100+ datasets found
  1. N

    Median Household Income Variation by Family Size in South Range, MI:...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b74898b-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, South Range did not include 4, 5, 6, or 7-person households. Across the different household sizes in South Range the mean income is $51,844, and the standard deviation is $18,238. The coefficient of variation (CV) is 35.18%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $31,226. It then further increased to $65,869 for 3-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range median household income. You can refer the same here

  2. n

    Data from: Correcting for missing and irregular data in home-range...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Jan 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christen H. Fleming; Daniel Sheldon; William F. Fagan; Peter Leimgruber; Thomas Mueller; Dejid Nandintsetseg; Michael J. Noonan; Kirk A. Olson; Edy Setyawan; Abraham Sianipar; Justin M. Calabrese (2018). Correcting for missing and irregular data in home-range estimation [Dataset]. http://doi.org/10.5061/dryad.n42h0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2018
    Dataset provided by
    University of Tasmania
    Smithsonian Conservation Biology Institute
    Goethe University Frankfurt
    Conservation International Indonesia; Marine Program; Jalan Pejaten Barat 16A, Kemang Jakarta DKI Jakarta 12550 Indonesia
    University of Maryland, College Park
    University of Massachusetts Amherst
    Authors
    Christen H. Fleming; Daniel Sheldon; William F. Fagan; Peter Leimgruber; Thomas Mueller; Dejid Nandintsetseg; Michael J. Noonan; Kirk A. Olson; Edy Setyawan; Abraham Sianipar; Justin M. Calabrese
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Mongolia
    Description

    Home-range estimation is an important application of animal tracking data that is frequently complicated by autocorrelation, sampling irregularity, and small effective sample sizes. We introduce a novel, optimal weighting method that accounts for temporal sampling bias in autocorrelated tracking data. This method corrects for irregular and missing data, such that oversampled times are downweighted and undersampled times are upweighted to minimize error in the home-range estimate. We also introduce computationally efficient algorithms that make this method feasible with large datasets. Generally speaking, there are three situations where weight optimization improves the accuracy of home-range estimates: with marine data, where the sampling schedule is highly irregular, with duty cycled data, where the sampling schedule changes during the observation period, and when a small number of home-range crossings are observed, making the beginning and end times more independent and informative than the intermediate times. Using both simulated data and empirical examples including reef manta ray, Mongolian gazelle, and African buffalo, optimal weighting is shown to reduce the error and increase the spatial resolution of home-range estimates. With a conveniently packaged and computationally efficient software implementation, this method broadens the array of datasets with which accurate space-use assessments can be made.

  3. o

    Range View Drive Cross Street Data in Palm Springs, CA

    • ownerly.com
    Updated Dec 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2021). Range View Drive Cross Street Data in Palm Springs, CA [Dataset]. https://www.ownerly.com/ca/palm-springs/range-view-dr-home-details
    Explore at:
    Dataset updated
    Dec 8, 2021
    Dataset authored and provided by
    Ownerly
    Area covered
    California, Palm Springs, Range View Drive
    Description

    This dataset provides information about the number of properties, residents, and average property values for Range View Drive cross streets in Palm Springs, CA.

  4. N

    Grass Range, MT Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/grass-range-mt-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a considerable majority of female population, with 71.13% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Grass Range is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Grass Range total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Race & Ethnicity. You can refer the same here

  5. Z

    Fused Image dataset for convolutional neural Network-based crack Detection...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Canchila (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6383043
    Explore at:
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Wei Song
    Carlos Canchila
    Shanglian Zhou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  6. o

    Range View Road Cross Street Data in Estes Park, CO

    • ownerly.com
    Updated Jan 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2022). Range View Road Cross Street Data in Estes Park, CO [Dataset]. https://www.ownerly.com/co/estes-park/range-view-rd-home-details
    Explore at:
    Dataset updated
    Jan 16, 2022
    Dataset authored and provided by
    Ownerly
    Area covered
    Estes Park, Range View Road, Colorado
    Description

    This dataset provides information about the number of properties, residents, and average property values for Range View Road cross streets in Estes Park, CO.

