75 datasets found
  1. MNIST dataset for Outliers Detection - [ MNIST4OD ]

    • figshare.com
    application/gzip
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giovanni Stilo; Bardh Prenkaj (2024). MNIST dataset for Outliers Detection - [ MNIST4OD ] [Dataset]. http://doi.org/10.6084/m9.figshare.9954986.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 17, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Giovanni Stilo; Bardh Prenkaj
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10

  2. d

    Data from: Distributed Anomaly Detection using 1-class SVM for Vertically...

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Anomaly Detection using 1-class SVM for Vertically Partitioned Data [Dataset]. https://catalog.data.gov/dataset/distributed-anomaly-detection-using-1-class-svm-for-vertically-partitioned-data
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    There has been a tremendous increase in the volume of sensor data collected over the last decade for different monitoring tasks. For example, petabytes of earth science data are collected from modern satellites, in-situ sensors and different climate models. Similarly, huge amount of flight operational data is downloaded for different commercial airlines. These different types of datasets need to be analyzed for finding outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations with only a subset of features available at any location. Moving these petabytes of data to a single location may waste a lot of bandwidth. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the entire data without moving all the data to a single location. The method we propose only centralizes a very small sample from the different data subsets at different locations. We analytically prove and experimentally verify that the algorithm offers high accuracy compared to complete centralization with only a fraction of the communication cost. We show that our algorithm is highly relevant to both earth sciences and aeronautics by describing applications in these domains. The performance of the algorithm is demonstrated on two large publicly available datasets: (1) the NASA MODIS satellite images and (2) a simulated aviation dataset generated by the ‘Commercial Modular Aero-Propulsion System Simulation’ (CMAPSS).

  3. f

    Data from: Outlier detection in cylindrical data based on Mahalanobis...

    • tandf.figshare.com
    text/x-tex
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prashant S. Dhamale; Akanksha S. Kashikar (2025). Outlier detection in cylindrical data based on Mahalanobis distance [Dataset]. http://doi.org/10.6084/m9.figshare.24092089.v1
    Explore at:
    text/x-texAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Prashant S. Dhamale; Akanksha S. Kashikar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cylindrical data are bivariate data formed from the combination of circular and linear variables. Identifying outliers is a crucial step in any data analysis work. This paper proposes a new distribution-free procedure to detect outliers in cylindrical data using the Mahalanobis distance concept. The use of Mahalanobis distance incorporates the correlation between the components of the cylindrical distribution, which had not been accounted for in the earlier papers on outlier detection in cylindrical data. The threshold for declaring an observation to be an outlier can be obtained via parametric or non-parametric bootstrap, depending on whether the underlying distribution is known or unknown. The performance of the proposed method is examined via extensive simulations from the Johnson-Wehrly distribution. The proposed method is applied to two real datasets, and the outliers are identified in those datasets.

  4. f

    Data from: Methodology to filter out outliers in high spatial density data...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Felipe Maldaner; José Paulo Molin; Mark Spekken (2023). Methodology to filter out outliers in high spatial density data to improve maps reliability [Dataset]. http://doi.org/10.6084/m9.figshare.14305658.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Leonardo Felipe Maldaner; José Paulo Molin; Mark Spekken
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The considerable volume of data generated by sensors in the field presents systematic errors; thus, it is extremely important to exclude these errors to ensure mapping quality. The objective of this research was to develop and test a methodology to identify and exclude outliers in high-density spatial data sets, determine whether the developed filter process could help decrease the nugget effect and improve the spatial variability characterization of high sampling data. We created a filter composed of a global, anisotropic, and an anisotropic local analysis of data, which considered the respective neighborhood values. For that purpose, we used the median to classify a given spatial point into the data set as the main statistical parameter and took into account its neighbors within a radius. The filter was tested using raw data sets of corn yield, soil electrical conductivity (ECa), and the sensor vegetation index (SVI) in sugarcane. The results showed an improvement in accuracy of spatial variability within the data sets. The methodology reduced RMSE by 85 %, 97 %, and 79 % in corn yield, soil ECa, and SVI respectively, compared to interpolation errors of raw data sets. The filter excluded the local outliers, which considerably reduced the nugget effects, reducing estimation error of the interpolated data. The methodology proposed in this work had a better performance in removing outlier data when compared to two other methodologies from the literature.

