Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Range median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.
The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.
If you share or use this dataset, please cite [4] and [5] in any relevant documentation.
In addition, an image dataset for crack classification has also been published at [6].
References:
[1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873
[2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605
[3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434
[4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678
5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044
[6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of South Range across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 52.64% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Range Population by Race & Ethnicity. You can refer the same here
In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed
This dataset provides information about the number of properties, residents, and average property values for Range View Drive cross streets in Palm Springs, CA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual distribution of students across grade levels in Range View Elementary School
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.
Key observations
There is a considerable majority of female population, with 71.13% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range Population by Race & Ethnicity. You can refer the same here
This dataset provides information about the number of properties, residents, and average property values for Range View Circle cross streets in Memphis, TN.
This point feature class contains 81,481 points arranged in a 270-meter spaced grid that covers the Spring Mountains and Sheep Range in Clark County, Nevada. Points are attributed with hydroclimate variables and ancillary data compiled to support efforts to characterize ecological zones.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
For each image, we provide a pixel-wise instance segmentation for all separable neurons.
Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
The segmentation mask for each neuron is stored in a separate channel.
The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9
conda activate flylight-env
pip install zarr
import zarr
raw = zarr.open(
seg = zarr.open(
# optional:
import numpy as np
raw_np = np.array(raw)
Zarr arrays are read lazily on-demand.
Many functions that expect numpy arrays also work with zarr arrays.
Optionally, the arrays can also explicitly be converted to numpy arrays.
We recommend to use napari to view the image data.
pip install "napari[all]"
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)
for idx, gt in enumerate(gts):
viewer.add_labels(
gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
napari.run()
python view_data.py
For more information on our selected metrics and formal definitions please see our paper.
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
For detailed information on the methods and the quantitative results please see our paper.
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe,
title = {FISBe: A real-world benchmark dataset for instance
segmentation of long-range thin filamentous structures},
author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
year = 2024,
eprint = {2404.00130},
archivePrefix ={arXiv},
primaryClass = {cs.CV}
}
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
discussions.
P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
This work was co-funded by Helmholtz Imaging.
There have been no changes to the dataset so far.
All future change will be listed on the changelog page.
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and non-range.
We assess model performance using six datasets encompassing a broad taxonomic range. The number of species per dataset ranges from 28 to 239 (mean=118, median=94), and range shifts were observed over periods ranging from 20 to 100+ years. Each dataset was derived from previous evaluations of traits as range shift predictors and consists of a list of focal species, associated species-level traits, and a range shift metric.
The U.S. Geological Survey developed this dataset as part of the Colorado Front Range Infrastructure Resources Project (FRIRP). One goal of the FRIRP was to provide information on the availability of those hydrogeologic resources that are either critical to maintaining infrastructure along the northern Front Range or that may become less available because of urban expansion in the northern Front Range. This dataset extends from the Boulder-Jefferson County line on the south, to the middle of Larimer and Weld Counties on the North. On the west, this dataset is bounded by the approximate mountain front of the Front Range of the Rocky Mountains; on the east, by an arbitrary north-south line extending through a point about 6.5 kilometers east of Greeley. This digital geospatial dataset consists of bedrock-outcrop outlines from hand-drawn maps.
This spatial data set was created by the U.S. Geological Survey (USGS) to represent the extent of land in the Pacific Northwest region of the United States (Hydro Region 17; Major River Basin 7 (MRB7)) that potentially received waste from grazing cattle in 2002.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 model level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ensemble spreads for the ERA5 surface level analysis parameter data ensemble means (see linked dataset). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Project Goals: To identify regions of recently evolved endemic (neo-endemism) mammal species in California and thereby infer areas of rapid evolutionary diversification, which may help guide conservation prioritization and future planning for protected areas. Four species-based GIS rasters were produced of mammalian endemism (see reference for details ). This is: Richness of species distribution models weighted by inverse range size Abstract: The high rate of anthropogenic impact on natural systems mandates protection of the evolutionary processes that generate and sustain biological diversity. Environmental drivers of diversification include spatial heterogeneity of abiotic and biotic agents of divergent selection, features that suppress gene flow, and climatic or geological processes that open new niche space. To explore how well such proxies perform as surrogates for conservation planning, we need first to map areas with rapid diversification — ‘evolutionary hotspots’. Here we combine estimates of range size and divergence time to map spatial patterns of neo-endemism for mammals of California, a global biodiversity hotspot. Neo-endemism is explored at two scales: (i) endemic species, weighted by the inverse of range size and mtDNA sequence divergence from sisters; and (ii) as a surrogate for spatial patterns of phenotypic divergence, endemic subspecies, again using inverse-weighting of range size. The species-level analysis revealed foci of narrowly endemic, young taxa in the central Sierra Nevada, northern and central coast, and Tehachapi and Peninsular Ranges. The subspecies endemism-richness analysis supported the last four areas as hotspots for diversification, but also highlighted additional coastal areas (Monterey to north of San Francisco Bay) and the Inyo Valley to the east. We suggest these hotspots reflect the major processes shaping mammal neo-endemism: steep environmental gradients, biotic admixture areas, and areas with recent geological/climate change. Anthropogenic changes to both environment and land use will have direct impacts on regions of rapid divergence. However, despite widespread changes to land cover in California, the majority of the hotspots identified here occur in areas with relatively intact ecological landscapes. The geographical scope of conserving evolutionary process is beyond the scale of any single agency or nongovernmental organization. Choosing which land to closely protect and/or purchase will always require close coordination between agencies. Citation:DAVIS, E.B., KOO, M.S., CONROY, C., PATTON, J.L. & MORITZ, C. (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular Ecology 17, 120 -138. This dataset was reviewed in another manner. Spatial Resolution: 0.0083333338 DD This layer package was loaded using Data Basin.Click here to go to the detail page for this layer package in Data Basin, where you can find out more information, such as full metadata, or use it to create a live web map.
This digital geospatial data set consists of geohydrologic unit boundaries shown in the report "Structure, outcrop, and subcrop of the bedrock aquifers along the western margin of the Denver Basin, Colorado" (Robson and others, 1998).
The extend_search extension enhances the CKAN data catalog by adding advanced search capabilities. It focuses on improving how users find datasets by introducing date range filtering based on the 'modified-on' metadata, and enables searching datasets by custodian. By incorporating these features, extend_search makes it easier for users to discover relevant datasets within a CKAN instance. Key Features: Date Range Search Filter: Allows users to filter datasets based on a date range applied to the 'modified-on' metadata field. This feature utilizes the bootstrap-daterangepicker library, crediting Dan Grossman’s work, to provide a user-friendly interface for selecting date ranges. Custodian Search Filter: Introduces the ability to search datasets based on the custodian responsible for the dataset. This facilitates finding datasets managed by specific organizations or individuals. Technical Integration: The extension is installed via standard CKAN extension installation procedures. This involves cloning the repository, installing the required Python packages using pip, installing the extension using setup.py, and enabling the extend_search plugin in the CKAN configuration file (.ini). Benefits & Impact: By implementing the extend_search extension, CKAN installations can improve the findability of datasets, saving users time and effort. Date range filtering is specifically useful when searching for recently updated datasets, while custodian filtering is helpful when looking for datasets managed by specific entities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual total students amount from 2013 to 2023 for Range View Elementary School
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Range median household income. You can refer the same here