  7. c

    Public Land Survey System (PLSS): Township and Range

    • gis.data.ca.gov
    • data.ca.gov
    • +6more
    Updated May 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2019). Public Land Survey System (PLSS): Township and Range [Dataset]. https://gis.data.ca.gov/datasets/cadoc::public-land-survey-system-plss-township-and-range/about
    Explore at:
    Dataset updated
    May 14, 2019
    Dataset authored and provided by
    California Department of Conservation
    Area covered
    Description

    In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed

  8. o

    Caribou Range Boundary

    • data.ontario.ca
    • catalogue.arctic-sdi.org
    • +2more
    pdf, shp
    Updated Jul 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Conservation and Parks (2024). Caribou Range Boundary [Dataset]. https://data.ontario.ca/dataset/caribou-range-boundary
    Explore at:
    shp(None), pdf(None)Available download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Ministry of the Environment, Conservation and Parkshttp://www.ontario.ca/ministry-environment-and-climate-change
    Authors
    Environment, Conservation and Parks
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Aug 29, 2019
    Area covered
    Ontario
    Description

    Shows areas where the health and prevalence of caribou can be linked to the attributes of the land that supports them.

    Ontario's Woodland Caribou Recovery Strategy (2008) provides advice and recommendations on the approaches needed for the recovery of Woodland Caribou.

    The strategy recommends the identification of ranges and local populations to:

    • maintain existing, self-sustaining, genetically-connected local populations of caribou
    • ensure security for and (reproductive) connections among currently isolated mainland caribou
    • re-establish caribou in strategic areas to create self-sustaining local populations and ensure connectivity

    Instructions for downloading this dataset:

    • select the link below and scroll down the metadata record page until you find Transfer Options in the Distribution Information section,
    • select the link beside the Data for download label,
    • you must provide your name, organization and email address in order to access the dataset

    This product requires the use of GIS software.

    *[GIS]: geographic information system

  9. Data from: FISBe: A real-world benchmark dataset for instance segmentation...

    • zenodo.org
    bin, json +3
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa (2024). FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [Dataset]. http://doi.org/10.5281/zenodo.10875063
    Explore at:
    zip, text/x-python, bin, json, txtAvailable download formats
    Dataset updated
    Apr 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 26, 2024
    Description

    General

    For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.

    Summary

    • A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
      • 30 completely labeled (segmented) images
      • 71 partly labeled images
      • altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
    • To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
    • A set of metrics and a novel ranking score for respective meaningful method benchmarking
    • An evaluation of three baseline methods in terms of the above metrics and score

    Abstract

    Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.

    Dataset documentation:

    We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:

    >> FISBe Datasheet

    Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.

    Files

    • fisbe_v1.0_{completely,partly}.zip
      • contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
    • fisbe_v1.0_mips.zip
      • maximum intensity projections of all samples, for convenience.
    • sample_list_per_split.txt
      • a simple list of all samples and the subset they are in, for convenience.
    • view_data.py
      • a simple python script to visualize samples, see below for more information on how to use it.
    • dim_neurons_val_and_test_sets.json
      • a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
    • Readme.md
      • general information

    How to work with the image files

    Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
    For each image, we provide a pixel-wise instance segmentation for all separable neurons.
    Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
    The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
    The segmentation mask for each neuron is stored in a separate channel.
    The order of dimensions is CZYX.

    We recommend to work in a virtual environment, e.g., by using conda:

    conda create -y -n flylight-env -c conda-forge python=3.9
    conda activate flylight-env

    How to open zarr files

    1. Install the python zarr package:
      pip install zarr
    2. Opened a zarr file with:

      import zarr
      raw = zarr.open(
      seg = zarr.open(

      # optional:
      import numpy as np
      raw_np = np.array(raw)

    Zarr arrays are read lazily on-demand.
    Many functions that expect numpy arrays also work with zarr arrays.
    Optionally, the arrays can also explicitly be converted to numpy arrays.

    How to view zarr image files

    We recommend to use napari to view the image data.

    1. Install napari:
      pip install "napari[all]"
    2. Save the following Python script:

      import zarr, sys, napari

      raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
      gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")

      viewer = napari.Viewer(ndisplay=3)
      for idx, gt in enumerate(gts):
      viewer.add_labels(
      gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
      viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
      viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
      viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
      napari.run()

    3. Execute:
      python view_data.py 

    Metrics

    • S: Average of avF1 and C
    • avF1: Average F1 Score
    • C: Average ground truth coverage
    • clDice_TP: Average true positives clDice
    • FS: Number of false splits
    • FM: Number of false merges
    • tp: Relative number of true positives

    For more information on our selected metrics and formal definitions please see our paper.

