This dataset provides information about the number of properties, residents, and average property values for Range View Drive cross streets in Palm Springs, CA.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Range is a dataset for object detection tasks - it contains Range Switch annotations for 210 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper addresses the computational methods and challenges associated with prime number generation, a critical component in encryption algorithms for ensuring data security. The generation of prime numbers efficiently is a critical challenge in various domains, including cryptography, number theory, and computer science. The quest to find more effective algorithms for prime number generation is driven by the increasing demand for secure communication and data storage and the need for efficient algorithms to solve complex mathematical problems. Our goal is to address this challenge by presenting two novel algorithms for generating prime numbers: one that generates primes up to a given limit and another that generates primes within a specified range. These innovative algorithms are founded on the formulas of odd-composed numbers, allowing them to achieve remarkable performance improvements compared to existing prime number generation algorithms. Our comprehensive experimental results reveal that our proposed algorithms outperform well-established prime number generation algorithms such as Miller-Rabin, Sieve of Atkin, Sieve of Eratosthenes, and Sieve of Sundaram regarding mean execution time. More notably, our algorithms exhibit the unique ability to provide prime numbers from range to range with a commendable performance. This substantial enhancement in performance and adaptability can significantly impact the effectiveness of various applications that depend on prime numbers, from cryptographic systems to distributed computing. By providing an efficient and flexible method for generating prime numbers, our proposed algorithms can develop more secure and reliable communication systems, enable faster computations in number theory, and support advanced computer science and mathematics research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.
Key observations
Largest age group (population): Male # 35-39 years (7) | Female # 70-74 years (36). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the Wallhack1.8k dataset for WiFi-based long-range activity recognition in Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)/Through-Wall scenarios, as proposed in [1,2], as well as the CAD models (of 3D-printable parts) of the WiFi systems proposed in [2].
PyTroch Dataloader
A minimal PyTorch dataloader for the Wallhack1.8k dataset is provided at: https://github.com/StrohmayerJ/wallhack1.8k
Dataset Description
The Wallhack1.8k dataset comprises 1,806 CSI amplitude spectrograms (and raw WiFi packet time series) corresponding to three activity classes: "no presence," "walking," and "walking + arm-waving." WiFi packets were transmitted at a frequency of 100 Hz, and each spectrogram captures a temporal context of approximately 4 seconds (400 WiFi packets).
To assess cross-scenario and cross-system generalization, WiFi packet sequences were collected in LoS and through-wall (NLoS) scenarios, utilizing two different WiFi systems (BQ: biquad antenna and PIFA: printed inverted-F antenna). The dataset is structured accordingly:
LOS/BQ/ <- WiFi packets collected in the LoS scenario using the BQ system
LOS/PIFA/ <- WiFi packets collected in the LoS scenario using the PIFA system
NLOS/BQ/ <- WiFi packets collected in the NLoS scenario using the BQ system
NLOS/PIFA/ <- WiFi packets collected in the NLoS scenario using the PIFA system
These directories contain the raw WiFi packet time series (see Table 1). Each row represents a single WiFi packet with the complex CSI vector H being stored in the "data" field and the class label being stored in the "class" field. H is of the form [I, R, I, R, ..., I, R], where two consecutive entries represent imaginary and real parts of complex numbers (the Channel Frequency Responses of subcarriers). Taking the absolute value of H (e.g., via numpy.abs(H)) yields the subcarrier amplitudes A.
To extract the 52 L-LTF subcarriers used in [1], the following indices of A are to be selected:
csi_valid_subcarrier_index = [] csi_valid_subcarrier_index += [i for i in range(6, 32)] csi_valid_subcarrier_index += [i for i in range(33, 59)]
Additional 56 HT-LTF subcarriers can be selected via:
csi_valid_subcarrier_index += [i for i in range(66, 94)]
csi_valid_subcarrier_index += [i for i in range(95, 123)]
For more details on subcarrier selection, see ESP-IDF (Section Wi-Fi Channel State Information) and esp-csi.
Extracted amplitude spectrograms with the corresponding label files of the train/validation/test split: "trainLabels.csv," "validationLabels.csv," and "testLabels.csv," can be found in the spectrograms/ directory.
