases the use and value of Earth science data (GIS) and information. This presentation was given at the Earth Science Information Partners (ESIP) Winter Meeting in January 2019.
Last Update: 06/18/2025 with v10 launch and Reverse Geocode HotfixRequires ArcGIS Pro 3.3.xThis is a file structure with ArcGIS Pro project and layout templates for supporting Urban Search and Rescue Teams in 2024. It points to the latest feature layers and is based on the NWCG Wildfire GIS templates.Updates to this project can be found in the Read Me text document in the root folder of the template after downloading. Some patch notes can also be found below in the comments.Special thanks to NIFC and the Wildfire GIS Community for the starting template. For more documentation see NWCG Standards for Geospatial Operations, PMS 936 | NWCGYOU WILL NOT BE ABLE TO ACCESS any incident data unless you are a member of the NSARGC Group.If the template brings you to a screen saying "Invalid Token", you may need to try downloading it again. How to deploy templateThis template is not a traditional ArcGIS Pro template. When you download this template, you are downloading the full folder structure, pre-made map projects, layouts, databases, and tools that have been designed to work alongside SARCOP. This "template" does not use the "Create a project from a template" workflow within Pro, rather you are downloading the full project, and it can be modified as you see fit from there. Below are the recommended steps to take to deploy the template.Download the template anywhere on your PC by clicking the Download button on the top right below Sign In and Overview. This will download as a Zipped folder, likely to your Downloads folder.Go to the C drive of your computer and create a new folder called "Incidents", then create another folder within that Incidents folder with the name of the incident you are using the template for. For example, if the incident name is "Hurricane Lisa", the folder path should look something like "C:\Incidents\2024xxxx_HurricaneLisa".Extract the zipped folder contents from step 1 to that new incident folder you created in step 2. In the Hurricane Lisa example, data would be extracted to C:\Incidents\2024xxxx_HurricaneLisa.Go to the newly extracted folders and find the Projects folder. Open that and double click on any APRX file to begin work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a geospatial dataset representing local- and regional-scale aquifer system boundaries, defined on the basis of an extensive literature review and published in GebreEgziabher et al. (2022). Nature Communications, 13, 2129, https://www.nature.com/articles/s41467-022-29678-7
The database contains 440 polygons, each representing one study area analyzed in GebreEgziabher et al. (2022). The attribute table associated with the shapefile has two fields (column headings): (1) aquifer system title (Ocala Uplift sub-area of the broader Floridan Aquifer System), and (2) broader aquifer system title (e.g., the Floridan Aquifer System).
Database file was created to support The Office of Economic Development ArcGIS.com application and to use in conjunction with ESRI Business Online Analyst. The data was provided by Data Axle in February 2023. The purpose of the map is to view business data in relation to local zoning and land use, aerial photography, and relevant demographic data.By mining multiple data sources, Data Axle delivers a database that is that is the most robust and comprehensive available. We compile our databases from a number of sources including: GIS projects require the use of comprehensive data sets in order to perform a detailed analysis. Data Axle is widely recognized as providing the most comprehensive solution in the market – with more than 160+ business data elements to select from. A sample listing of the type of attributes collected are listed below.• Hundreds of county-level public sources, publications of record and Secretaries of State for new business registrations• Utility connects and disconnects nationwide• Industry & tourism directories• User generated feedback• Postal processing (NCOALink®, DPV®, LACSLink®, DSF®)• 4,000+ U.S. Yellow and White Page directories• Business name• Full address (Location, mailing, and landmark)• Type of business (Yellow Page heading, SIC and NAICS codes)• ZIP Code™ (including ZIP + 4®)• Telephone number• Fax number (where available)• Website addresses• Number of employees• Sales volume• Name, title, and gender of key executives• Franchise and brand information• Year the business was established• Headquarters, branch, and subsidiary information• Stock exchange and ticker symbol• Latitude, longitude and parcel-level geocodes• News headlines• UCC filings and bankruptcy notices (where available)• Square footage of business campus
Continued collaboration with Shell and ExxonMobil has also resulted in the release of a significant geochemical database
CDFW BIOS GIS Dataset, Contact: Anne Elston, Description: The Passage Assessment Database (PAD) is an ongoing inventory of known and possible barriers to anadromous fish in California. It compiles currently available fish passage information from more than 100 data sources, and allows past and future barrier assessments to be standardized and stored in one place. It is to be used to identify barriers suitable for removal or modification to restore spawning and riparian habitat for salmon and steelhead, and to enhance aquatic and riparian habitat.
