5 datasets found
  1. d

    Earthquakes Living Lab: Locating Earthquakes

    • datadiscoverystudio.org
    Updated Apr 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Earthquakes Living Lab: Locating Earthquakes [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/9ad64a18337f47679c03d840d72b8257/html
    Explore at:
    Dataset updated
    Apr 4, 2016
    Area covered
    Description

    Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft Excel to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.

  2. a

    Data from: Semi-Analytical Modelling of Linear Mode Coupling in Few-Mode...

    • researchdata.aston.ac.uk
    Updated Mar 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filipe Ferreira; Christian Sanchez Costa; Stylianos Sygletos; Andrew Ellis (2017). Semi-Analytical Modelling of Linear Mode Coupling in Few-Mode Fibers [Dataset]. http://doi.org/10.17036/researchdata.aston.ac.uk.00000206
    Explore at:
    Dataset updated
    Mar 8, 2017
    Authors
    Filipe Ferreira; Christian Sanchez Costa; Stylianos Sygletos; Andrew Ellis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Birmingham, United Kingdom
    Description

    Matlab scripts, source C-code, mex compiled C-code, and figure data points for the paper entitled “Semi-Analytical Analytical Modelling of Linear Mode Coupling in Few -Mode Fibers”.

    Folders: 0_differential_equations_solver Matlab scripts based on the Symbolic Math Toolbox for the derivation of a semi-analytical solution to the differential equations describing linear mode coupling in few-mode fibres. Scripts available for 3, 4, 5 and 6 modes.

    1_C_code_for_high_precision_solution_of_polynomials C-code for the numerical evaluation of the 6-modes semi-analytical solutions obtained in 0_differential_equations_solver. Two versions: “highPrecRootFind_6M_doubleIO” uses always the same seed for the root finding section; “highPrecRootFind_6M_doubleIO_rand” uses a randomized seed for the root finding section.

    2_crosstalk_vs_radial_displacement Script for plotting typical fibre coupling coefficients and plotting of the crosstalk introduced by a single fibre displacement as a function of the radial displacement and averaged in the azimuth coordinate.

    3_solutions_precision Script for the evaluation of the precision of the semi-analytical solutions proposed against Runge-Kutta-Fehlberg Method (RKF45) numerical solutions.

    98_poly_solvers_mex_files_compiled_for_R2014b_64bit Compiled mex C-code at 1_C_code_for_high_precision_solution_of_polynomials. Compiled for Mex Matlab R2014b 64bit.

    99_fibre_parameters Typical fibre parameters used in this dataset.

    100_figures_data_poins Excel files containing the data points in the figures presented in the paper.

  3. Survey on Interest Rate Controls 2019 - Albania, Algeria, Anguilla...and 103...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group - Finance, Competitiveness and Innovation Global Practice (2023). Survey on Interest Rate Controls 2019 - Albania, Algeria, Anguilla...and 103 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/3812
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    World Bankhttps://www.worldbank.org/
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank Group - Finance, Competitiveness and Innovation Global Practice
    Time period covered
    2019
    Area covered
    Algeria, Albania, Anguilla...and 103 more
    Description

    Abstract

    The Survey on Interest Rate Controls 2020 was conducted as a World Bank Group study on interest rate controls (IRCs) in lending and deposit markets around the world. The study aims to identify the different types of formal (or de jure) controls, the countries that apply then, how they implement them, and the reasons for doing so. The objective of the study is to advance knowledge on this topic by providing an evidence base for investigating the impact of IRCs on economic outcomes.

    The survey investigates present IRCs in each surveyed country, the reasons why they have been applied, the framework and resources associated with their application and the details as to their level and functioning. The focus is on legal forms of control (i.e. codified into law) as opposed to de facto controls. The new database on interest rate controls, a popular form of financial repression is based on a survey of 108 countries, representing 88 percent of global gross domestic product. The interest rate controls presented in this dataset were in effect in 2019.

    Geographic coverage

    Global Survey, covering 108 countries, representing 88 percent of global GDP.

    Analysis unit

    Regulation at the national level.

    Universe

    Banking supervisors and Local Banking Associations.

    Kind of data

    Sample survey data [ssd]

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    Bank supervisors and banking associations were provided with a standard excel file with five parts. The survey was structured in five parts, each placed in a different excel sheet. Part A: Introduction. Countries with no IRCs in place were asked to only answer this sheet and leave the rest blank. Part B: Presented the definitions of controls, institutions, products and additional aspects that will be covered in the survey. Part C: Introduced a set of qualitative questions to describe the IRCs in place. Part D: Displayed a set of tables to quantitatively describe the IRCs in place. Part E: Laid out the final set of questions, covering sanctions and control mechanisms that support the IRCs' enforcement. The questionnaire is provided in the Documentation section in pdf and excel.

  4. T

    WATER: Dataset of ground truth measurement synchronizing with the airborne...

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Jul 27, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huazhong REN; Tianxing WANG; Guangkuo YAN; Li LI; Hua LI; Sihan LIU; Chuanfu XIA; Xiaozhou XIN; Chunyan ZHOU; Mengwei ZHOU; Guijun YANG; Xiaoyu LI; Zhanhui CHENG; Liangyun Liu (2008). WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 11, 2008 [Dataset]. http://doi.org/10.3972/water973.0133.db
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 27, 2008
    Dataset provided by
    TPDC
    Authors
    Huazhong REN; Tianxing WANG; Guangkuo YAN; Li LI; Hua LI; Sihan LIU; Chuanfu XIA; Xiaozhou XIN; Chunyan ZHOU; Mengwei ZHOU; Guijun YANG; Xiaoyu LI; Zhanhui CHENG; Liangyun Liu
    Area covered
    Description

    The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Radiative temperature of maize, wheat and the bare land (in Yingke oasis maize field), vegetation and the bare land (Huazhaizi desert No. 2 plot) by the thermal cameras at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format and radiative files are stored in Excel format. . (3) Photosynthesis by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (4) Ground object reflectance spectra in Yingke oasis maize field, Huazhaizi maize field, Huazhaizi desert No. 1 and 2 plots, by ASD FieldSpec (350~2500 nm) from Institute of Remote Sensing Applications (IRSA), CAS. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt format. (5) The radiative temperature in Huazhaizi desert No. 2 plot by the handheld infrared thermometer (BNU and IRSA). Raw data, blackbody calibrated data and processed data (in Excel format) were all archived. (6) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (7) The radiative temperature of the maize canopy by the automatic thermometer (FOV: 10°; emissivity: 0.95) mearsued at nadir with an time intervals of 1s in Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived as Excel files. (8) Maize albedo from two shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.

  5. i

    Agriculture Sample Census Survey 2002-2003 - Tanzania

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Chief Government Statistician-Zanzibar (2019). Agriculture Sample Census Survey 2002-2003 - Tanzania [Dataset]. https://catalog.ihsn.org/catalog/1086
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Office of Chief Government Statistician-Zanzibar
    National Bureau of Statistics
    Time period covered
    2004
    Area covered
    Tanzania
    Description

    Abstract

    The 2003 Agriculture Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmer organisations, etc. As a result the dataset is both more numerous in its sample and detailed in its scope compared to previous censuses and surveys. To date this is the most detailed Agricultural Census carried out in Africa.

    The census was carried out in order to: · Identify structural changes if any, in the size of farm household holdings, crop and livestock production, farm input and implement use. It also seeks to determine if there are any improvements in rural infrastructure and in the level of agriculture household living conditions; · Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stake holders. · Establish baseline data for the measurement of the impact of high level objectives of the Agriculture Sector Development Programme (ASDP), National Strategy for Growth and Reduction of Poverty (NSGRP) and other rural development programs and projects. · Obtain benchmark data that will be used to address specific issues such as: food security, rural poverty, gender, agro-processing, marketing, service delivery, etc.

    Geographic coverage

    Tanzania Mainland and Zanzibar

    Analysis unit

    • Households
    • Individuals

    Universe

    Large scale, small scale and community farms.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    The Mainland sample consisted of 3,221 villages. These villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the 2002 Population and Housing Census. The total Mainland sample was 48,315 agricultural households. In Zanzibar a total of 317 enumeration areas (EAs) were selected and 4,755 agriculture households were covered. Nationwide, all regions and districts were sampled with the exception of three urban districts (two from Mainland and one from Zanzibar).

    In both Mainland and Zanzibar, a stratified two stage sample was used. The number of villages/EAs selected for the first stage was based on a probability proportional to the number of villages in each district. In the second stage, 15 households were selected from a list of farming households in each selected Village/EA, using systematic random sampling, with the village chairpersons assisting to locate the selected households.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The census covered agriculture in detail as well as many other aspects of rural development and was conducted using three different questionnaires: • Small scale questionnaire • Community level questionnaire • Large scale farm questionnaire

    The small scale farm questionnaire was the main census instrument and it includes questions related to crop and livestock production and practices; population demographics; access to services, resources and infrastructure; and issues on poverty, gender and subsistence versus profit making production unit.

    The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.

    The large scale farm questionnaire was administered to large farms either privately or corporately managed.

    Questionnaire Design The questionnaires were designed following user meetings to ensure that the questions asked were in line with users data needs. Several features were incorporated into the design of the questionnaires to increase the accuracy of the data: • Where feasible all variables were extensively coded to reduce post enumeration coding error. • The definitions for each section were printed on the opposite page so that the enumerator could easily refer to the instructions whilst interviewing the farmer. • The responses to all questions were placed in boxes printed on the questionnaire, with one box per character. This feature made it possible to use scanning and Intelligent Character Recognition (ICR) technologies for data entry. • Skip patterns were used to reduce unnecessary and incorrect coding of sections which do not apply to the respondent. • Each section was clearly numbered, which facilitated the use of skip patterns and provided a reference for data type coding for the programming of CSPro, SPSS and the dissemination applications.

    Cleaning operations

    Data processing consisted of the following processes: · Data entry · Data structure formatting · Batch validation · Tabulation

    Data Entry Scanning and ICR data capture technology for the small holder questionnaire were used on the Mainland. This not only increased the speed of data entry, it also increased the accuracy due to the reduction of keystroke errors. Interactive validation routines were incorporated into the ICR software to track errors during the verification process. The scanning operation was so successful that it is highly recommended for adoption in future censuses/surveys. In Zanzibar all data was entered manually using CSPro.

    Prior to scanning, all questionnaires underwent a manual cleaning exercise. This involved checking that the questionnaire had a full set of pages, correct identification and good handwriting. A score was given to each questionnaire based on the legibility and the completeness of enumeration. This score will be used to assess the quality of enumeration and supervision in order to select the best field staff for future censuses/surveys.

    CSPro was used for data entry of all Large Scale Farm and community based questionnaires due to the relatively small number of questionnaires. It was also used to enter data from the 2,880 small holder questionnaires that were rejected by the ICR extraction application.

    Data Structure Formatting A program was developed in visual basic to automatically alter the structure of the output from the scanning/extraction process in order to harmonise it with the manually entered data. The program automatically checked and changed the number of digits for each variable, the record type code, the number of questionnaires in the village, the consistency of the Village ID Code and saved the data of one village in a file named after the village code.

    Batch Validation A batch validation program was developed in order to identify inconsistencies within a questionnaire. This is in addition to the interactive validation during the ICR extraction process. The procedures varied from simple range checking within each variable to the more complex checking between variables. It took six months to screen, edit and validate the data from the smallholder questionnaires. After the long process of data cleaning, tabulations were prepared based on a pre-designed tabulation plan.

    Tabulations Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations and Microsoft Excel was used to organize the tables and compute additional indicators. Excel was also used to produce charts while ArcView and Freehand were used for the maps.

    Analysis and Report Preparation The analysis in this report focuses on regional comparisons, time series and national production estimates. Microsoft Excel was used to produce charts; ArcView and Freehand were used for maps, whereas Microsoft Word was used to compile the report.

    Data Quality A great deal of emphasis was placed on data quality throughout the whole exercise from planning, questionnaire design, training, supervision, data entry, validation and cleaning/editing. As a result of this, it is believed that the census is highly accurate and representative of what was experienced at field level during the Census year. With very few exceptions, the variables in the questionnaire are within the norms for Tanzania and they follow expected time series trends when compared to historical data. Standard Errors and Coefficients of Variation for the main variables are presented in the Technical Report (Volume I).

    Sampling error estimates

    The Sampling Error found on page (21) up to page (22) in the Technical Report for Agriculture Sample Census Survey 2002-2003

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2016). Earthquakes Living Lab: Locating Earthquakes [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/9ad64a18337f47679c03d840d72b8257/html

Earthquakes Living Lab: Locating Earthquakes

Explore at:
Dataset updated
Apr 4, 2016
Area covered
Description

Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft Excel to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.

Search
Clear search
Close search
Google apps
Main menu