Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2000 CDC growth charts are based on national data collected between 1963 and 1994 and include a set of selected percentiles between the 3rd and 97th and LMS parameters that can be used to obtain other percentiles and associated z-scores. Obesity is defined as a sex- and age-specific body mass index (BMI) at or above the 95th percentile. Extrapolating beyond the 97th percentile is not recommended and leads to compressed z-score values. This study attempts to overcome this limitation by constructing a new method for calculating BMI distributions above the 95th percentile using an extended reference population. Data from youth at or above the 95th percentile of BMI-for-age in national surveys between 1963 and 2016 were modelled as half-normal distributions. Scale parameters for these distributions were estimated at each sex-specific 6-month age-interval, from 24 to 239 months, and then smoothed as a function of age using regression procedures. The modelled distributions above the 95th percentile can be used to calculate percentiles and non-compressed z-scores for extreme BMI values among youth. This method can be used, in conjunction with the current CDC BMI-for-age growth charts, to track extreme values of BMI among youth.
http://geospatial-usace.opendata.arcgis.com/datasets/9defaa133d434c0a8bb82d5db54e1934/license.jsonhttp://geospatial-usace.opendata.arcgis.com/datasets/9defaa133d434c0a8bb82d5db54e1934/license.json
A sieve analysis (or gradation test) is a practice or procedure commonly used in civil engineering to assess the particle size distribution (also called gradation) of a granular material.
As part of the Sediment Analysis and Geo-App (SAGA) a series of data processing web services are available to assist in computing sediment statistics based on results of sieve analysis. The Calculate Percentile service returns one of the following percentiles: D5, D10, D16, D35, D50, D84, D90, D95.
Percentiles can also be computed for classification sub-groups: Overall (OVERALL), <62.5 um (DS_FINE), 62.5-250um (DS_MED), and > 250um (DS_COARSE)
Parameter #1: Input Sieve Size, Percent Passing, Sieve Units.
Parameter #2: Percentile
Parameter #3: Subgroup
Parameter #4: Outunits
This service is part of the Sediment Analysis and Geo-App (SAGA) Toolkit.
Looking for a comprehensive user interface to run this tool?
Go to SAGA Online to view this geoprocessing service with data already stored in the SAGA database.
This service can be used independently of the SAGA application and user interface, or the tool can be directly accessed through http://navigation.usace.army.mil/SEM/Analysis/GSD
Rent estimates at the 50th percentile (or median) are calculated for all Fair Market Rent areas. Fair Market Rents (FMRs) are primarily used to determine payment standard amounts for the Housing Choice Voucher program, to determine initial renewal rents for some expiring project-based Section 8 contracts, to determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), and to serve as a rent ceiling in the HOME rental assistance program. FMRs are gross rent estimates. They include the shelter rent plus the cost of all tenant-paid utilities, except telephones, cable or satellite television service, and internet service. The U.S. Department of Housing and Urban Development (HUD) annually estimates FMRs for 530 metropolitan areas and 2,045 nonmetropolitan county FMR areas. Under certain conditions, as set forth in the Interim Rule (Federal Register Vol. 65, No. 191, Monday October 2, 2000, pages 58870-58875), these 50th percentile rents can be used to set success rate payment standards.
This indicator represents the tracts ranked by their percentile level of median household incomes per census tract, per capita income. The data source is 2017-2021 American Community Survey, 5-year estimates. The percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.
https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-4068https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-4068
This dataset demonstrates the difference in calculating percentile Intervals as approximation for Highest Density Intervals (HDI) vs. Highest Posterior Density (HPD). This is demonstrated with extended partial liver resection data (ZeLeR-study, ethical vote: 2018-1246-Material). The data includes Computed Tomography (CT) liver volume measurements of patients before (POD 0) and after partial hepatectomy. Liver volume was normalized per patient to the preoperative liver volume. was used to screen the liver regeneration courses. The Fujifilm Synapse3D software was used to calculate volume estimates from CT images. The data is structured in a tabular separated value file of the PEtab format.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
List of Subdatasets: Long-term data: 2000-2021 5th percentile (p05) monthly time-series: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 50th percentile (p50) monthly time-series: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 95th percentile (p95) monthly time-series: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 General Description The monthly aggregated Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) dataset is derived from 250m 8d GLASS V6 FAPAR. The data set is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and LAI data using several other FAPAR products (MODIS Collection 6, GLASS FAPAR V5, and PROBA-V1 FAPAR) to generate a bidirectional long-short-term memory (Bi-LSTM) model to estimate FAPAR. The dataset time spans from March 2000 to December 2021 and provides data that covers the entire globe. The dataset can be used in many applications like land degradation modeling, land productivity mapping, and land potential mapping. The dataset includes: Long-term: Derived from monthly time-series. This dataset provides linear trend model for the p95 variable: (1) slope beta mean (p95.beta_m), p-value for beta (p95.beta_pv), intercept alpha mean (p95.alpha_m), p-value for alpha (p95.alpha_pv), and coefficient of determination R2 (p95.r2_m). Monthly time-series: Monthly aggregation with three standard statistics: (1) 5th percentile (p05), median (p50), and 95th percentile (p95). For each month, we aggregate all composites within that month plus one composite each before and after, ending up with 5 to 6 composites for a single month depending on the number of images within that month. Data Details Time period: March 2000 – December 2021 Type of data: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) How the data was collected or derived: Derived from 250m 8 d GLASS V6 FAPAR using Python running in a local HPC. The time-series analysis were computed using the Scikit-map Python package. Statistical methods used: for the long-term, Ordinary Least Square (OLS) of p95 monthly variable; for the monthly time-series, percentiles 05, 50, and 95. Limitations or exclusions in the data: The dataset does not include data for Antarctica. Coordinate reference system: EPSG:4326 Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.0008094, 179.9999424, 87.37000) Spatial resolution: 1/480 d.d. = 0.00208333 (250m) Image size: 172,800 x 71,698 File format: Cloud Optimized Geotiff (COG) format. Support If you discover a bug, artifact, or inconsistency, or if you have a question please raise a GitHub issue: https://github.com/Open-Earth-Monitor/Global_FAPAR_250m/issues Reference Hackländer, J., Parente, L., Ho, Y.-F., Hengl, T., Simoes, R., Consoli, D., Şahin, M., Tian, X., Herold, M., Jung, M., Duveiller, G., Weynants, M., Wheeler, I., (2023?) "Land potential assessment and trend-analysis using 2000–2021 FAPAR monthly time-series at 250 m spatial resolution", submitted to PeerJ, preprint available at: https://doi.org/10.21203/rs.3.rs-3415685/v1 Name convention To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are: generic variable name: fapar = Fraction of Absorbed Photosynthetically Active Radiation variable procedure combination: essd.lstm = Earth System Science Data with bidirectional long short-term memory (Bi–LSTM) Position in the probability distribution / variable type: p05/p50/p95 = 5th/50th/95th percentile Spatial support: 250m Depth reference: s = surface Time reference begin time: 20000301 = 2000-03-01 Time reference end time: 20211231 = 2022-12-31 Bounding box: go = global (without Antarctica) EPSG code: epsg.4326 = EPSG:4326 Version code: v20230628 = 2023-06-28 (creation date)
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
List of Subdatasets: Long-term data: 2000-2021 5th percentile (p05) monthly time-series: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 50th percentile (p50) monthly time-series: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 95th percentile (p95) monthly time-series: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 General Description The monthly aggregated Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) dataset is derived from 250m 8d GLASS V6 FAPAR. The data set is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and LAI data using several other FAPAR products (MODIS Collection 6, GLASS FAPAR V5, and PROBA-V1 FAPAR) to generate a bidirectional long-short-term memory (Bi-LSTM) model to estimate FAPAR. The dataset time spans from March 2000 to December 2021 and provides data that covers the entire globe. The dataset can be used in many applications like land degradation modeling, land productivity mapping, and land potential mapping. The dataset includes: Long-term: Derived from monthly time-series. This dataset provides linear trend model for the p95 variable: (1) slope beta mean (p95.beta_m), p-value for beta (p95.beta_pv), intercept alpha mean (p95.alpha_m), p-value for alpha (p95.alpha_pv), and coefficient of determination R2 (p95.r2_m). Monthly time-series: Monthly aggregation with three standard statistics: (1) 5th percentile (p05), median (p50), and 95th percentile (p95). For each month, we aggregate all composites within that month plus one composite each before and after, ending up with 5 to 6 composites for a single month depending on the number of images within that month. Data Details Time period: March 2000 – December 2021 Type of data: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) How the data was collected or derived: Derived from 250m 8 d GLASS V6 FAPAR using Python running in a local HPC. The time-series analysis were computed using the Scikit-map Python package. Statistical methods used: for the long-term, Ordinary Least Square (OLS) of p95 monthly variable; for the monthly time-series, percentiles 05, 50, and 95. Limitations or exclusions in the data: The dataset does not include data for Antarctica. Coordinate reference system: EPSG:4326 Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.0008094, 179.9999424, 87.37000) Spatial resolution: 1/480 d.d. = 0.00208333 (250m) Image size: 172,800 x 71,698 File format: Cloud Optimized Geotiff (COG) format. Support If you discover a bug, artifact, or inconsistency, or if you have a question please raise a GitHub issue: https://github.com/Open-Earth-Monitor/Global_FAPAR_250m/issues Reference Hackländer, J., Parente, L., Ho, Y.-F., Hengl, T., Simoes, R., Consoli, D., Şahin, M., Tian, X., Herold, M., Jung, M., Duveiller, G., Weynants, M., Wheeler, I., (2023?) "Land potential assessment and trend-analysis using 2000–2021 FAPAR monthly time-series at 250 m spatial resolution", submitted to PeerJ, preprint available at: https://doi.org/10.21203/rs.3.rs-3415685/v1 Name convention To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are: generic variable name: fapar = Fraction of Absorbed Photosynthetically Active Radiation variable procedure combination: essd.lstm = Earth System Science Data with bidirectional long short-term memory (Bi–LSTM) Position in the probability distribution / variable type: p05/p50/p95 = 5th/50th/95th percentile Spatial support: 250m Depth reference: s = surface Time reference begin time: 20000301 = 2000-03-01 Time reference end time: 20211231 = 2022-12-31 Bounding box: go = global (without Antarctica) EPSG code: epsg.4326 = EPSG:4326 Version code: v20230628 = 2023-06-28 (creation date)
M2SMNXPCT (or statM_2d_pct_Nx) is a 2-dimensional monthly data collection for percentile statistics derived from monthly Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) datasets. V2 of this percentile data collection is computed based on the 1991-2020 climatology, covering the time period from January 1980 to present. In contrast, V1, the original version, is computed based on an earlier 30-year climatology (1981-2010). This collection consists of percentiles used to identify or characterize extreme weather events associated with temperature (maximum, mean, and minimum 2-m air temperature), as well as with precipitation (total precipitation).MERRA-2 is the latest version of global atmospheric reanalysis for the satellite era produced by the NASA Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System Model (GEOS) version 5.12.4. The dataset covers the period of 1980-present, with a latency of ~3 weeks after the end of the previous month.Data Reprocessing: Please check “Records of MERRA-2 Data Reprocessing and Service Changes”, linked from the “Documentation” tab on this page. Note that a reprocessed data filename is different from the original filename.MERRA-2 Mailing List: Sign up to receive information on reprocessing of data, changes to tools and services, as well as data announcements from GMAO. Contact the GES DISC Help Desk (gsfc-dl-help-disc@mail.nasa.gov) to be added to the list.Questions: If you have a question, please read the "MERRA-2 File Specification Document'', “MERRA-2 Data Access – Quick Start Guide”, and FAQs linked from the ”Documentation” tab on this page for more information. If these documents do not answer your question, you may post your question to the NASA Earthdata Forum (forum.earthdata.nasa.gov) or email the GES DISC Help Desk (gsfc-dl-help-disc@mail.nasa.gov).
This dataset contains the geographic data used to create maps for the San Diego County Regional Equity Indicators Report led by the Office of Equity and Racial Justice (OERJ). The full report can be found here: https://data.sandiegocounty.gov/stories/s/7its-kgpt
Demographic data from the report can be found here: https://data.sandiegocounty.gov/dataset/Equity-Report-Data-Demographics/q9ix-kfws
Filter by the Indicator column to select data for a particular indicator map.
Export notes: Dataset may not automatically open correctly in Excel due to geospatial data. To export the data for geospatial analysis, select Shapefile or GEOJSON as the file type. To view the data in Excel, export as a CSV but do not open the file. Then, open a blank Excel workbook, go to the Data tab, select “From Text/CSV,” and follow the prompts to import the CSV file into Excel. Alternatively, use the exploration options in "View Data" to hide the geographic column prior to exporting the data.
USER NOTES: 4/7/2025 - The maps and data have been removed for the Health Professional Shortage Areas indicator due to inconsistencies with the data source leading to some missing health professional shortage areas. We are working to fix this issue, including exploring possible alternative data sources.
5/21/2025 - The following changes were made to the 2023 report data (Equity Report Year = 2023). Self-Sufficiency Wage - a typo in the indicator name was fixed (changed sufficienct to sufficient) and the percent for one PUMA corrected from 56.9 to 59.9 (PUMA = San Diego County (Northwest)--Oceanside City & Camp Pendleton). Notes were made consistent for all rows where geography = ZCTA. A note was added to all rows where geography = PUMA. Voter registration - label "92054, 92051" was renamed to be in numerical order and is now "92051, 92054". Removed data from the percentile column because the categories are not true percentiles. Employment - Data was corrected to show the percent of the labor force that are employed (ages 16 and older). Previously, the data was the percent of the population 16 years and older that are in the labor force. 3- and 4-Year-Olds Enrolled in School - percents are now rounded to one decimal place. Poverty - the last two categories/percentiles changed because the 80th percentile cutoff was corrected by 0.01 and one ZCTA was reassigned to a different percentile as a result. Low Birthweight - the 33th percentile label was corrected to be written as the 33rd percentile. Life Expectancy - Corrected the category and percentile assignment for SRA CENTRAL SAN DIEGO. Parks and Community Spaces - corrected the category assignment for six SRAs.
5/21/2025 - Data was uploaded for Equity Report Year 2025. The following changes were made relative to the 2023 report year. Adverse Childhood Experiences - added geographic data for 2025 report. No calculation of bins nor corresponding percentiles due to small number of geographic areas. Low Birthweight - no calculation of bins nor corresponding percentiles due to small number of geographic areas.
Prepared by: Office of Evaluation, Performance, and Analytics and the Office of Equity and Racial Justice, County of San Diego, in collaboration with the San Diego Regional Policy & Innovation Center (https://www.sdrpic.org).
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the countries in this dataset have a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.
See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.
VARIABLE DESCRIPTIONS:
unid: ISO numeric country code (used by the United Nations)
wbid: ISO alpha country code (used by the World Bank)
SES: Country socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174)
country: Short country name
year: Survey year
gdppc: GDP per capita: Single time-series (imputed)
yrseduc: Completed years of education in the adult (15+) population
region5: Five category regional coding schema
regionUN: United Nations regional coding schema
DATA SOURCES:
The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita:
Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls.
World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm
Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/
Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
United Nations Population Division. 2009.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Verbal and Quantitative Reasoning GRE scores and percentiles were collected by querying the student database for the appropriate information. Any student records that were missing data such as GRE scores or grade point average were removed from the study before the data were analyzed. The GRE Scores of entering doctoral students from 2007-2012 were collected and analyzed. A total of 528 student records were reviewed. Ninety-six records were removed from the data because of a lack of GRE scores. Thirty-nine of these records belonged to MD/PhD applicants who were not required to take the GRE to be reviewed for admission. Fifty-seven more records were removed because they did not have an admissions committee score in the database. After 2011, the GRE’s scoring system was changed from a scale of 200-800 points per section to 130-170 points per section. As a result, 12 more records were removed because their scores were representative of the new scoring system and therefore were not able to be compared to the older scores based on raw score. After removal of these 96 records from our analyses, a total of 420 student records remained which included students that were currently enrolled, left the doctoral program without a degree, or left the doctoral program with an MS degree. To maintain consistency in the participants, we removed 100 additional records so that our analyses only considered students that had graduated with a doctoral degree. In addition, thirty-nine admissions scores were identified as outliers by statistical analysis software and removed for a final data set of 286 (see Outliers below). Outliers We used the automated ROUT method included in the PRISM software to test the data for the presence of outliers which could skew our data. The false discovery rate for outlier detection (Q) was set to 1%. After removing the 96 students without a GRE score, 432 students were reviewed for the presence of outliers. ROUT detected 39 outliers that were removed before statistical analysis was performed. Sample See detailed description in the Participants section. Linear regression analysis was used to examine potential trends between GRE scores, GRE percentiles, normalized admissions scores or GPA and outcomes between selected student groups. The D’Agostino & Pearson omnibus and Shapiro-Wilk normality tests were used to test for normality regarding outcomes in the sample. The Pearson correlation coefficient was calculated to determine the relationship between GRE scores, GRE percentiles, admissions scores or GPA (undergraduate and graduate) and time to degree. Candidacy exam results were divided into students who either passed or failed the exam. A Mann-Whitney test was then used to test for statistically significant differences between mean GRE scores, percentiles, and undergraduate GPA and candidacy exam results. Other variables were also observed such as gender, race, ethnicity, and citizenship status within the samples. Predictive Metrics. The input variables used in this study were GPA and scores and percentiles of applicants on both the Quantitative and Verbal Reasoning GRE sections. GRE scores and percentiles were examined to normalize variances that could occur between tests. Performance Metrics. The output variables used in the statistical analyses of each data set were either the amount of time it took for each student to earn their doctoral degree, or the student’s candidacy examination result.
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
Groundwater modelling in Bioregional Assessments was undertaken in a probabilistic manner. Multiple runs (200 runs) of the model using calibration constrained parameter sets were undertaken to predict drawdown impacts caused by the MBC BA baseline coal resource development. This resulted in 200 different sets of predicted drawdown impacts. This dataset gives different percentiles of the drawdown corresponding to the baseline in ASCII grid format. Percentiles from 5th to 95th percentile are registered in this dataset.
The purpose of this data set is to provide the base files in required format that was used for producing some figures/maps in MBC 2.6.2
This a derived data set. All the inputs for this data set were obtained from the groundwater model data set. The outputs have been derived from Monte Carlo runs to produce the percentile drawdowns for uncertainty analysis.
200 runs of the groundwater model corresponding to the OGIA base and BA baseline resulted in 200 (each) model output files that stores the groundwater head (registered as groundwater model dataset). The maximum drawdown simulated for each of the model runs (over the entire simulation time period) were extracted from these files. These outputs were then used together with custom made scripts (all registered in this dataset) to identify different percentiles of drawdown among these 200 runs.
Bioregional Assessment Programme (2016) MBC Groundwater model baseline 5th to 95th percentile drawdown. Bioregional Assessment Derived Dataset. Viewed 25 October 2017, http://data.bioregionalassessments.gov.au/dataset/6ca506e1-0a2e-464d-a8de-8e931c8f01e8.
Derived From MBC Groundwater model
Derived From MBC Groundwater model mine footprints
Derived From MBC Groundwater model layer boundaries
Rainfall gages throughout the County were selected based on spatial distribution and rainfall record length to determine the 85th and 95th percentile, 24-hour rainfall. The 85th and 95th percentile, 24-hour rainfall can be used to determine the stormwater quality design volume per Public Works Low Impact Design Manual.
You can also check out this data on an interactive map located here:
https://dpw.lacounty.gov/wrd/hydrologygis/
Click HERE to access the REST end point for 85th Percentile Rainfall data.
Click HERE to access the REST end point for 95th Percentile Rainfall data.
The Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration (PGA) values of the 2020 NEHRP Recommended Seismic Provisions and 2022 ASCE/SEI 7 Standard are derived from the downloadable data files. For each site class, the MCEG peak ground acceleration (PGA_M) is calculated via the following equation: PGA_M = min[ PGA_MUH, max( PGA_M84th , PGA_MDLL ) ] where PGA_MUH = uniform-hazard peak ground acceleration PGA_M84th = 84th-percentile peak ground acceleration PGA_MDLL = deterministic lower limit spectral acceleration
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThis dataset contains data captured from remote Power Quality logging devices currently available across 450 UK Power Network sites*. A weekly 95th percentile value per harmonic is calculated and the highest value of each harmonic amongst all weeks, over a period of 12 months (also applicable to THD) is shown.
Methodological Approach Power Quality data is collected from meters on a 10-minute basis and stored in a database. 95th percentile statistics are calculated on a weekly basis and used to generate the harmonics report.Year-week is the ISO 8601 year and week number.
Quality Control Statement The data is provided "as is".
Assurance Statement Harmonic data is periodically extracted and reviewed prior to publication.