This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The National Park Service (NPS) Water Resources Division (WRD) compiles the Hydrographic and Impairment Statistics (HIS) Database for all park units. One of the goals of HIS is to track surface water impairments as defined by the Clean Water Act (CWA). Waters within or adjacent to park units that were identified by states as Category 5 (CWA Section 303d) or Category 4a, 4b, or 4c (CWA Section 305b) were included in this NPS-wide impairment GIS coverage. The GIS coverage of CWA impairments within the National Park System is updated on a monthly basis. Updates to this file in IRMA are made annually. Should you require a more updated version between annual updates, please contact Jia Ling at Jia_Ling@contractor.nps.gov or Dean Tucker at Dean_Tucker@nps.gov. Alternatively, you can also view more updated information on the NPS WRD Hydrographic and Impairment Statistics Database website (https://nature.nps.gov/water/HIS/index.cfm).
This database was prepared using a combination of materials that include aerial photographs, topographic maps (1:24,000 and 1:250,000), field notes, and a sample catalog. Our goal was to translate sample collection site locations at Yellowstone National Park and surrounding areas into a GIS database. This was achieved by transferring site locations from aerial photographs and topographic maps into layers in ArcMap. Each field site is located based on field notes describing where a sample was collected. Locations were marked on the photograph or topographic map by a pinhole or dot, respectively, with the corresponding station or site numbers. Station and site numbers were then referenced in the notes to determine the appropriate prefix for the station. Each point on the aerial photograph or topographic map was relocated on the screen in ArcMap, on a digital topographic map, or an aerial photograph. Several samples are present in the field notes and in the catalog but do not correspond to an aerial photograph or could not be found on the topographic maps. These samples are marked with “No” under the LocationFound field and do not have a corresponding point in the SampleSites feature class. Each point represents a field station or collection site with information that was entered into an attributes table (explained in detail in the entity and attribute metadata sections). Tabular information on hand samples, thin sections, and mineral separates were entered by hand. The Samples table includes everything transferred from the paper records and relates to the other tables using the SampleID and to the SampleSites feature class using the SampleSite field.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS database of comprehensive background material upon which the NAG-TEC Atlas is based. The project includes links to seismic refraction profiles, geoseismic sections, stratigraphic charts, etc. A separate geodatabase and mxd file is included with the reconstructions based on the plate kinematic model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This feature layer of Tempe's Census tracts are joined with the Census Bureau's data from the 2018 Planning Database (PDB), which was established to prepare for the upcoming 2020 Census.The 2018 PDB contains select operational, demographic, and socio-economic statistics from the 2010 Census and the 2012-2016 5-year ACS.For more information, see the United States Census Bureau 2018 Planning Database:https://www.census.gov/topics/research/guidance/planning-databases.html
This dataset was updated April, 2024.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes: Clipping input datasets to the California boundary Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc) Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California. Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only. Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs) In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset.Data Sources: GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.htmlData Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.
AT_2004_BACO
File Geodatabase Feature Class
Thumbnail Not Available
Tags
Socio-economic resources, Information, Social Institutions, Hierarchy, Territory, BES, Parcel, Property, Property View, A&T, Database, Assessors, Taxation
Summary
Serves as a basis for performing various analyses based on parcel data.