  5. d

    Anomaly Detection in Sequences

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Anomaly Detection in Sequences [Dataset]. https://catalog.data.gov/dataset/anomaly-detection-in-sequences
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that arise from recordings of switch sensors in the cockpits of commercial airliners. While the algorithms we present are general and domain-independent, we focus on a specific problem that is critical to determining system-wide health of a fleet of aircraft. The approach taken uses unsupervised clustering of sequences using the normalized length of he longest common subsequence (nLCS) as a similarity measure, followed by a detailed analysis of outliers to detect anomalies. In this method, an outlier sequence is defined as a sequence that is far away from a cluster. We present new algorithms for outlier analysis that provide comprehensible indicators as to why a particular sequence is deemed to be an outlier. The algorithm provides a coherent description to an analyst of the anomalies in the sequence when compared to more normal sequences. The final section of the paper demonstrates the effectiveness of sequenceMiner for anomaly detection on a real set of discrete sequence data from a fleet of commercial airliners. We show that sequenceMiner discovers actionable and operationally significant safety events. We also compare our innovations with standard HiddenMarkov Models, and show that our methods are superior

  6. g

    ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of...

    • elki-project.github.io
    • data.niaid.nih.gov
    • +1more
    Updated Sep 2, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erich Schubert; Arthur Zimek (2011). ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of Object Images (ALOI) [Dataset]. http://doi.org/10.5281/zenodo.6355684
    Explore at:
    Dataset updated
    Sep 2, 2011
    Dataset provided by
    TU Dortmund University
    University of Southern Denmark, Denmark
    Authors
    Erich Schubert; Arthur Zimek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Amsterdam Library of Object Images" is a collection of 110250 images of 1000 small objects, taken under various light conditions and rotation angles. All objects were placed on a black background. Thus the images are taken under rather uniform conditions, which means there is little uncontrolled bias in the data set (unless mixed with other sources). They do however not resemble a "typical" image collection. The data set has a rather unique property for its size: there are around 100 different images of each object, so it is well suited for clustering. By downsampling some objects it can also be used for outlier detection. For multi-view research, we offer a number of different feature vector sets for evaluating this data set.

  7. h

    cifar10-outlier

    • huggingface.co
    Updated Jul 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Renumics (2023). cifar10-outlier [Dataset]. https://huggingface.co/datasets/renumics/cifar10-outlier
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2023
    Dataset authored and provided by
    Renumics
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Dataset Card for "cifar10-outlier"

    📚 This dataset is an enriched version of the CIFAR-10 Dataset. The workflow is described in the medium article: Changes of Embeddings during Fine-Tuning of Transformers.

      Explore the Dataset
    

    The open source data curation tool Renumics Spotlight allows you to explorer this dataset. You can find a Hugging Face Spaces running Spotlight with this dataset here:

    Full Version (High hardware requirement)… See the full description on the dataset page: https://huggingface.co/datasets/renumics/cifar10-outlier.

  8. Multi-Domain Outlier Detection Dataset

    • zenodo.org
    • explore.openaire.eu
    • +1more
    zip
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannah Kerner; Hannah Kerner; Umaa Rebbapragada; Umaa Rebbapragada; Kiri Wagstaff; Kiri Wagstaff; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha (2022). Multi-Domain Outlier Detection Dataset [Dataset]. http://doi.org/10.5281/zenodo.5941339
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hannah Kerner; Hannah Kerner; Umaa Rebbapragada; Umaa Rebbapragada; Kiri Wagstaff; Kiri Wagstaff; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Multi-Domain Outlier Detection Dataset contains datasets for conducting outlier detection experiments for four different application domains:

    1. Astrophysics - detecting anomalous observations in the Dark Energy Survey (DES) catalog (data type: feature vectors)
    2. Planetary science - selecting novel geologic targets for follow-up observation onboard the Mars Science Laboratory (MSL) rover (data type: grayscale images)
    3. Earth science: detecting anomalous samples in satellite time series corresponding to ground-truth observations of maize crops (data type: time series/feature vectors)
    4. Fashion-MNIST/MNIST: benchmark task to detect anomalous MNIST images among Fashion-MNIST images (data type: grayscale images)

    Each dataset contains a "fit" dataset (used for fitting or training outlier detection models), a "score" dataset (used for scoring samples used to evaluate model performance, analogous to test set), and a label dataset (indicates whether samples in the score dataset are considered outliers or not in the domain of each dataset).

