83 datasets found
  1. MNIST dataset for Outliers Detection - [ MNIST4OD ]

    • figshare.com
    application/gzip
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giovanni Stilo; Bardh Prenkaj (2024). MNIST dataset for Outliers Detection - [ MNIST4OD ] [Dataset]. http://doi.org/10.6084/m9.figshare.9954986.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 17, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Giovanni Stilo; Bardh Prenkaj
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10

  2. r

    KMASH Data Repository for outlier detection

    • research-repository.rmit.edu.au
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sevvandi Kandanaarachchi; Mario Andres Munoz Acosta; Kate Smith-Miles; Rob J Hyndman (2023). KMASH Data Repository for outlier detection [Dataset]. http://doi.org/10.26180/5c6253c0b3323
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    RMIT University
    Authors
    Sevvandi Kandanaarachchi; Mario Andres Munoz Acosta; Kate Smith-Miles; Rob J Hyndman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The zip files contains 12338 datasets for outlier detection investigated in the following papers:(1) Instance space analysis for unsupervised outlier detection Authors : Sevvandi Kandanaarachchi, Mario A. Munoz, Kate Smith-Miles (2) On normalization and algorithm selection for unsupervised outlier detection Authors : Sevvandi Kandanaarachchi, Mario A. Munoz, Rob J. Hyndman, Kate Smith-MilesSome of these datasets were originally discussed in the paper: On the evaluation of unsupervised outlier detection:measures, datasets and an empirical studyAuthors : G. O. Campos, A, Zimek, J. Sander, R. J.G.B. Campello, B. Micenkova, E. Schubert, I. Assent, M.E. Houle.

  3. d

    Data from: Distributed Anomaly Detection using 1-class SVM for Vertically...

    • catalog.data.gov
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Anomaly Detection using 1-class SVM for Vertically Partitioned Data [Dataset]. https://catalog.data.gov/dataset/distributed-anomaly-detection-using-1-class-svm-for-vertically-partitioned-data
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    There has been a tremendous increase in the volume of sensor data collected over the last decade for different monitoring tasks. For example, petabytes of earth science data are collected from modern satellites, in-situ sensors and different climate models. Similarly, huge amount of flight operational data is downloaded for different commercial airlines. These different types of datasets need to be analyzed for finding outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations with only a subset of features available at any location. Moving these petabytes of data to a single location may waste a lot of bandwidth. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the entire data without moving all the data to a single location. The method we propose only centralizes a very small sample from the different data subsets at different locations. We analytically prove and experimentally verify that the algorithm offers high accuracy compared to complete centralization with only a fraction of the communication cost. We show that our algorithm is highly relevant to both earth sciences and aeronautics by describing applications in these domains. The performance of the algorithm is demonstrated on two large publicly available datasets: (1) the NASA MODIS satellite images and (2) a simulated aviation dataset generated by the ‘Commercial Modular Aero-Propulsion System Simulation’ (CMAPSS).

  4. f

    Data from: Error and anomaly detection for intra-participant time-series...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    David R. Mullineaux; Gareth Irwin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