Other Download dataset information: Metadata (JSON)
Definitions of key terms related to this dataset can be found in the Open Data Portal Glossary: https://ukpowernetworks.opendatasoft.com/pages/glossary/To view this data please register and login.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This file contains the overall absence split into equal pupil percentile bands and relates to attainment at key stage 2.
Data for Figure 3.41 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.41 is a summary figure showing simulated and observed changes in key large-scale indicators of climate change across the climate system, for continental, ocean basin and larger scales. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The data of each panel is provided in a single file. --------------------------------------------------- List of data provided --------------------------------------------------- This datasets contains global and regional anomaly time-series for: - near-surface air temperature (1850-2020) - precipitation (1950-2014) - sea ice extent (1979-2014) - ocean heat content (1850-2014) --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- near-surface air temperature (tas) -fig_3_41_tas_global.nc, fig_3_41_tas_land.nc, fig_3_41_tas_north_america.nc, fig_3_41_tas_central_south_america.nc, fig_3_41_tas_europe_north_africa.nc, fig_3_41_tas_africa.nc, fig_3_41_tas_asia.nc, fig_3_41_tas_australasia.nc, fig_3_41_tas_antarctic.nc: brown line: exp = 0, stat = 0 (mean); shaded region: stat = 1 (5th percentile) and 2 (95th percentile) green line: exp = 1, stat = 0 (mean); shaded region: stat = 1 (5th percentile) and 2 (95th percentile) black line: exp = 4, stat = 0 (mean) ocean heat content (ohc) -fig_3_41_ohc_global.nc: brown line: ncl5 = 0, ncl6 = 0 (mean); shaded region: ncl6 = 1 (5th percentile) and 2 (95th percentile) green line: ncl5 = 1, ncl6 = 0 (mean); shaded region: ncl6 = 1 (5th percentile) and 2 (95th percentile) black line: ncl5 = 2, ncl6 = 0 (mean) precipitation (pr) -fig_3_41_pr_60N_90N.nc: brown line: exp = 0, stat = 0 (mean); shaded region: stat = 1 (5th percentile) and 2 (95th percentile) green line: exp = 1, stat = 0 (mean); shaded region: stat = 1 (5th percentile) and 2 (95th percentile) black line: exp = 2, stat = 0 (mean) sea ice extent (siconc) -fig_3_41_siconc_nh.nc, fig_3_41_siconc_sh.nc: brown line: exp = 0, stat = 0 (mean); shaded region: stat = 1 (5th percentile) and 2 (95th percentile) green line: exp = 1, stat = 0 (mean); shaded region: stat = 1 (5th percentile) and 2 (95th percentile) black line: exp = 2, stat = 0 (mean) The ensemble spread (shaded regions) of CMIP6 data shown in figure 3.41 are the mean, 5th and 95th percentiles. The in-file metadata labels the same ensemble spread with mean, min and max. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
This data set contains example data for exploration of the theory of regression based regionalization. The 90th percentile of annual maximum streamflow is provided as an example response variable for 293 streamgages in the conterminous United States. Several explanatory variables are drawn from the GAGES-II data base in order to demonstrate how multiple linear regression is applied. Example scripts demonstrate how to collect the original streamflow data provided and how to recreate the figures from the associated Techniques and Methods chapter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2000 CDC growth charts are based on national data collected between 1963 and 1994 and include a set of selected percentiles between the 3rd and 97th and LMS parameters that can be used to obtain other percentiles and associated z-scores. Obesity is defined as a sex- and age-specific body mass index (BMI) at or above the 95th percentile. Extrapolating beyond the 97th percentile is not recommended and leads to compressed z-score values. This study attempts to overcome this limitation by constructing a new method for calculating BMI distributions above the 95th percentile using an extended reference population. Data from youth at or above the 95th percentile of BMI-for-age in national surveys between 1963 and 2016 were modelled as half-normal distributions. Scale parameters for these distributions were estimated at each sex-specific 6-month age-interval, from 24 to 239 months, and then smoothed as a function of age using regression procedures. The modelled distributions above the 95th percentile can be used to calculate percentiles and non-compressed z-scores for extreme BMI values among youth. This method can be used, in conjunction with the current CDC BMI-for-age growth charts, to track extreme values of BMI among youth.