Description
Assessments & Taxation (A&T) Database from MD Property View 2004 for Baltimore County. The A&T Database contains parcel data from the State Department of Assessments and Taxation; it incorporates parcel ownership and address information, parcel valuation information and basic information about the land and structure(s) associated with a given parcel. These data form the basis for the 2004 Database, which also includes selected Computer Assisted Mass Appraisal (CAMA) characteristics, text descriptions to make parcel code field data more readily accessible and logical True/False fields which identify parcels with certain characteristics. Documentation for A&T, including a thorough definition for all attributes is enclosed. Complete Property View documentation can be found at http://www.mdp.state.md.us/data/index.htm under the "Technical Background" tab.
It should be noted that the A&T Database consists of points and not parcel boundaries. For those areas where parcel polygon data exists the A&T Database can be joined using the ACCTID or a concatenation of the BLOCK and LOT fields, whichever is appropriate. (Spaces may have to be excluded when concatenating the BLOCK and LOT fields).
A cursory review of the 2004 version of the A&T Database indicates that it has more accurate data when compared with the 2003 version, particularly with respect to dwelling types. However, for a given record it is not uncommon for numerous fields to be missing attributes. Based on previous version of the A&T Database it is also not unlikely that some of the information is inaccurate. This layer was edited to remove points that did not have a valid location because they failed to geocode. There were 5870 such points. A listing of the deleted points is in the table with the suffix "DeletedRecords."
Credits
Maryland Department of Planning
Use limitations
BES use only.
Extent
West -76.897802 East -76.335214
North 39.726520 South 39.192552
Scale Range
There is no scale range for this item.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The shared archived combined in Supplementary Datasets represent the actual databases used in the investigation considered in two papers:
Meteorological conditions affecting black vulture (Coragyps atratus) soaring behavior in the southeast of Brazil: Implications for bird strike abatement (in submission)
Remote sensing applications for abating the aircraft-bird strike risks in the southeast of Brazil (Human-Wildlife Interactions Journal, in print)
The papers were based on my Master’s thesis defended in 2016 in the Institute of Biology of the University of Campinas (UNICAMP) in partial fulfilment of the requirements for the degree of Master in Ecology. Our investigation was devoted to reducing the risk of aircraft collision with Black vultures. It had two parts considered in these two papers. In the first one we studied the relationship between soaring activity of Black vultures and meteorological characteristics. In the second one we explored the dependence of soaring activity of vultures on superficial and anthropogenic characteristics. The study was implemented within surroundings of two airports in the southeast of Brazil taken as case studies. We developed the methodological approaches combining application of GIS and remote sensing technologies for data processing, which were used as the main research instrument. By dint of them we joined in the georeferenced databases (shapefiles) the data of bird's observation and three types of environmental factors: (i) meteorological characteristics collected together with the bird’s observation, (ii) superficial parameters (relief and surface temperature) obtained from the products of ASTER imagery; (iii) parameters of surface covering and anthropogenic pressure obtained from the satellite images of high resolution. Based on the analyses of the georeferenced databases, the relationship between soaring activity of vultures and environmental factors was studied; the behavioral patterns of vultures in soaring flight were revealed; the landscape types highly attractive for this species and forming the increased concentration of birds over them were detected; the maps giving a numerical estimation of hazard of bird strike events over the airport vicinities were constructed; the practical recommendations devoted to decrease the risk of collisions with vultures and other bird species were formulated.
This archive contains all materials elaborated and used for the study, including the GIS database for two papers, remote sensing data, and Microsoft Excel datasets. You can find the description of supplementary files in the Description of Supplementary Dataset.docx. The links on supplementary files and their attribution to the text of papers are considered in the Attribution to the text of papers.docx. The supplementary files are in the folders Datasets, GIS_others, GIS_Raster, GIS_Shape.
For any question please write me on this email: natalieenov@gmail.com
Natalia Novoselova
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt