ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
Georeferencing the "Atlas du plan général de la ville de Paris par Edme Verniquet" Géoréférencement de l'Atlas du plan général de la ville de Paris par Edme Verniquet This dataset contains the necessary data control points to georeference the "Atlas du plan général de la ville de Paris par Edme Verniquet" based on 2 different versions of the atlas: one digitized by the Bibliothèque nationale de France (BnF) and the other by The David Rumsey Historical Map Collection. The dataset contains the control points in QGIS format (.points files) and as Allmaps georeference annotations. It also contains the georeferenced map sheets as geotiff.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset visualises the spatial distribution of the rental value in Amsterdam between 1647 and 1652. The source of rental value comes from the Verponding registration in Amsterdam. The verponding or the ‘Verpondings-quohieren van den 8sten penning’ was a tax in the Netherlands on the 8th penny of the rental value of immovable property that had to be paid annually. In Amsterdam, the citywide verponding registration started in 1647 and continued into the early 19th century. With the introduction of the cadastre system in 1810, the verponding came to an end.
The original tax registration is kept in the Amsterdam City Archives (Archief nr. 5044) and the four registration books transcribed in this dataset are Archief 5044, inventory 255, 273, 281, 284. The verponding was collected by districts (wijken). The tax collectors documented their collecting route by writing down the street or street-section names as they proceed. For each property, the collector wrote down the names of the owner and, if applicable, the renter (after ‘per’), and the estimated rental value of the property (in guilders). Next to the rental value was the tax charged (in guilders and stuivers). Below the owner/renter names and rental value were the records of tax payments by year.
This dataset digitises four registration books of the verponding between 1647 and 1652 in two ways. First, it transcribes the rental value of all real estate properties listed in the registrations. The names of the owners/renters are transcribed only selectively, focusing on the properties that exceeded an annual rental value of 300 guilders. These transcriptions can be found in Verponding1647-1652.csv. For a detailed introduction to the data, see Verponding1647-1652_data_introduction.txt.
Second, it geo-references the registrations based on the street names and the reconstruction of tax collectors’ travel routes in the verponding. The tax records are then plotted on the historical map of Amsterdam using the first cadaster of 1832 as a reference. Since the geo-reference is based on the street or street sections, the location of each record/house may not be the exact location but rather a close proximation of the possible locations based on the street names and the sequence of the records on the same street or street section. Therefore, this geo-referenced verponding can be used to visualise the rental value distribution in Amsterdam between 1647 and 1652. The preview below shows an extrapolation of rental values in Amsterdam. And for the geo-referenced GIS files, see Verponding_wijken.shp.
GIS specifications:
Coordination Reference System (CRS): Amersfoort/RD New (ESPG:28992)
Historical map tiles URL (From Amsterdam Time Machine)
NB: This verponding dataset is a provisional version. The georeferenced points and the name transcriptions might contain errors and need to be treated with caution.
Contributors
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset was generated by the TU Wien Department of Geodesy and Geoinformation.European Sentinel-1 forest type and tree cover density maps represent first continental-scale forest layers based on Sentinel-1 C-Band Synthetic Aperture Radar (SAR) backscatter data. For the year 2017 they cover the majority of European continent with 10 m and 100 m sampling for forest type and tree cover density, respectively. The maps were derived using the method described in https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1479788.The forest type map shows the dominant forest type class (coniferous, broadleaf). Tree cover density map shows the percentage of forest canopy cover within the 100 m pixel.Please be referred to our peer-reviewed article at https://doi.org/10.3390/rs13030337 for details and accuracy assessment accross Europe.Dataset RecordThe forest type and tree cover density maps are sampled at 10 m and 100 m pixel spacing respectively, georeferenced to the Equi7Grid and divided into square tiles of 100km extent ("T1"-tiles). With this setup, the forest maps consist of 728 tiles over the European continent, with data volumes of 3.12 GB and 378.3 MB.The tiles' file-format is a LZW-compressed GeoTIFF holding 16-bit integer values, with tagged metadata on encoding and georeference. Compatibility with common geographic information systems as QGIS or ArcGIS, and geodata libraries as GDAL is given.In this repository, we provide each forest map as tiles, whereas two zipped dataset-collections are available for download below.Code AvailabilityFor the usage of the Equi7Grid we provide data and tools via the python package available on GitHub at https://github.com/TUW-GEO/Equi7Grid. More details on the grid reference can be found in https://www.sciencedirect.com/science/article/pii/S0098300414001629.AcknowledgementsThe computational results presented have been achieved using the Vienna Scientific Cluster (VSC).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was generated by the Remote Sensing Group of the TU Wien Department of Geodesy and Geoinformation (https://mrs.geo.tuwien.ac.at/), within a dedicated project by the European Space Agency (ESA). Rights are reserved with ESA. Open use is granted under the CC BY 4.0 license.With this dataset publication, we open up a new perspective on Earth's land surface, providing a normalised microwave backscatter map from spaceborne Synthetic Aperture Radar (SAR) observations. The Sentinel-1 Global Backscatter Model (S1GBM) describes Earth for the period 2016-17 by the mean C-band radar cross section in VV- and VH-polarization at a 10 m sampling, giving a high-quality impression on surface- structures and -patterns.At TU Wien, we processed 0.5 million Sentinel-1 scenes totaling 1.1 PB and performed semi-automatic quality curation and backscatter harmonisation related to orbit geometry effects. The overall mosaic quality excels (the few) existing datasets, with minimised imprinting from orbit discontinuities and successful angle normalisation in large parts of the world. Supporting the designand verification of upcoming radar sensors, the obtained S1GBM data potentially also serve land cover classification and determination of vegetation and soil states, as well as water body mapping.We invite developers from the broader user community to exploit this novel data resource and to integrate S1GBM parameters in models for various variables of land cover, soil composition, or vegetation structure.Please be referred to our peer-reviewed article at TODO: LINK TO BE PROVIDED for details, generation methods, and an in-depth dataset analysis. In this publication, we demonstrate – as an example of the S1GBM's potential use – the mapping of permanent water bodies and evaluate the results against the Global Surface Water (GSW) benchmark.Dataset RecordThe VV and VH mosaics are sampled at 10 m pixel spacing, georeferenced to the Equi7Grid and divided into six continental zones (Africa, Asia, Europe, North America, Oceania, South America), which are further divided into square tiles of 100 km extent ("T1"-tiles). With this setup, the S1GBM consists of 16071 tiles over six continents, for VV and VH each, totaling to a compressed data volume of 2.67 TB.The tiles' file-format is a LZW-compressed GeoTIFF holding 16-bit integer values, with tagged metadata on encoding and georeference. Compatibility with common geographic information systems as QGIS or ArcGIS, and geodata libraries as GDAL is given.In this repository, we provide each mosaic as tiles that are organised in a folder structure per continent. With this, twelve zipped dataset-collections per continent are available for download.Web-Based Data ViewerIn addition to this data provision here, there is a web-based data viewer set up at the facilities of the Earth Observation Data Centre (EODC) under http://s1map.eodc.eu/. It offers an intuitive pan-and-zoom exploration of the full S1GBM VV and VH mosaics. It has been designed to quickly browse the S1GBM, providing an easy and direct visual impression of the mosaics.Code AvailabilityWe encourage users to use the open-source Python package yeoda, a datacube storage access layer that offers functions to read, write, search, filter, split and load data from the S1GBM datacube. The yeoda package is openly accessible on GitHub at https://github.com/TUW-GEO/yeoda.Furthermore, for the usage of the Equi7Grid we provide data and tools via the python package available on GitHub at https://github.com/TUW-GEO/Equi7Grid. More details on the grid reference can be found in https://www.sciencedirect.com/science/article/pii/S0098300414001629.AcknowledgementsThis study was partly funded by the project "Development of a Global Sentinel-1 Land Surface Backscatter Model", ESA Contract No. 4000122681/17/NL/MP for the European Union Copernicus Programme. The computational results presented have been achieved using the Vienna Scientific Cluster (VSC). We further would like to thank our colleagues at TU Wien and EODC for supporting us on technical tasks to cope with such a large and complex data set. Last but not least, we appreciate the kind assistance and swift support of the colleagues from the TU Wien Center for Research Data Management.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.