    Baseline

    To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
    For detailed information on the methods and the quantitative results please see our paper.

    License

    The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Citation

    If you use FISBe in your research, please use the following BibTeX entry:

    @misc{mais2024fisbe,
     title =    {FISBe: A real-world benchmark dataset for instance
             segmentation of long-range thin filamentous structures},
     author =    {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
             Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
             Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
     year =     2024,
     eprint =    {2404.00130},
     archivePrefix ={arXiv},
     primaryClass = {cs.CV}
    }

    Acknowledgments

    We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
    discussions.
    P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
    This work was co-funded by Helmholtz Imaging.

    Changelog

    There have been no changes to the dataset so far.
    All future change will be listed on the changelog page.

    Contributing

    If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.

    All contributions are welcome!

  10. N

    Grass Range, MT Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Grass Range, MT Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/649529eb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 52.63% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Grass Range is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Grass Range total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  11. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  12. o

    Range View Drive Cross Street Data in Bailey, CO

    • ownerly.com
    Updated Feb 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2024). Range View Drive Cross Street Data in Bailey, CO [Dataset]. https://www.ownerly.com/co/bailey/range-view-dr-home-details
    Explore at:
    Dataset updated
    Feb 17, 2024
    Dataset authored and provided by
    Ownerly
    Area covered
    Rangeview Drive, Bailey, Colorado
    Description

    This dataset provides information about the number of properties, residents, and average property values for Range View Drive cross streets in Bailey, CO.

  13. Data from: GALILEO VENUS RANGE FIX RAW DATA V1.0

    • catalog.data.gov
    • datasets.ai
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2025). GALILEO VENUS RANGE FIX RAW DATA V1.0 [Dataset]. https://catalog.data.gov/dataset/galileo-venus-range-fix-raw-data-v1-0-0943a
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Raw radio tracking data used to determine the precise distance to Venus (and improve knowledge of the Astronomical Unit) from the Galileo flyby on 10 February 1990.

  14. Z

    Wallhack1.8k Dataset | Data Augmentation Techniques for Cross-Domain WiFi...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strohmayer, Julian (2025). Wallhack1.8k Dataset | Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8188998
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    Strohmayer, Julian
    Kampel, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the Wallhack1.8k dataset for WiFi-based long-range activity recognition in Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)/Through-Wall scenarios, as proposed in [1,2], as well as the CAD models (of 3D-printable parts) of the WiFi systems proposed in [2].

    PyTroch Dataloader

    A minimal PyTorch dataloader for the Wallhack1.8k dataset is provided at: https://github.com/StrohmayerJ/wallhack1.8k

    Dataset Description

    The Wallhack1.8k dataset comprises 1,806 CSI amplitude spectrograms (and raw WiFi packet time series) corresponding to three activity classes: "no presence," "walking," and "walking + arm-waving." WiFi packets were transmitted at a frequency of 100 Hz, and each spectrogram captures a temporal context of approximately 4 seconds (400 WiFi packets).

    To assess cross-scenario and cross-system generalization, WiFi packet sequences were collected in LoS and through-wall (NLoS) scenarios, utilizing two different WiFi systems (BQ: biquad antenna and PIFA: printed inverted-F antenna). The dataset is structured accordingly:

    LOS/BQ/ <- WiFi packets collected in the LoS scenario using the BQ system

    LOS/PIFA/ <- WiFi packets collected in the LoS scenario using the PIFA system

    NLOS/BQ/ <- WiFi packets collected in the NLoS scenario using the BQ system

    NLOS/PIFA/ <- WiFi packets collected in the NLoS scenario using the PIFA system

    These directories contain the raw WiFi packet time series (see Table 1). Each row represents a single WiFi packet with the complex CSI vector H being stored in the "data" field and the class label being stored in the "class" field. H is of the form [I, R, I, R, ..., I, R], where two consecutive entries represent imaginary and real parts of complex numbers (the Channel Frequency Responses of subcarriers). Taking the absolute value of H (e.g., via numpy.abs(H)) yields the subcarrier amplitudes A.

    To extract the 52 L-LTF subcarriers used in [1], the following indices of A are to be selected:

    52 L-LTF subcarriers

    csi_valid_subcarrier_index = [] csi_valid_subcarrier_index += [i for i in range(6, 32)] csi_valid_subcarrier_index += [i for i in range(33, 59)]

    Additional 56 HT-LTF subcarriers can be selected via:

    56 HT-LTF subcarriers

    csi_valid_subcarrier_index += [i for i in range(66, 94)]
    csi_valid_subcarrier_index += [i for i in range(95, 123)]

    For more details on subcarrier selection, see ESP-IDF (Section Wi-Fi Channel State Information) and esp-csi.

    Extracted amplitude spectrograms with the corresponding label files of the train/validation/test split: "trainLabels.csv," "validationLabels.csv," and "testLabels.csv," can be found in the spectrograms/ directory.

    The columns in the label files correspond to the following: [Spectrogram index, Class label, Room label]

    Spectrogram index: [0, ..., n]

    Class label: [0,1,2], where 0 = "no presence", 1 = "walking", and 2 = "walking + arm-waving."

    Room label: [0,1,2,3,4,5], where labels 1-5 correspond to the room number in the NLoS scenario (see Fig. 3 in [1]). The label 0 corresponds to no room and is used for the "no presence" class.

    Dataset Overview:

    Table 1: Raw WiFi packet sequences.

    Scenario System "no presence" / label 0 "walking" / label 1 "walking + arm-waving" / label 2 Total

    LoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    LoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    NLoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    NLoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    4 20 20 44

    Table 2: Sample/Spectrogram distribution across activity classes in Wallhack1.8k.

    Scenario System

    "no presence" / label 0

    "walking" / label 1

    "walking + arm-waving" / label 2 Total

    LoS BQ 149 154 155

    LoS PIFA 149 160 152

    NLoS BQ 148 150 152

    NLoS PIFA 143 147 147

    589 611 606 1,806

    Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to one of our papers [1,2].

    [1] Strohmayer, Julian, and Martin Kampel. (2024). “Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition”, In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 42-56). Cham: Springer Nature Switzerland, doi: https://doi.org/10.1007/978-3-031-63211-2_4.

    [2] Strohmayer, Julian, and Martin Kampel., “Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition,” 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2024, pp. 3594-3599, doi: https://doi.org/10.1109/ICIP51287.2024.10647666.

    BibTeX citations:

    @inproceedings{strohmayer2024data, title={Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations}, pages={42--56}, year={2024}, organization={Springer}}@INPROCEEDINGS{10647666, author={Strohmayer, Julian and Kampel, Martin}, booktitle={2024 IEEE International Conference on Image Processing (ICIP)}, title={Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition}, year={2024}, volume={}, number={}, pages={3594-3599}, keywords={Visualization;Accuracy;System performance;Directional antennas;Directive antennas;Reflector antennas;Sensors;Human Activity Recognition;WiFi;Channel State Information;Through-Wall Sensing;ESP32}, doi={10.1109/ICIP51287.2024.10647666}}

  15. b

    Home range and body size data compiled from the literature for marine and...

    • bco-dmo.org
    • search.dataone.org
    • +1more
    csv
    Updated Jan 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malin Pinsky; Doug McCauley (2019). Home range and body size data compiled from the literature for marine and terrestrial vertebrates [Dataset]. http://doi.org/10.1575/1912/bco-dmo.752795.1
    Explore at:
    csv(32.17 KB)Available download formats
    Dataset updated
    Jan 31, 2019
    Dataset provided by
    Biological and Chemical Data Management Office
    Authors
    Malin Pinsky; Doug McCauley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    BM, HR, Refs, Group, System, Species
    Description

    Home range and body size data compiled from the literature for marine and terrestrial vertebrates.

    These data were published in McCauley et al. (2015) Table S2.

  16. U

    CoRE (Contractions or Range Expansions) Database: Global Database of Species...

    • data.usgs.gov
    • catalog.data.gov
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Madeleine Rubenstein; Sarah Weiskopf; Romain Bertrand; Shawn Carter; Lisa Comte; Mitchell Eaton; Ciara Johnson; Jonathan Lenoir; Abigail Lynch; Daria Maslyukova; Brian Miller; Toni Morelli; Evan Parker; Christopher Poole; Mari Rodriguez; Theresa Rudick; Adam Terando; Laura Thompson; Keanah Turner (2024). CoRE (Contractions or Range Expansions) Database: Global Database of Species Range Shifts from 1802-2019 [Dataset]. http://doi.org/10.5066/P99VP2TW
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Madeleine Rubenstein; Sarah Weiskopf; Romain Bertrand; Shawn Carter; Lisa Comte; Mitchell Eaton; Ciara Johnson; Jonathan Lenoir; Abigail Lynch; Daria Maslyukova; Brian Miller; Toni Morelli; Evan Parker; Christopher Poole; Mari Rodriguez; Theresa Rudick; Adam Terando; Laura Thompson; Keanah Turner
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1802 - 2019
    Description

    The CoRE (Contractions or Range Expansions) database contains a library of published literature and data on species range shifts in response to climate change. Through a systematic review of publications returned from searches on Google Scholar, Web of Science, and Scopus, we selected primary research articles that documented or attempted to document species-level distribution shifts in animal or plant species in response to recent anthropogenic climate change. We extracted data in four broad categories: (i) basic study information (study duration, location, data quality and methodological factors); (ii) basic species information (scientific names and taxonomic groups); (iii) information on the observed range shifts (range dimension, occupancy or abundance shift, and range edge); and (iv) the description of the shift (range shift direction, magnitude of the shift, and whether it supported our hypotheses). We also took note of climate drivers mentioned and details on species vulner ...

  17. a

    Endemic Mammal Richness in California, Range Weighted (Data Basin Dataset)

    • hub.arcgis.com
    Updated Apr 20, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mkoo (2011). Endemic Mammal Richness in California, Range Weighted (Data Basin Dataset) [Dataset]. https://hub.arcgis.com/content/c5d971cdbb6e4f4ab8bfcfa368623f59
    Explore at:
    Dataset updated
    Apr 20, 2011
    Dataset authored and provided by
    mkoo
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    Project Goals: To identify regions of recently evolved endemic (neo-endemism) mammal species in California and thereby infer areas of rapid evolutionary diversification, which may help guide conservation prioritization and future planning for protected areas. Four species-based GIS rasters were produced of mammalian endemism (see reference for details ). This is: Richness of species distribution models weighted by inverse range size Abstract: The high rate of anthropogenic impact on natural systems mandates protection of the evolutionary processes that generate and sustain biological diversity. Environmental drivers of diversification include spatial heterogeneity of abiotic and biotic agents of divergent selection, features that suppress gene flow, and climatic or geological processes that open new niche space. To explore how well such proxies perform as surrogates for conservation planning, we need first to map areas with rapid diversification — ‘evolutionary hotspots’. Here we combine estimates of range size and divergence time to map spatial patterns of neo-endemism for mammals of California, a global biodiversity hotspot. Neo-endemism is explored at two scales: (i) endemic species, weighted by the inverse of range size and mtDNA sequence divergence from sisters; and (ii) as a surrogate for spatial patterns of phenotypic divergence, endemic subspecies, again using inverse-weighting of range size. The species-level analysis revealed foci of narrowly endemic, young taxa in the central Sierra Nevada, northern and central coast, and Tehachapi and Peninsular Ranges. The subspecies endemism-richness analysis supported the last four areas as hotspots for diversification, but also highlighted additional coastal areas (Monterey to north of San Francisco Bay) and the Inyo Valley to the east. We suggest these hotspots reflect the major processes shaping mammal neo-endemism: steep environmental gradients, biotic admixture areas, and areas with recent geological/climate change. Anthropogenic changes to both environment and land use will have direct impacts on regions of rapid divergence. However, despite widespread changes to land cover in California, the majority of the hotspots identified here occur in areas with relatively intact ecological landscapes. The geographical scope of conserving evolutionary process is beyond the scale of any single agency or nongovernmental organization. Choosing which land to closely protect and/or purchase will always require close coordination between agencies. Citation:DAVIS, E.B., KOO, M.S., CONROY, C., PATTON, J.L. & MORITZ, C. (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular Ecology 17, 120 -138. This dataset was reviewed in another manner. Spatial Resolution: 0.0083333338 DD This layer package was loaded using Data Basin.Click here to go to the detail page for this layer package in Data Basin, where you can find out more information, such as full metadata, or use it to create a live web map.