    To read more about the datasets and how they are used for outlier detection, or to cite this dataset in your own work, please see the following citation:

    Kerner, H. R., Rebbapragada, U., Wagstaff, K. L., Lu, S., Dubayah, B., Huff, E., Lee, J., Raman, V., and Kulshrestha, S. (2022). Domain-agnostic Outlier Ranking Algorithms (DORA)-A Configurable Pipeline for Facilitating Outlier Detection in Scientific Datasets. Under review for Frontiers in Astronomy and Space Sciences.

  9. d

    Data from: Detection of outlier loci and their utility for fisheries...

    • search.dataone.org
    • datadryad.org
    Updated Apr 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael A Russello; Stephanie L Kirk; Karen K Frazer; Paul J Askey (2025). Detection of outlier loci and their utility for fisheries management [Dataset]. http://doi.org/10.5061/dryad.5bk66
    Explore at:
    Dataset updated
    Apr 13, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Michael A Russello; Stephanie L Kirk; Karen K Frazer; Paul J Askey
    Time period covered
    Jul 1, 2020
    Description

    Genetics-based approaches have informed fisheries management for decades, yet remain challenging to implement within systems involving recently diverged stocks or where gene flow persists. In such cases, genetic markers exhibiting locus-specific (“outlier†) effects associated with divergent selection may provide promising alternatives to loci that reflect genome-wide (“neutral†) effects for guiding fisheries management. Okanagan Lake kokanee (Oncorhynchus nerka), a fishery of conservation concern, exhibits two sympatric ecotypes adapted to different reproductive environments, however, previous research demonstrated the limited utility of neutral microsatellites for assigning individuals. Here, we investigated the efficacy of an outlier-based approach to fisheries management by screening >11,000 expressed sequence tags for linked microsatellites and conducting genomic scans for kokanee sampled across seven spawning sites. We identified eight outliers among 52 polymorphic loci that det...

  10. d

    Integrated Building Health Management

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Integrated Building Health Management [Dataset]. https://catalog.data.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  11. h

    Restricted Boltzmann Machine for Missing Data Imputation in Biomedical...

    • datahub.hku.hk
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen Ma (2020). Restricted Boltzmann Machine for Missing Data Imputation in Biomedical Datasets [Dataset]. http://doi.org/10.25442/hku.12752549.v1
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    HKU Data Repository
    Authors
    Wen Ma
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description
    1. NCCTG Lung cancer datasetSurvival in patients with advanced lung cancer from the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities.2.CNV measurements of CNV of GBM This dataset records the information about copy number variation of Glioblastoma (GBM).Abstract:In biology and medicine, conservative patient and data collection malpractice can lead to missing or incorrect values in patient registries, which can affect both diagnosis and prognosis. Insufficient or biased patient information significantly impedes the sensitivity and accuracy of predicting cancer survival. In bioinformatics, making a best guess of the missing values and identifying the incorrect values are collectively called “imputation”. Existing imputation methods work by establishing a model based on the data mechanism of the missing values. Existing imputation methods work well under two assumptions: 1) the data is missing completely at random, and 2) the percentage of missing values is not high. These are not cases found in biomedical datasets, such as the Cancer Genome Atlas Glioblastoma Copy-Number Variant dataset (TCGA: 108 columns), or the North Central Cancer Treatment Group Lung Cancer (NCCTG) dataset (NCCTG: 9 columns). We tested six existing imputation methods, but only two of them worked with these datasets: The Last Observation Carried Forward (LOCF) and K-nearest Algorithm (KNN). Predictive Mean Matching (PMM) and Classification and Regression Trees (CART) worked only with the NCCTG lung cancer dataset with fewer columns, except when the dataset contains 45% missing data. The quality of the imputed values using existing methods is bad because they do not meet the two assumptions.In our study, we propose a Restricted Boltzmann Machine (RBM)-based imputation method to cope with low randomness and the high percentage of the missing values. RBM is an undirected, probabilistic and parameterized two-layer neural network model, which is often used for extracting abstract information from data, especially for high-dimensional data with unknown or non-standard distributions. In our benchmarks, we applied our method to two cancer datasets: 1) NCCTG, and 2) TCGA. The running time, root mean squared error (RMSE) of the different methods were gauged. The benchmarks for the NCCTG dataset show that our method performs better than other methods when there is 5% missing data in the dataset, with 4.64 RMSE lower than the best KNN. For the TCGA dataset, our method achieved 0.78 RMSE lower than the best KNN.In addition to imputation, RBM can achieve simultaneous predictions. We compared the RBM model with four traditional prediction methods. The running time and area under the curve (AUC) were measured to evaluate the performance. Our RBM-based approach outperformed traditional methods. Specifically, the AUC was up to 19.8% higher than the multivariate logistic regression model in the NCCTG lung cancer dataset, and the AUC was higher than the Cox proportional hazard regression model, with 28.1% in the TCGA dataset.Apart from imputation and prediction, RBM models can detect outliers in one pass by allowing the reconstruction of all the inputs in the visible layer with in a single backward pass. Our results show that RBM models have achieved higher precision and recall on detecting outliers than other methods.
  12. d

    Replication Data for Outlier analysis: Natural resources and immigration...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Choi, Seung Whan (2023). Replication Data for Outlier analysis: Natural resources and immigration policy [Dataset]. http://doi.org/10.7910/DVN/MALOCW
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Choi, Seung Whan
    Description

    There are three files containing Stata data, and do and log-files. These are associated with the empirical models reported in the replication study, “Outlier Analysis: Natural Resources and Immigration Policy,” POLS ONE. Questions or comments regarding these materials should be directed to Seung-Whan Choi, Department of Political Science, University of Illinois at Chicago. His email address is whanchoi@uic.edu and his homepage address is https://whanchoi.people.uic.edu/.

  13. d

    Data from: ClinePlotR: Visualizing genomic clines and detecting outliers in...

    • search.dataone.org
    • zenodo.org
    • +1more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley T. Martin; Tyler K. Chafin; Marlis R. Douglas; Michael E. Douglas (2025). ClinePlotR: Visualizing genomic clines and detecting outliers in R [Dataset]. http://doi.org/10.5061/dryad.b2rbnzsc8
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Bradley T. Martin; Tyler K. Chafin; Marlis R. Douglas; Michael E. Douglas
    Time period covered
    Jan 1, 2020
    Description

    Patterns of multi-locus differentiation (i.e., genomic clines) often extend broadly across hybrid zones and their quantification can help diagnose how species boundaries are shaped by adaptive processes, both intrinsic and extrinsic. In this sense, the transitioning of loci across admixed individuals can be contrasted as a function of the genome-wide trend, in turn allowing an expansion of clinal theory across a much wider array of biodiversity. However, computational tools that serve to interpret and consequently visualize ‘genomic clines’ are limited.

    Here, we introduce the ClinePlotR R-package for visualizing genomic clines and detecting outlier loci using output generated by two popular software packages, bgc and Introgress.

    ClinePlotR bundles both input generation (i.e, filtering datasets and creating specialized file formats) and output processing (e.g., MCMC thinning and burn-in) with functions that directly facilitate interpretation and hypothesis testing. Tools are also p...

  14. Predictive Validity Data Set

    • figshare.com
    txt
    Updated Dec 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Abeyta (2022). Predictive Validity Data Set [Dataset]. http://doi.org/10.6084/m9.figshare.17030021.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 18, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Antonio Abeyta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Verbal and Quantitative Reasoning GRE scores and percentiles were collected by querying the student database for the appropriate information. Any student records that were missing data such as GRE scores or grade point average were removed from the study before the data were analyzed. The GRE Scores of entering doctoral students from 2007-2012 were collected and analyzed. A total of 528 student records were reviewed. Ninety-six records were removed from the data because of a lack of GRE scores. Thirty-nine of these records belonged to MD/PhD applicants who were not required to take the GRE to be reviewed for admission. Fifty-seven more records were removed because they did not have an admissions committee score in the database. After 2011, the GRE’s scoring system was changed from a scale of 200-800 points per section to 130-170 points per section. As a result, 12 more records were removed because their scores were representative of the new scoring system and therefore were not able to be compared to the older scores based on raw score. After removal of these 96 records from our analyses, a total of 420 student records remained which included students that were currently enrolled, left the doctoral program without a degree, or left the doctoral program with an MS degree. To maintain consistency in the participants, we removed 100 additional records so that our analyses only considered students that had graduated with a doctoral degree. In addition, thirty-nine admissions scores were identified as outliers by statistical analysis software and removed for a final data set of 286 (see Outliers below). Outliers We used the automated ROUT method included in the PRISM software to test the data for the presence of outliers which could skew our data. The false discovery rate for outlier detection (Q) was set to 1%. After removing the 96 students without a GRE score, 432 students were reviewed for the presence of outliers. ROUT detected 39 outliers that were removed before statistical analysis was performed. Sample See detailed description in the Participants section. Linear regression analysis was used to examine potential trends between GRE scores, GRE percentiles, normalized admissions scores or GPA and outcomes between selected student groups. The D’Agostino & Pearson omnibus and Shapiro-Wilk normality tests were used to test for normality regarding outcomes in the sample. The Pearson correlation coefficient was calculated to determine the relationship between GRE scores, GRE percentiles, admissions scores or GPA (undergraduate and graduate) and time to degree. Candidacy exam results were divided into students who either passed or failed the exam. A Mann-Whitney test was then used to test for statistically significant differences between mean GRE scores, percentiles, and undergraduate GPA and candidacy exam results. Other variables were also observed such as gender, race, ethnicity, and citizenship status within the samples. Predictive Metrics. The input variables used in this study were GPA and scores and percentiles of applicants on both the Quantitative and Verbal Reasoning GRE sections. GRE scores and percentiles were examined to normalize variances that could occur between tests. Performance Metrics. The output variables used in the statistical analyses of each data set were either the amount of time it took for each student to earn their doctoral degree, or the student’s candidacy examination result.

  15. Anomaly detection from sound data- Fan

    • kaggle.com
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vuppala Adithya Sairam (2023). Anomaly detection from sound data- Fan [Dataset]. https://www.kaggle.com/datasets/vuppalaadithyasairam/anomaly-detection-from-sound-data-fan
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 22, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vuppala Adithya Sairam
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    The dataset is a subset of the Task-2 of DCASE 2020 Challenge. The Challenge is to identify anomaly of a machine using the audio data. There are three different parts of the dataset, namely, training, validation and testing which have been combined into a single dataset.

    Training- https://zenodo.org/record/3678171

    Validation- https://zenodo.org/record/3727685

    Testing- https://zenodo.org/record/3841772

  16. Enhanced US-GAAP Financial Statement Data Set

    • kaggle.com
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vadim Vanak (2025). Enhanced US-GAAP Financial Statement Data Set [Dataset]. https://www.kaggle.com/datasets/vadimvanak/step-2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vadim Vanak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset builds upon "Financial Statement Data Sets" by incorporating several key improvements to enhance the accuracy and usability of US-GAAP financial data from SEC filings of U.S. exchange-listed companies. Drawing on submissions from January 2009 onward, the enhanced dataset aims to provide analysts with a cleaner, more consistent dataset by addressing common challenges found in the original data.

    Key Enhancements:

    1. Outlier Detection and Correction: Outliers in the original dataset have been systematically identified and corrected, providing more reliable financial figures.
    2. Amendment Adjustments: In cases where SEC rules allow amendment filings to only include delta figures, full figures from the original submissions have been carried over for consistency, facilitating more straightforward analysis.
    3. Missing Figure Estimation: Using calculation arcs from the US-GAAP taxonomy, missing financial figures have been computed where possible, ensuring greater completeness.
    4. Data Structuring: Financial figures that previously appeared as separate rows have been consolidated into single rows with new columns, offering a cleaner structure.

    Scope:

    • Data Scope: The dataset is restricted to figures reported under US-GAAP standards, with the exception of EntityCommonStockSharesOutstanding and EntityPublicFloat.
    • Currency and Units: The dataset exclusively includes figures reported in USD or shares, ensuring uniformity and comparability. It excludes ratios and non-financial metrics to maintain focus on financial data.
    • Company Selection: The dataset is limited to companies with U.S. exchange tickers, providing a concentrated analysis of publicly traded firms within the United States.
    • Submission Types: The dataset only incorporates data from 10-Q, 10-K, 10-Q/A, and 10-K/A filings, ensuring consistency in the type of financial reports analyzed.

    Dataset Features:

    • Refined Financial Data: Accurate and consistent figures by addressing reporting issues, corrections for outliers, and data consolidation.
    • Enhanced Usability: By handling amendment submissions and leveraging GAAP taxonomies, the dataset offers a more analysis-friendly structure.
    • Improved Completeness: Where original submissions had gaps in reporting, this dataset fills those gaps using calculated figures based on accounting principles.

    The source code for data extraction is available here

  17. f

    A Bayesian Outlier Criterion to Detect SNPs under Selection in Large Data...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu Gautier; Toby Dylan Hocking; Jean-Louis Foulley (2023). A Bayesian Outlier Criterion to Detect SNPs under Selection in Large Data Sets [Dataset]. http://doi.org/10.1371/journal.pone.0011913
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mathieu Gautier; Toby Dylan Hocking; Jean-Louis Foulley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe recent advent of high-throughput SNP genotyping technologies has opened new avenues of research for population genetics. In particular, a growing interest in the identification of footprints of selection, based on genome scans for adaptive differentiation, has emerged.Methodology/Principal FindingsThe purpose of this study is to develop an efficient model-based approach to perform Bayesian exploratory analyses for adaptive differentiation in very large SNP data sets. The basic idea is to start with a very simple model for neutral loci that is easy to implement under a Bayesian framework and to identify selected loci as outliers via Posterior Predictive P-values (PPP-values). Applications of this strategy are considered using two different statistical models. The first one was initially interpreted in the context of populations evolving respectively under pure genetic drift from a common ancestral population while the second one relies on populations under migration-drift equilibrium. Robustness and power of the two resulting Bayesian model-based approaches to detect SNP under selection are further evaluated through extensive simulations. An application to a cattle data set is also provided.Conclusions/SignificanceThe procedure described turns out to be much faster than former Bayesian approaches and also reasonably efficient especially to detect loci under positive selection.

  18. Integrated Building Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nasa.gov (2025). Integrated Building Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  19. d

    Distributed Anomaly Detection Using Satellite Data From Multiple Modalities

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Anomaly Detection Using Satellite Data From Multiple Modalities [Dataset]. https://catalog.data.gov/dataset/distributed-anomaly-detection-using-satellite-data-from-multiple-modalities-cf764
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    There has been a tremendous increase in the volume of Earth Science data over the last decade from modern satellites, in-situ sensors and different climate models. All these datasets need to be co-analyzed for finding interesting patterns or for searching for extremes or outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations. Moving these petabytes of data over the network to a single location may waste a lot of bandwidth, and can take days to finish. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the global data without moving all the data to one location. The algorithm is highly accurate (close to 99%) and requires centralizing less than 5% of the entire dataset. We demonstrate the performance of the algorithm using data obtained from the NASA MODerate-resolution Imaging Spectroradiometer (MODIS) satellite images.

  20. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/1c87a458b35d4df38e0744ae039b8e0e
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Giovanni Stilo; Bardh Prenkaj (2024). MNIST dataset for Outliers Detection - [ MNIST4OD ] [Dataset]. http://doi.org/10.6084/m9.figshare.9954986.v2
Organization logoOrganization logo

MNIST dataset for Outliers Detection - [ MNIST4OD ]

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
application/gzipAvailable download formats
Dataset updated
May 17, 2024
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Giovanni Stilo; Bardh Prenkaj
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10

Search
Clear search
Close search
Google apps
Main menu