The columns in the label files correspond to the following: [Spectrogram index, Class label, Room label]
Spectrogram index: [0, ..., n]
Class label: [0,1,2], where 0 = "no presence", 1 = "walking", and 2 = "walking + arm-waving."
Room label: [0,1,2,3,4,5], where labels 1-5 correspond to the room number in the NLoS scenario (see Fig. 3 in [1]). The label 0 corresponds to no room and is used for the "no presence" class.
Dataset Overview:
Table 1: Raw WiFi packet sequences.
Scenario System "no presence" / label 0 "walking" / label 1 "walking + arm-waving" / label 2 Total
LoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
LoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
NLoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
NLoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
4 20 20 44
Table 2: Sample/Spectrogram distribution across activity classes in Wallhack1.8k.
Scenario System
"no presence" / label 0
"walking" / label 1
"walking + arm-waving" / label 2 Total
LoS BQ 149 154 155
LoS PIFA 149 160 152
NLoS BQ 148 150 152
NLoS PIFA 143 147 147
589 611 606 1,806
Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to one of our papers [1,2].
[1] Strohmayer, Julian, and Martin Kampel. (2024). “Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition”, In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 42-56). Cham: Springer Nature Switzerland, doi: https://doi.org/10.1007/978-3-031-63211-2_4.
[2] Strohmayer, Julian, and Martin Kampel., “Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition,” 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2024, pp. 3594-3599, doi: https://doi.org/10.1109/ICIP51287.2024.10647666.
BibTeX citations:
@inproceedings{strohmayer2024data, title={Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations}, pages={42--56}, year={2024}, organization={Springer}}@INPROCEEDINGS{10647666, author={Strohmayer, Julian and Kampel, Martin}, booktitle={2024 IEEE International Conference on Image Processing (ICIP)}, title={Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition}, year={2024}, volume={}, number={}, pages={3594-3599}, keywords={Visualization;Accuracy;System performance;Directional antennas;Directive antennas;Reflector antennas;Sensors;Human Activity Recognition;WiFi;Channel State Information;Through-Wall Sensing;ESP32}, doi={10.1109/ICIP51287.2024.10647666}}
This dataset provides information about the number of properties, residents, and average property values for Range View Road cross streets in Estes Park, CO.
This dataset consists of mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models.
## Example questions
Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
Answer: 4
Question: Calculate -841880142.544 + 411127.
Answer: -841469015.544
Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
Answer: 54*a - 30
It contains 2 million (question, answer) pairs per module, with questions limited to 160 characters in length, and answers to 30 characters in length. Note the training data for each question type is split into "train-easy", "train-medium", and "train-hard". This allows training models via a curriculum. The data can also be mixed together uniformly from these training datasets to obtain the results reported in the paper. Categories:
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Accurately predicting species’ range shifts in response to environmental change is paramount for understanding ecological processes and global change. In synthetic analyses, traits emerge as significant but weak predictors of species’ range shifts across recent climate change. These studies assume linear responses to traits, while detailed empirical work often reveals trait responses that are unimodal and contain thresholds or other nonlinearities. We hypothesize that the use of linear modeling approaches fails to capture these nonlinearities and therefore may be under-powering traits to predict range shifts. We evaluate the predictive performance of approaches that can capture nonlinear relationships (ridge-regularized linear regression, support vector regression with linear and nonlinear kernels, and random forests). We apply our models using six multi-decadal range shift datasets for plants, moths, marine fish, birds, and small mammals. We show that nonlinear approaches can perform better than least-squares linear modeling in reproducing historical range shifts. Consistent with expectations, we identify dispersal and climatic niche traits as primary determinants of distribution shifts. Traits identified as important predictors and the direction of trait effects are generally consistent across models but there are notable exceptions. Among important predictors, there are more consistent responses to climatic niches than dispersal ability. Modest improvements in predictability when accounting for nonlinearities and interactions and the overall low amount of variance accounted for by trait predictors suggest limits to trait-based statistical predictive frameworks. Methods We assess model performance using six datasets encompassing a broad taxonomic range. The number of species per dataset ranges from 28 to 239 (mean=118, median=94), and range shifts were observed over periods ranging from 20 to 100+ years. Each dataset was derived from previous evaluations of traits as range shift predictors and consists of a list of focal species, associated species-level traits, and a range shift metric.
This dataset provides information about the number of properties, residents, and average property values for Range View Drive cross streets in Bailey, CO.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
For each image, we provide a pixel-wise instance segmentation for all separable neurons.
Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
The segmentation mask for each neuron is stored in a separate channel.
The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9
conda activate flylight-env
pip install zarr
import zarr
raw = zarr.open(
seg = zarr.open(
# optional:
import numpy as np
raw_np = np.array(raw)
Zarr arrays are read lazily on-demand.
Many functions that expect numpy arrays also work with zarr arrays.
Optionally, the arrays can also explicitly be converted to numpy arrays.
We recommend to use napari to view the image data.
pip install "napari[all]"
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)
for idx, gt in enumerate(gts):
viewer.add_labels(
gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
napari.run()
python view_data.py
For more information on our selected metrics and formal definitions please see our paper.
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
For detailed information on the methods and the quantitative results please see our paper.
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe,
title = {FISBe: A real-world benchmark dataset for instance
segmentation of long-range thin filamentous structures},
author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
year = 2024,
eprint = {2404.00130},
archivePrefix ={arXiv},
primaryClass = {cs.CV}
}
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
discussions.
P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
This work was co-funded by Helmholtz Imaging.
There have been no changes to the dataset so far.
All future change will be listed on the changelog page.
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
This dataset provides information about the number of properties, residents, and average property values for Range View Circle cross streets in Rapid City, SD.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Range Caculate is a dataset for computer vision tasks - it contains Range annotations for 1,523 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The dataset comprises developer test results of Maven projects with flaky tests across a range of consecutive commits from the projects' git commit histories. The Maven projects are a subset of those investigated in an OOPSLA 2020 paper. The commit range for this dataset has been chosen as the flakiness-introducing commit (FIC) and iDFlakies-commit (see the OOPSLA paper for details). The commit hashes have been obtained from the IDoFT dataset.
The dataset will be presented at the 1st International Flaky Tests Workshop 2024 (FTW 2024). Please refer to our extended abstract for more details about the motivation for and context of this dataset.
The following table provides a summary of the data.
Slug (Module) FIC Hash Tests Commits Av. Commits/Test Flaky Tests Tests w/ Consistent Failures Total Distinct Histories
TooTallNate/Java-WebSocket 822d40 146 75 75 24 1 2.6x10^9
apereo/java-cas-client (cas-client-core) 5e3655 157 65 61.7 3 2 1.0x10^7
eclipse-ee4j/tyrus (tests/e2e/standard-config) ce3b8c 185 16 16 12 0 261
feroult/yawp (yawp-testing/yawp-testing-appengine) abae17 1 191 191 1 1 8
fluent/fluent-logger-java 5fd463 19 131 105.6 11 2 8.0x10^32
fluent/fluent-logger-java 87e957 19 160 122.4 11 3 2.1x10^31
javadelight/delight-nashorn-sandbox d0d651 81 113 100.6 2 5 4.2x10^10
javadelight/delight-nashorn-sandbox d19eee 81 93 83.5 1 5 2.6x10^9
sonatype-nexus-community/nexus-repository-helm 5517c8 18 32 32 0 0 18
spotify/helios (helios-services) 23260 190 448 448 0 37 190
spotify/helios (helios-testing) 78a864 43 474 474 0 7 43
The columns are composed of the following variables:
Slug (Module): The project's GitHub slug (i.e., the project's URL is https://github.com/{Slug}) and, if specified, the module for which tests have been executed.
FIC Hash: The flakiness-introducing commit hash for a known flaky test as described in this OOPSLA 2020 paper. As different flaky tests have different FIC hashes, there may be multiple rows for the same slug/module with different FIC hashes.
Tests: The number of distinct test class and method combinations over the entire considered commit range.