  5. f

    Identifying outliers in asset pricing data with a new weighted forward...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Aronne; Luigi Grossi; Aureliano Angel Bressan (2023). Identifying outliers in asset pricing data with a new weighted forward search estimator [Dataset]. http://doi.org/10.6084/m9.figshare.11804652.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Alexandre Aronne; Luigi Grossi; Aureliano Angel Bressan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The purpose of this work is to present the Weighted Forward Search (FSW) method for the detection of outliers in asset pricing data. This new estimator, which is based on an algorithm that downweights the most anomalous observations of the dataset, is tested using both simulated and empirical asset pricing data. The impact of outliers on the estimation of asset pricing models is assessed under different scenarios, and the results are evaluated with associated statistical tests based on this new approach. Our proposal generates an alternative procedure for robust estimation of portfolio betas, allowing for the comparison between concurrent asset pricing models. The algorithm, which is both efficient and robust to outliers, is used to provide robust estimates of the models’ parameters in a comparison with traditional econometric estimation methods usually used in the literature. In particular, the precision of the alphas is highly increased when the Forward Search (FS) method is used. We use Monte Carlo simulations, and also the well-known dataset of equity factor returns provided by Prof. Kenneth French, consisting of the 25 Fama-French portfolios on the United States of America equity market using single and three-factor models, on monthly and annual basis. Our results indicate that the marginal rejection of the Fama-French three-factor model is influenced by the presence of outliers in the portfolios, when using monthly returns. In annual data, the use of robust methods increases the rejection level of null alphas in the Capital Asset Pricing Model (CAPM) and the Fama-French three-factor model, with more efficient estimates in the absence of outliers and consistent alphas when outliers are present.

  6. s

    Outlier Set Two-step Method (OSTI)

    • orda.shef.ac.uk
    application/x-rar
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amal Sarfraz; Abigail Birnbaum; Flannery Dolan; Jonathan Lamontagne; Lyudmila Mihaylova; Charles Rouge (2025). Outlier Set Two-step Method (OSTI) [Dataset]. http://doi.org/10.15131/shef.data.28227974.v3
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Amal Sarfraz; Abigail Birnbaum; Flannery Dolan; Jonathan Lamontagne; Lyudmila Mihaylova; Charles Rouge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These files are supplements to the paper titled 'A Robust Two-step Method for Detection of Outlier Sets'.This paper identifies and addresses the need for a robust method that identifies sets of points that collectively deviate from typical patterns in a dataset, which it calls "outlier sets'', while excluding individual points from detection. This new methodology, Outlier Set Two-step Identification (OSTI) employs a two-step approach to detect and label these outlier sets. First, it uses Gaussian Mixture Models for probabilistic clustering, identifying candidate outlier sets based on cluster weights below a predetermined threshold. Second, OSTI measures the Inter-cluster Mahalanobis distance between each candidate outlier set's centroid and the overall dataset mean. OSTI then tests the null hypothesis that this distance does not significantly differ from its theoretical chi-square distribution, enabling the formal detection of outlier sets. We test OSTI systematically on 8,000 synthetic 2D datasets across various inlier configurations and thousands of possible outlier set characteristics. Results show OSTI robustly and consistently detects outlier sets with an average F1 score of 0.92 and an average purity (the degree to which outlier sets identified correspond to those generated synthetically, i.e., our ground truth) of 98.58%. We also compare OSTI with state-of-the-art outlier detection methods, to illuminate how OSTI fills a gap as a tool for the exclusive detection of outlier sets.

  7. z

    Controlled Anomalies Time Series (CATS) Dataset

    • zenodo.org
    bin
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Fleith; Patrick Fleith (2024). Controlled Anomalies Time Series (CATS) Dataset [Dataset]. http://doi.org/10.5281/zenodo.7646897
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Solenix Engineering GmbH
    Authors
    Patrick Fleith; Patrick Fleith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Controlled Anomalies Time Series (CATS) Dataset consists of commands, external stimuli, and telemetry readings of a simulated complex dynamical system with 200 injected anomalies.

    The CATS Dataset exhibits a set of desirable properties that make it very suitable for benchmarking Anomaly Detection Algorithms in Multivariate Time Series [1]:

    • Multivariate (17 variables) including sensors reading and control signals. It simulates the operational behaviour of an arbitrary complex system including:
      • 4 Deliberate Actuations / Control Commands sent by a simulated operator / controller, for instance, commands of an operator to turn ON/OFF some equipment.
      • 3 Environmental Stimuli / External Forces acting on the system and affecting its behaviour, for instance, the wind affecting the orientation of a large ground antenna.
      • 10 Telemetry Readings representing the observable states of the complex system by means of sensors, for instance, a position, a temperature, a pressure, a voltage, current, humidity, velocity, acceleration, etc.
    • 5 million timestamps. Sensors readings are at 1Hz sampling frequency.
      • 1 million nominal observations (the first 1 million datapoints). This is suitable to start learning the "normal" behaviour.
      • 4 million observations that include both nominal and anomalous segments. This is suitable to evaluate both semi-supervised approaches (novelty detection) as well as unsupervised approaches (outlier detection).
    • 200 anomalous segments. One anomalous segment may contain several successive anomalous observations / timestamps. Only the last 4 million observations contain anomalous segments.
    • Different types of anomalies to understand what anomaly types can be detected by different approaches.
    • Fine control over ground truth. As this is a simulated system with deliberate anomaly injection, the start and end time of the anomalous behaviour is known very precisely. In contrast to real world datasets, there is no risk that the ground truth contains mislabelled segments which is often the case for real data.
    • Obvious anomalies. The simulated anomalies have been designed to be "easy" to be detected for human eyes (i.e., there are very large spikes or oscillations), hence also detectable for most algorithms. It makes this synthetic dataset useful for screening tasks (i.e., to eliminate algorithms that are not capable to detect those obvious anomalies). However, during our initial experiments, the dataset turned out to be challenging enough even for state-of-the-art anomaly detection approaches, making it suitable also for regular benchmark studies.
    • Context provided. Some variables can only be considered anomalous in relation to other behaviours. A typical example consists of a light and switch pair. The light being either on or off is nominal, the same goes for the switch, but having the switch on and the light off shall be considered anomalous. In the CATS dataset, users can choose (or not) to use the available context, and external stimuli, to test the usefulness of the context for detecting anomalies in this simulation.
    • Pure signal ideal for robustness-to-noise analysis. The simulated signals are provided without noise: while this may seem unrealistic at first, it is an advantage since users of the dataset can decide to add on top of the provided series any type of noise and choose an amplitude. This makes it well suited to test how sensitive and robust detection algorithms are against various levels of noise.
    • No missing data. You can drop whatever data you want to assess the impact of missing values on your detector with respect to a clean baseline.

    [1] Example Benchmark of Anomaly Detection in Time Series: “Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly Detection in Time Series: A Comprehensive Evaluation. PVLDB, 15(9): 1779 - 1797, 2022. doi:10.14778/3538598.3538602”

    About Solenix

    Solenix is an international company providing software engineering, consulting services and software products for the space market. Solenix is a dynamic company that brings innovative technologies and concepts to the aerospace market, keeping up to date with technical advancements and actively promoting spin-in and spin-out technology activities. We combine modern solutions which complement conventional practices. We aspire to achieve maximum customer satisfaction by fostering collaboration, constructivism, and flexibility.

  8. d

    Integrated Building Health Management

    • catalog.data.gov
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Integrated Building Health Management [Dataset]. https://catalog.data.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  9. ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of...

    • zenodo.org
    application/gzip
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erich Schubert; Erich Schubert; Arthur Zimek; Arthur Zimek (2024). ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of Object Images (ALOI) [Dataset]. http://doi.org/10.5281/zenodo.6355684
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Erich Schubert; Erich Schubert; Arthur Zimek; Arthur Zimek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2022
    Description

    These data sets were originally created for the following publications:

    M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek
    Can Shared-Neighbor Distances Defeat the Curse of Dimensionality?
    In Proceedings of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM), Heidelberg, Germany, 2010.

    H.-P. Kriegel, E. Schubert, A. Zimek
    Evaluation of Multiple Clustering Solutions
    In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, 2011.

    The outlier data set versions were introduced in:

    E. Schubert, R. Wojdanowski, A. Zimek, H.-P. Kriegel
    On Evaluation of Outlier Rankings and Outlier Scores
    In Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA, 2012.

    They are derived from the original image data available at https://aloi.science.uva.nl/

    The image acquisition process is documented in the original ALOI work: J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, The Amsterdam library of object images, Int. J. Comput. Vision, 61(1), 103-112, January, 2005

    Additional information is available at: https://elki-project.github.io/datasets/multi_view

    The following views are currently available:

    Feature typeDescriptionFiles
    Object numberSparse 1000 dimensional vectors that give the true object assignmentobjs.arff.gz
    RGB color histogramsStandard RGB color histograms (uniform binning)aloi-8d.csv.gz aloi-27d.csv.gz aloi-64d.csv.gz aloi-125d.csv.gz aloi-216d.csv.gz aloi-343d.csv.gz aloi-512d.csv.gz aloi-729d.csv.gz aloi-1000d.csv.gz
    HSV color histogramsStandard HSV/HSB color histograms in various binningsaloi-hsb-2x2x2.csv.gz aloi-hsb-3x3x3.csv.gz aloi-hsb-4x4x4.csv.gz aloi-hsb-5x5x5.csv.gz aloi-hsb-6x6x6.csv.gz aloi-hsb-7x7x7.csv.gz aloi-hsb-7x2x2.csv.gz aloi-hsb-7x3x3.csv.gz aloi-hsb-14x3x3.csv.gz aloi-hsb-8x4x4.csv.gz aloi-hsb-9x5x5.csv.gz aloi-hsb-13x4x4.csv.gz aloi-hsb-14x5x5.csv.gz aloi-hsb-10x6x6.csv.gz aloi-hsb-14x6x6.csv.gz
    Color similiarityAverage similarity to 77 reference colors (not histograms) 18 colors x 2 sat x 2 bri + 5 grey values (incl. white, black)aloi-colorsim77.arff.gz (feature subsets are meaningful here, as these features are computed independently of each other)
    Haralick featuresFirst 13 Haralick features (radius 1 pixel)aloi-haralick-1.csv.gz
    Front to backVectors representing front face vs. back faces of individual objectsfront.arff.gz
    Basic lightVectors indicating basic light situationslight.arff.gz
    Manual annotationsManually annotated object groups of semantically related objects such as cupsmanual1.arff.gz

    Outlier Detection Versions

    Additionally, we generated a number of subsets for outlier detection:

    Feature typeDescriptionFiles
    RGB HistogramsDownsampled to 100000 objects (553 outliers)aloi-27d-100000-max10-tot553.csv.gz aloi-64d-100000-max10-tot553.csv.gz
    Downsampled to 75000 objects (717 outliers)aloi-27d-75000-max4-tot717.csv.gz aloi-64d-75000-max4-tot717.csv.gz
    Downsampled to 50000 objects (1508 outliers)aloi-27d-50000-max5-tot1508.csv.gz aloi-64d-50000-max5-tot1508.csv.gz
  10. g

    ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of...

    • elki-project.github.io
    Updated Sep 2, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erich Schubert; Arthur Zimek (2011). ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of Object Images (ALOI) [Dataset]. http://doi.org/10.5281/zenodo.6355684
    Explore at:
    Dataset updated
    Sep 2, 2011
    Dataset provided by
    University of Southern Denmark, Denmark
    TU Dortmund University
    Authors
    Erich Schubert; Arthur Zimek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Amsterdam Library of Object Images" is a collection of 110250 images of 1000 small objects, taken under various light conditions and rotation angles. All objects were placed on a black background. Thus the images are taken under rather uniform conditions, which means there is little uncontrolled bias in the data set (unless mixed with other sources). They do however not resemble a "typical" image collection. The data set has a rather unique property for its size: there are around 100 different images of each object, so it is well suited for clustering. By downsampling some objects it can also be used for outlier detection. For multi-view research, we offer a number of different feature vector sets for evaluating this data set.

  11. d

    Anomaly Detection in Sequences

    • catalog.data.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Anomaly Detection in Sequences [Dataset]. https://catalog.data.gov/dataset/anomaly-detection-in-sequences
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that arise from recordings of switch sensors in the cockpits of commercial airliners. While the algorithms we present are general and domain-independent, we focus on a specific problem that is critical to determining system-wide health of a fleet of aircraft. The approach taken uses unsupervised clustering of sequences using the normalized length of he longest common subsequence (nLCS) as a similarity measure, followed by a detailed analysis of outliers to detect anomalies. In this method, an outlier sequence is defined as a sequence that is far away from a cluster. We present new algorithms for outlier analysis that provide comprehensible indicators as to why a particular sequence is deemed to be an outlier. The algorithm provides a coherent description to an analyst of the anomalies in the sequence when compared to more normal sequences. The final section of the paper demonstrates the effectiveness of sequenceMiner for anomaly detection on a real set of discrete sequence data from a fleet of commercial airliners. We show that sequenceMiner discovers actionable and operationally significant safety events. We also compare our innovations with standard HiddenMarkov Models, and show that our methods are superior

  12. e

    Density-based outlier scoring on Kepler data - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Density-based outlier scoring on Kepler data - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/049456b7-7080-5ff0-a5ff-bbb6180c4120
    Explore at:
    Dataset updated
    Apr 23, 2024
    Description

    In the present era of large-scale surveys, big data present new challenges to the discovery process for anomalous data. Such data can be indicative of systematic errors, extreme (or rare) forms of known phenomena, or most interestingly, truly novel phenomena that exhibit as-of-yet unobserved behaviours. In this work, we present an outlier scoring methodology to identify and characterize the most promising unusual sources to facilitate discoveries of such anomalous data. We have developed a data mining method based on k-nearest neighbour distance in feature space to efficiently identify the most anomalous light curves. We test variations of this method including using principal components of the feature space, removing select features, the effect of the choice of k, and scoring to subset samples. We evaluate the performance of our scoring on known object classes and find that our scoring consistently scores rare (<1000) object classes higher than common classes. We have applied scoring to all long cadence light curves of Quarters 1-17 of Kepler's prime mission and present outlier scores for all 2.8 million light curves for the roughly 200k objects.

  13. e

    outlier detection algorithm for SDSS galaxies - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Dec 28, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). outlier detection algorithm for SDSS galaxies - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/53c648e9-7853-564c-95c8-21ebdd18ad16
    Explore at:
    Dataset updated
    Dec 28, 2016
    Description

    How can we discover objects we did not know existed within the large data sets that now abound in astronomy? We present an outlier detection algorithm that we developed, based on an unsupervised Random Forest. We test the algorithm on more than two million galaxy spectra from the Sloan Digital Sky Survey and examine the 400 galaxies with the highest outlier score. We find objects which have extreme emission line ratios and abnormally strong absorption lines, objects with unusual continua, including extremely reddened galaxies. We find galaxy-galaxy gravitational lenses, double-peaked emission line galaxies and close galaxy pairs. We find galaxies with high ionization lines, galaxies that host supernovae and galaxies with unusual gas kinematics. Only a fraction of the outliers we find were reported by previous studies that used specific and tailored algorithms to find a single class of unusual objects. Our algorithm is general and detects all of these classes, and many more, regardless of what makes them peculiar. It can be executed on imaging, time series and other spectroscopic data, operates well with thousands of features, is not sensitive to missing values and is easily parallelizable.

  14. f

    Data Sheet 1_Outliers and anomalies in training and testing datasets for...

    • figshare.com
    pdf
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuriy Vasilev; Anastasia Pamova; Tatiana Bobrovskaya; Anton Vladzimirskyy; Olga Omelyanskaya; Elena Astapenko; Artem Kruchinkin; Novik Vladimir; Kirill Arzamasov (2025). Data Sheet 1_Outliers and anomalies in training and testing datasets for AI-powered morphometry—evidence from CT scans of the spleen.pdf [Dataset]. http://doi.org/10.3389/frai.2025.1607348.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    Frontiers
    Authors
    Yuriy Vasilev; Anastasia Pamova; Tatiana Bobrovskaya; Anton Vladzimirskyy; Olga Omelyanskaya; Elena Astapenko; Artem Kruchinkin; Novik Vladimir; Kirill Arzamasov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionCreating training and testing datasets for machine learning algorithms to measure linear dimensions of organs is a tedious task. There are no universally accepted methods for evaluating outliers or anomalies in such datasets. This can cause errors in machine learning and compromise the quality of end products. The goal of this study is to identify optimal methods for detecting organ anomalies and outliers in medical datasets designed to train and test neural networks in morphometrics.MethodsA dataset was created containing linear measurements of the spleen obtained from CT scans. Labelling was performed by three radiologists. The total number of studies included in the sample was N = 197 patients. Using visual methods (1.5 interquartile range; heat map; boxplot; histogram; scatter plot), machine learning algorithms (Isolation forest; Density-Based Spatial Clustering of Applications with Noise; K-nearest neighbors algorithm; Local outlier factor; One-class support vector machines; EllipticEnvelope; Autoencoders), and mathematical statistics (z-score, Grubb’s test; Rosner’s test).ResultsWe identified measurement errors, input errors, abnormal size values and non-standard shapes of the organ (sickle-shaped, round, triangular, additional lobules). The most effective methods included visual techniques (including boxplots and histograms) and machine learning algorithms such is OSVM, KNN and autoencoders. A total of 32 outlier anomalies were found.DiscussionCuration of complex morphometric datasets must involve thorough mathematical and clinical analyses. Relying solely on mathematical statistics or machine learning methods appears inadequate.

  15. Multi-Domain Outlier Detection Dataset

    • zenodo.org
    zip
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannah Kerner; Hannah Kerner; Umaa Rebbapragada; Umaa Rebbapragada; Kiri Wagstaff; Kiri Wagstaff; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha (2022). Multi-Domain Outlier Detection Dataset [Dataset]. http://doi.org/10.5281/zenodo.6400786
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hannah Kerner; Hannah Kerner; Umaa Rebbapragada; Umaa Rebbapragada; Kiri Wagstaff; Kiri Wagstaff; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Multi-Domain Outlier Detection Dataset contains datasets for conducting outlier detection experiments for four different application domains:

    1. Astrophysics - detecting anomalous observations in the Dark Energy Survey (DES) catalog (data type: feature vectors)
    2. Planetary science - selecting novel geologic targets for follow-up observation onboard the Mars Science Laboratory (MSL) rover (data type: grayscale images)
    3. Earth science: detecting anomalous samples in satellite time series corresponding to ground-truth observations of maize crops (data type: time series/feature vectors)
    4. Fashion-MNIST/MNIST: benchmark task to detect anomalous MNIST images among Fashion-MNIST images (data type: grayscale images)

    Each dataset contains a "fit" dataset (used for fitting or training outlier detection models), a "score" dataset (used for scoring samples used to evaluate model performance, analogous to test set), and a label dataset (indicates whether samples in the score dataset are considered outliers or not in the domain of each dataset).

    To read more about the datasets and how they are used for outlier detection, or to cite this dataset in your own work, please see the following citation:

    Kerner, H. R., Rebbapragada, U., Wagstaff, K. L., Lu, S., Dubayah, B., Huff, E., Lee, J., Raman, V., and Kulshrestha, S. (2022). Domain-agnostic Outlier Ranking Algorithms (DORA)-A Configurable Pipeline for Facilitating Outlier Detection in Scientific Datasets. Under review for Frontiers in Astronomy and Space Sciences.

  16. Integrated Building Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Integrated Building Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  17. R code

    • figshare.com
    txt
    Updated Jun 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christine Dodge (2017). R code [Dataset]. http://doi.org/10.6084/m9.figshare.5021297.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Christine Dodge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R code used for each data set to perform negative binomial regression, calculate overdispersion statistic, generate summary statistics, remove outliers

  18. f

    DataSheet1_Outlier detection using iterative adaptive mini-minimum spanning...

    • frontiersin.figshare.com
    pdf
    Updated Oct 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Li; Jiangwei Li; Chenxu Wang; Fons J. Verbeek; Tanja Schultz; Hui Liu (2023). DataSheet1_Outlier detection using iterative adaptive mini-minimum spanning tree generation with applications on medical data.pdf [Dataset]. http://doi.org/10.3389/fphys.2023.1233341.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Jia Li; Jiangwei Li; Chenxu Wang; Fons J. Verbeek; Tanja Schultz; Hui Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As an important technique for data pre-processing, outlier detection plays a crucial role in various real applications and has gained substantial attention, especially in medical fields. Despite the importance of outlier detection, many existing methods are vulnerable to the distribution of outliers and require prior knowledge, such as the outlier proportion. To address this problem to some extent, this article proposes an adaptive mini-minimum spanning tree-based outlier detection (MMOD) method, which utilizes a novel distance measure by scaling the Euclidean distance. For datasets containing different densities and taking on different shapes, our method can identify outliers without prior knowledge of outlier percentages. The results on both real-world medical data corpora and intuitive synthetic datasets demonstrate the effectiveness of the proposed method compared to state-of-the-art methods.

  19. d

    Replication Data for Outlier analysis: Natural resources and immigration...

    • search.dataone.org
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Choi, Seung Whan (2023). Replication Data for Outlier analysis: Natural resources and immigration policy [Dataset]. http://doi.org/10.7910/DVN/MALOCW
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Choi, Seung Whan
    Description

    There are three files containing Stata data, and do and log-files. These are associated with the empirical models reported in the replication study, “Outlier Analysis: Natural Resources and Immigration Policy,” POLS ONE. Questions or comments regarding these materials should be directed to Seung-Whan Choi, Department of Political Science, University of Illinois at Chicago. His email address is whanchoi@uic.edu and his homepage address is https://whanchoi.people.uic.edu/.

  20. c

    Dynamic Apparel Sales with Anomalies Dataset

    • cubig.ai
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Dynamic Apparel Sales with Anomalies Dataset [Dataset]. https://cubig.ai/store/products/423/dynamic-apparel-sales-with-anomalies-dataset
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Dynamic Apparel Sales with Anomalies Dataset is based on 100,000 sales transaction data from the fashion industry, including extreme outliers, missing values, and sales_categories, reflecting the different data characteristics of real retail environments.

    2) Data Utilization (1) Dynamic Apparel Sales with Anomalies Dataset has characteristics that: • This dataset consists of nine categorical variables and 10 numerical variables, including product name, brand, gender clothing, price, discount rate, inventory level, and customer behavior, making it suitable for analyzing product and customer characteristics. (2) Dynamic Apparel Sales with Anomalies Dataset can be used to: • Sales anomaly detection and quality control: Transaction data with outliers and missing values can be used to detect outliers, manage quality, refine data, and develop outlier processing techniques. • Sales Forecast and Customer Analysis Modeling: Based on a variety of product and customer characteristics, it can be used to support data-driven decision-making, such as machine learning-based sales forecasting, customer segmentation, and customized marketing strategies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Giovanni Stilo; Bardh Prenkaj (2024). MNIST dataset for Outliers Detection - [ MNIST4OD ] [Dataset]. http://doi.org/10.6084/m9.figshare.9954986.v2
Organization logo

MNIST dataset for Outliers Detection - [ MNIST4OD ]

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
application/gzipAvailable download formats
Dataset updated
May 17, 2024
Dataset provided by
Figsharehttp://figshare.com/
Authors
Giovanni Stilo; Bardh Prenkaj
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10

Search
Clear search
Close search
Google apps
Main menu