This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
This is a source dataset for a Let's Get Healthy California indicator at https://letsgethealthy.ca.gov/. Infant Mortality is defined as the number of deaths in infants under one year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and well-being of a community, because factors affecting the health of entire populations can also impact the mortality rate of infants. Although California’s infant mortality rate is better than the national average, there are significant disparities, with African American babies dying at more than twice the rate of other groups. Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file comprises birth certificate information on all births that occur in a calendar year (denominator) plus death certificate information linked to the birth certificate for those infants who were born in that year but subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on information from death certificates alone have been found to underestimate infant death rates for infants of all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about event registration requirements, incomplete data, and transfers of newborns from one facility to another for medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 year). Denominator: Live births occurring to California state residents. Multiple years aggregated to allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is considered to be a valid response. These responses are not displayed on the indicator visualization.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.
It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.
Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.
This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.
A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.
All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries per year in Ireland. It has 64 rows. It features 4 columns: country, birth rate, and death rate.
Contains equation used to calculate death rates for farms. Data held within the Department of Agriculture
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_0d64da52342e43d864bc84898ba6835f/view
The National Death Index (NDI) is a centralized database of death record information on file in state vital statistics offices. Working with these state offices, the National Center for Health Statistics (NCHS) established the NDI as a resource to aid epidemiologists and other health and medical investigators with their mortality ascertainment activities. Assists investigators in determining whether persons in their studies have died and, if so, provide the names of the states in which those deaths occurred, the dates of death, and the corresponding death certificate numbers. Investigators can then make arrangements with the appropriate state offices to obtain copies of death certificates or specific statistical information such as manner of death or educational level. Cause of death codes may also be obtained using the NDI Plus service. Records from 1979 through 2011 are currently available and contain a standard set of identifying information on each death. Death records are added to the NDI file annually, approximately 12 months after the end of a particular calendar year. 2012 should be available summer 2014. Early Release Program for 2013 is now available. The NDI service is available to investigators solely for statistical purposes in medical and health research. The service is not accessible to organizations or the general public for legal, administrative, or genealogy purposes.
The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.
The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about regions in the Americas. It has 4 rows. It features 3 columns: death rate, and life expectancy at birth.
Check out the PhilaStats Vital Statistics Dashboard for the City of Philadelphia, for interactive maps and charts of vital statistics and trends in natality (births), mortality (deaths), and population for Philadelphia residents. See also the technical notes for the creation and visualization of Philadelphia's Vital Statistics. View metadata for key information about this dataset.Vital statistics are annually published calculations on birth and death records that facilitate the tracking of important health and population trends in Philadelphia over time. Public officials, researchers, and citizens alike may use vital statistics to plan for population shifts and healthcare needs, to perform research, and to stay informed and up-to-date on the natality and mortality trends in our City. The vital statistics dataset consists of natality and mortality data on Philadelphia City residents for each year of finalized data available, back to 2011 for births and 2012 for deaths. Citywide metrics and metrics by Philadelphia Planning District are provided for both natality and mortality metrics. A population estimates table is also provided, which includes the population counts used to calculate some metrics.The Vital Statistics - Mortality dataset is also available in this citywide table.For questions about this dataset, contact epi@phila.gov. For technical assistance, email maps@phila.gov.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by area of usual residence in the UK. Summary tables including age-standardised mortality rates.
Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Strategic Measure_Infant mortality rate (number of deaths of infants younger than 1-year-old per 1,000 live births)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/2a716fbb-f883-4a74-ad0b-9d984a06b758 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset includes counts of infant births and deaths within Austin city limits by year. The counts are calculated into an infant mortality rate for each year. Both infant deaths and infant births are reported through the Office of Vital Records.
View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/HE-B-3-Infant-mortality-rate-number-of-deaths-of-i/jwg4-2djc/
--- Original source retains full ownership of the source dataset ---
A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Our previous study analyzed the age trajectory of mortality (ATM) in 14 European countries, while this study aimed at investigating ATM in other continents and in countries with a higher level of mortality. Data from 11 Non-European countries were used.Methods: The number of deaths was extracted from the WHO mortality database. The Halley method was used to calculate the mortality rates in all possible calendar years and all countries combined. This method enables us to combine more countries and more calendar years in one hypothetical population.Results: The age trajectory of total mortality (ATTM) and also ATM due to specific groups of diseases were very similar in the 11 non-European countries and in the 14 European countries. The level of mortality did not affect the main results found in European countries. The inverse proportion was valid for ATTM in non-European countries with two exceptions.Slower or no mortality decrease with age was detected in the first year of life, while the inverse proportion model was valid for the age range (1, 10) years in most of the main chapters of ICD10.Conclusions: The decrease in child mortality with age may be explained as the result of the depletion of individuals with congenital impairment. The majority of deaths up to the age of 10 years were related to congenital impairments, and the decrease in child mortality rate with age was a demonstration of population heterogeneity. The congenital impairments were latent and may cause death even if no congenital impairment was detected.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fetal mortality occurs after 20 weeks of gestation and before labor. Infant mortality occurs before the first year of age and is a sum of Neonatal (the first 28 days after birth) and Postneonatal (from 28 days up to 1 year) mortality. Rates are calculated per every 1000 births; rates are not available for disaggregated race/ethnicities. Fetal and infant mortality values are available for given race/ethnicities. Connecticut Department of Public Health collects and reports data annually. CTData.org carries 1-, 3- and 5-Year aggregations.
The Detailed Mortality - Underlying Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries per year in Equatorial Guinea. It has 64 rows. It features 4 columns: country, birth rate, and death rate.
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.