Commits: The number of commits in the considered commit range
Av. Commits/Test: The average number of commits per test class and method combination in the considered commit range. The number of commits may vary for each test class, as some tests may be added or removed within the considered commit range.
Flaky Tests: The number of distinct test class and method combinations that have more than one test result (passed/skipped/error/failure + exception type, if any + assertion message, if any) across 30 repeated test suite executions on at least one commit in the considered commit range.
Tests w/ Consistent Failures: The number of distinct test class and method combinations that have the same error or failure result (error/failure + exception type, if any + assertion message, if any) across all 30 repeated test suite executions on at least one commit in the considered commit range.
Total Distinct Histories: The number of distinct test results (passed/skipped/error/failure + exception type, if any + assertion message, if any) for all test class and method combinations along all commits for that test in the considered commit range.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Finder Long Range is a dataset for object detection tasks - it contains Banana Mug Apple annotations for 825 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The dataset consists of 181 HDR images. Each image includes: 1) a RAW exposure stack, 2) an HDR image, 3) simulated camera images at two different exposures 4) Results of 6 single-image HDR reconstruction methods: Endo et al. 2017, Eilertsen et al. 2017, Marnerides et al. 2018, Lee et al. 2018, Liu et al. 2020, and Santos et al. 2020
Project web page More details can be found at: https://www.cl.cam.ac.uk/research/rainbow/projects/sihdr_benchmark/
Overview This dataset contains 181 RAW exposure stacks selected to cover a wide range of image content and lighting conditions. Each scene is composed of 5 RAW exposures and merged into an HDR image using the estimator that accounts photon noise 3. A simple color correction was applied using a reference white point and all merged HDR images were resized to 1920×1280 pixels.
The primary purpose of the dataset was to compare various single image HDR (SI-HDR) methods [1]. Thus, we selected a wide variety of content covering nature, portraits, cities, indoor and outdoor, daylight and night scenes. After merging and resizing, we simulated captures by applying a custom CRF and added realistic camera noise based on estimated noise parameters of Canon 5D Mark III.
The simulated captures were inputs to six selected SI-HDR methods. You can view the reconstructions of various methods for select scenes on our interactive viewer. For the remaining scenes, please download the appropriate zip files. We conducted a rigorous pairwise comparison experiment on these images to find that widely-used metrics did not correlate well with subjective data. We then proposed an improved evaluation protocol for SI-HDR [1].
If you find this dataset useful, please cite [1].
References [1] Param Hanji, Rafał K. Mantiuk, Gabriel Eilertsen, Saghi Hajisharif, and Jonas Unger. 2022. “Comparison of single image hdr reconstruction methods — the caveats of quality assessment.” In Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings (SIGGRAPH ’22 Conference Proceedings). [Online]. Available: https://www.cl.cam.ac.uk/research/rainbow/projects/sihdr_benchmark/
[2] Gabriel Eilertsen, Saghi Hajisharif, Param Hanji, Apostolia Tsirikoglou, Rafał K. Mantiuk, and Jonas Unger. 2021. “How to cheat with metrics in single-image HDR reconstruction.” In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. 3998–4007.
[3] Param Hanji, Fangcheng Zhong, and Rafał K. Mantiuk. 2020. “Noise-Aware Merging of High Dynamic Range Image Stacks without Camera Calibration.” In Advances in Image Manipulation (ECCV workshop). Springer, 376–391. [Online]. Available: https://www.cl.cam.ac.uk/research/rainbow/projects/noise-aware-merging/
In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A simple table time series for school probability and statistics. We have to learn how to investigate data: value via time. What we try to do: - mean: average is the sum of all values divided by the number of values. It is also sometimes referred to as mean. - median is the middle number, when in order. Mode is the most common number. Range is the largest number minus the smallest number. - standard deviation s a measure of how dispersed the data is in relation to the mean.
Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
## Overview
WTL Rifle Range is a dataset for object detection tasks - it contains Targets annotations for 613 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [MIT license](https://creativecommons.org/licenses/MIT).
This dataset provides information about the number of properties, residents, and average property values for Range View Drive cross streets in Palm Springs, CA.