  18. CK4Gen, High Utility Synthetic Survival Datasets

    • figshare.com
    zip
    Updated Nov 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Kuo (2024). CK4Gen, High Utility Synthetic Survival Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.27611388.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 5, 2024
    Dataset provided by
    figshare
    Authors
    Nicholas Kuo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ===###Overview:This repository provides high-utility synthetic survival datasets generated using the CK4Gen framework, optimised to retain critical clinical characteristics for use in research and educational settings. Each dataset is based on a carefully curated ground truth dataset, processed with standardised variable definitions and analytical approaches, ensuring a consistent baseline for survival analysis.###===###Description:The repository includes synthetic versions of four widely utilised and publicly accessible survival analysis datasets, each anchored in foundational studies and aligned with established ground truth variations to support robust clinical research and training.#---GBSG2: Based on Schumacher et al. [1]. The study evaluated the effects of hormonal treatment and chemotherapy duration in node-positive breast cancer patients, tracking recurrence-free and overall survival among 686 women over a median of 5 years. Our synthetic version is derived from a variation of the GBSG2 dataset available in the lifelines package [2], formatted to match the descriptions in Sauerbrei et al. [3], which we treat as the ground truth.ACTG320: Based on Hammer et al. [4]. The study investigates the impact of adding the protease inhibitor indinavir to a standard two-drug regimen for HIV-1 treatment. The original clinical trial involved 1,151 patients with prior zidovudine exposure and low CD4 cell counts, tracking outcomes over a median follow-up of 38 weeks. Our synthetic dataset is derived from a variation of the ACTG320 dataset available in the sksurv package [5], which we treat as the ground truth dataset.WHAS500: Based on Goldberg et al. [6]. The study follows 500 patients to investigate survival rates following acute myocardial infarction (MI), capturing a range of factors influencing MI incidence and outcomes. Our synthetic data replicates a ground truth variation from the sksurv package, which we treat as the ground truth dataset.FLChain: Based on Dispenzieri et al. [7]. The study assesses the prognostic relevance of serum immunoglobulin free light chains (FLCs) for overall survival in a large cohort of 15,859 participants. Our synthetic version is based on a variation available in the sksurv package, which we treat as the ground truth dataset.###===###Notes:Please find an in-depth discussion on these datasets, as well as their generation process, in the link below, to our paper:https://arxiv.org/abs/2410.16872Kuo, et al. "CK4Gen: A Knowledge Distillation Framework for Generating High-Utility Synthetic Survival Datasets in Healthcare." arXiv preprint arXiv:2410.16872 (2024).###===###References:[1]: Schumacher, et al. “Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German breast cancer study group.”, Journal of Clinical Oncology, 1994.[2]: Davidson-Pilon “lifelines: Survival Analysis in Python”, Journal of Open Source Software, 2019.[3]: Sauerbrei, et al. “Modelling the effects of standard prognostic factors in node-positive breast cancer”, British Journal of Cancer, 1999.[4]: Hammer, et al. “A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and cd4 cell counts of 200 per cubic millimeter or less”, New England Journal of Medicine, 1997.[5]: Pölsterl “scikit-survival: A library for time-to-event analysis built on top of scikit-learn”, Journal of Machine Learning Research, 2020.[6]: Goldberg, et al. “Incidence and case fatality rates of acute myocardial infarction (1975–1984): the Worcester heart attack study”, American Heart Journal, 1988.[7]: Dispenzieri, et al. “Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population”, in Mayo Clinic Proceedings, 2012.

  19. ECMWF ERA5: surface level forecast parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2023). ECMWF ERA5: surface level forecast parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/3e7ad71f09c244318f9bddf92e5fcc4b
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Description

    This dataset contains ERA5 surface level forecast parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Model and surface level analysis data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  20. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b74898b-73fd-11ee-949f-3860777c1fe6/

Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes

Explore at:
json, csvAvailable download formats
Dataset updated
Jan 11, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
South Range, Michigan
Variables measured
Household size, Median Household Income
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

Key observations

  • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, South Range did not include 4, 5, 6, or 7-person households. Across the different household sizes in South Range the mean income is $51,844, and the standard deviation is $18,238. The coefficient of variation (CV) is 35.18%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
  • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $31,226. It then further increased to $65,869 for 3-person households, the largest household size for which the bureau reported a median household income.

https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Household Sizes:

  • 1-person households
  • 2-person households
  • 3-person households
  • 4-person households
  • 5-person households
  • 6-person households
  • 7-or-more-person households

Variables / Data Columns

  • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
  • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for South Range median household income. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu