Facebook
TwitterData scientist is the sexiest job in the world. How many times have you heard that? Analytics India Annual Salary Study which aims to understand a wide range of trends data science says that the median analytics salary in India for the year 2017 is INR 12.7 Lakhs across all experience level and skill sets. So given the job description and other key information can you predict the range of salary of the job posting? What kind of factors influence the salary of a data scientist? The study also says that in the world of analytics, Mumbai is the highest paymaster at almost 13.3 Lakhs per annum, followed by Bengaluru at 12.5 Lakhs. The industry of the data scientist can also influence the salary. Telecom industry pays the highest median salaries to its analytics professionals at 18.6 Lakhs. What are you waiting for, solve the problem by predicting how much a data scientist or analytics professional will be paid by analysing the data given. Bonus Tip: You can analyse the data and get key insights for your career as well. The best data scientists and machine learning engineers will be given awesome prizes at the end of hackathon. Share this hackathon with a colleague who may be interested in mining the dataset for insights and make great predictions. Data The dataset is based on salary and job postings in India across the internet. The train and the test data consists of attributes mentioned below. The rows of train dataset has rich amount of information regarding the job posting such as name of the designation and key skills required for the job. The training data and test data comprise of 19802 samples and of 6601 samples each. This is a dataset which has been collected over some time to gather relevant analytics jobs posting over the years. Features Name of the company (Encoded) Years of experience Job description Job designation Job Type Key skills Location Salary in Rupees Lakhs(To be predicted) Problem Statement Based on the given attributes and salary information, build a robust machine learning model that predicts the salary range of the salary post. calender Event Duration 10 Dec 2018 to 20 Jan 2030
hlevelBeginne
Facebook
Twitter
According to our latest research, the global Data Science Notebook as a Service market size reached USD 2.1 billion in 2024, reflecting robust adoption across industries driven by the need for scalable, collaborative analytics platforms. The market is exhibiting a strong compound annual growth rate (CAGR) of 27.6% and is anticipated to reach USD 15.6 billion by 2033, as per our projections. This impressive growth trajectory is primarily attributed to the rising demand for advanced analytics, machine learning, and seamless collaboration capabilities in data-driven organizations.
The rapid expansion of the Data Science Notebook as a Service market is underpinned by the increasing complexity of data environments and the need for integrated platforms that facilitate efficient data exploration, analysis, and visualization. Enterprises are transitioning away from traditional, siloed analytics tools in favor of cloud-based, collaborative notebook solutions that support real-time interaction and remote teamwork. The proliferation of big data, the democratization of data science, and the growing reliance on AI and machine learning models are further catalyzing market growth, as organizations seek tools that streamline the end-to-end analytics lifecycle. The flexibility and scalability offered by notebook as a service platforms are also critical factors driving adoption, particularly as businesses prioritize agility and rapid innovation in a competitive digital landscape.
Another major growth factor is the surge in remote and hybrid work models, which have fundamentally altered how teams interact with data and collaborate on analytics projects. Data Science Notebook as a Service platforms enable geographically dispersed teams to share code, insights, and visualizations in real time, fostering a culture of transparency and knowledge sharing. This capability is especially valuable in research-driven sectors such as healthcare, finance, and academia, where cross-functional collaboration is essential for innovation. Additionally, the integration of advanced security features and compliance tools has made these platforms more attractive to enterprises operating in regulated industries, further expanding the addressable market.
The evolution of AI and machine learning technologies is also fueling demand for Data Science Notebook as a Service solutions. As organizations increasingly embed predictive analytics and automation into their core operations, there is a growing need for platforms that support the full data science workflow – from data ingestion and preprocessing to model development, training, and deployment. Modern notebook services are integrating with a wide array of data sources, cloud infrastructures, and MLOps tools, enabling seamless scalability and operationalization of analytics. This integration is reducing the time-to-value for advanced analytics initiatives and empowering a broader range of users, including citizen data scientists and business analysts, to participate in data-driven decision-making.
From a regional perspective, North America currently dominates the Data Science Notebook as a Service market, accounting for the largest revenue share in 2024. The region’s leadership is driven by the high concentration of technology innovators, early adopters, and significant investments in digital transformation initiatives. However, Asia Pacific is emerging as the fastest-growing region, propelled by rapid digitalization, expanding enterprise IT infrastructure, and the rise of data-centric industries in countries like China, India, and Japan. Europe is also witnessing substantial growth, supported by strong regulatory frameworks, increased cloud adoption, and a focus on data-driven innovation across sectors. As global organizations continue to prioritize data science capabilities, the market is expected to see robust growth across all major regions.
The Component segment
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
Quantum Tunnel TweetsThe data set contains tweets sourced from @quantum_tunnel and @dt_science as a demo for classifying text using Naive Bayes. The demo is detailed in the book Data Science and Analytics with Python by Dr J Rogel-Salazar.Data contents:Train_QuantumTunnel_Tweets.csv: Labelled tweets for text related to "Data Science" with three features:DataScience: [0/1] indicating whether the text is about "Data Science" or not.Date: Date when the tweet was publishedTweet: Text of the tweetTest_QuantumTunnel_Tweets.csv: Testing data with twitter utterances withouth labels:id: A unique identifier for tweetsDate: Date when the tweet was publishedTweet: Text for the tweetFor further information, please get in touch with Dr J Rogel-Salazar.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Looking for a free Walmart product dataset? The Walmart Products Free Dataset delivers a ready-to-use ecommerce product data CSV containing ~2,100 verified product records from Walmart.com. It includes vital details like product titles, prices, categories, brand info, availability, and descriptions — perfect for data analysis, price comparison, market research, or building machine-learning models.
Complete Product Metadata: Each entry includes URL, title, brand, SKU, price, currency, description, availability, delivery method, average rating, total ratings, image links, unique ID, and timestamp.
CSV Format, Ready to Use: Download instantly - no need for scraping, cleaning or formatting.
Good for E-commerce Research & ML: Ideal for product cataloging, price tracking, demand forecasting, recommendation systems, or data-driven projects.
Free & Easy Access: Priced at USD $0.0, making it a great starting point for developers, data analysts or students.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
MODIS Water Lake Powell Toy Dataset
Dataset Summary
Tabular dataset comprised of MODIS surface reflectance bands along with calculated indices and a label (water/not-water)
Dataset Structure
Data Fields
water: Label, water or not-water (binary) sur_refl_b01_1: MODIS surface reflection band 1 (-100, 16000) sur_refl_b02_1: MODIS surface reflection band 2 (-100, 16000) sur_refl_b03_1: MODIS surface reflection band 3 (-100, 16000) sur_refl_b04_1: MODIS… See the full description on the dataset page: https://huggingface.co/datasets/nasa-cisto-data-science-group/modis-lake-powell-toy-dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package
This repository contains data and source files needed to replicate our work described in the paper "Unboxing Default Argument Breaking Changes in Scikit Learn".
Requirements
We recommend the following requirements to replicate our study:
Package Structure
We relied on Docker containers to provide a working environment that is easier to replicate. Specifically, we configure the following containers:
data-analysis, an R-based Container we used to run our data analysis.data-collection, a Python Container we used to collect Scikit's default arguments and detect them in client applications.database, a Postgres Container we used to store clients' data, obtainer from Grotov et al.storage, a directory used to store the data processed in data-analysis and data-collection. This directory is shared in both containers.docker-compose.yml, the Docker file that configures all containers used in the package.In the remainder of this document, we describe how to set up each container properly.
Using VSCode to Setup the Package
We selected VSCode as the IDE of choice because its extensions allow us to implement our scripts directly inside the containers. In this package, we provide configuration parameters for both data-analysis and data-collection containers. This way you can directly access and run each container inside it without any specific configuration.
You first need to set up the containers
$ cd /replication/package/folder
$ docker-compose build
$ docker-compose up
# Wait docker creating and running all containers
Then, you can open them in Visual Studio Code:
If you want/need a more customized organization, the remainder of this file describes it in detail.
Longest Road: Manual Package Setup
Database Setup
The database container will automatically restore the dump in dump_matroskin.tar in its first launch. To set up and run the container, you should:
Build an image:
$ cd ./database
$ docker build --tag 'dabc-database' .
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
dabc-database latest b6f8af99c90d 50 minutes ago 18.5GB
Create and enter inside the container:
$ docker run -it --name dabc-database-1 dabc-database
$ docker exec -it dabc-database-1 /bin/bash
root# psql -U postgres -h localhost -d jupyter-notebooks
jupyter-notebooks=# \dt
List of relations
Schema | Name | Type | Owner
--------+-------------------+-------+-------
public | Cell | table | root
public | Code_cell | table | root
public | Md_cell | table | root
public | Notebook | table | root
public | Notebook_features | table | root
public | Notebook_metadata | table | root
public | repository | table | root
If you got the tables list as above, your database is properly setup.
It is important to mention that this database is extended from the one provided by Grotov et al.. Basically, we added three columns in the table Notebook_features (API_functions_calls, defined_functions_calls, andother_functions_calls) containing the function calls performed by each client in the database.
Data Collection Setup
This container is responsible for collecting the data to answer our research questions. It has the following structure:
dabcs.py, extract DABCs from Scikit Learn source code, and export them to a CSV file.dabcs-clients.py, extract function calls from clients and export them to a CSV file. We rely on a modified version of Matroskin to leverage the function calls. You can find the tool's source code in the `matroskin`` directory.Makefile, commands to set up and run both dabcs.py and dabcs-clients.pymatroskin, the directory containing the modified version of matroskin tool. We extended the library to collect the function calls performed on the client notebooks of Grotov's dataset.storage, a docker volume where the data-collection should save the exported data. This data will be used later in Data Analysis.requirements.txt, Python dependencies adopted in this module.Note that the container will automatically configure this module for you, e.g., install dependencies, configure matroskin, download scikit learn source code, etc. For this, you must run the following commands:
$ cd ./data-collection
$ docker build --tag "data-collection" .
$ docker run -it -d --name data-collection-1 -v $(pwd)/:/data-collection -v $(pwd)/../storage/:/data-collection/storage/ data-collection
$ docker exec -it data-collection-1 /bin/bash
$ ls
Dockerfile Makefile config.yml dabcs-clients.py dabcs.py matroskin storage requirements.txt utils.py
If you see project files, it means the container is configured accordingly.
Data Analysis Setup
We use this container to conduct the analysis over the data produced by the Data Collection container. It has the following structure:
dependencies.R, an R script containing the dependencies used in our data analysis.data-analysis.Rmd, the R notebook we used to perform our data analysisdatasets, a docker volume pointing to the storage directory.Execute the following commands to run this container:
$ cd ./data-analysis
$ docker build --tag "data-analysis" .
$ docker run -it -d --name data-analysis-1 -v $(pwd)/:/data-analysis -v $(pwd)/../storage/:/data-collection/datasets/ data-analysis
$ docker exec -it data-analysis-1 /bin/bash
$ ls
data-analysis.Rmd datasets dependencies.R Dockerfile figures Makefile
If you see project files, it means the container is configured accordingly.
A note on storage shared folder
As mentioned, the storage folder is mounted as a volume and shared between data-collection and data-analysis containers. We compressed the content of this folder due to space constraints. Therefore, before starting working on Data Collection or Data Analysis, make sure you extracted the compressed files. You can do this by running the Makefile inside storage folder.
$ make unzip # extract files
$ ls
clients-dabcs.csv clients-validation.csv dabcs.csv Makefile scikit-learn-versions.csv versions.csv
$ make zip # compress files
$ ls
csv-files.tar.gz Makefile
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling.
The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly.
From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey.
Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond.
We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival.
To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values.
Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.
Dataset
The artifact contains the resources described below.
Experiment resources
The resources needed for replicating the experiment, namely in directory experiment:
alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.
alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.
docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.
api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.
Experiment data
The task database used in our application of the experiment, namely in directory data/experiment:
Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.
identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.
Collected data
Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:
data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).
data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:
participant identification: participant's unique identifier (ID);
socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).
data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:
participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);
detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.
data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:
participant identification: participant's unique identifier (ID);
user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).
participants.txt: the list of participant identifiers that have registered for the experiment.
Analysis scripts
The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:
analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.
requirements.r: An R script to install the required libraries for the analysis script.
normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.
normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.
Dockerfile: Docker script to automate the analysis script from the collected data.
Setup
To replicate the experiment and the analysis of the results, only Docker is required.
If you wish to manually replicate the experiment and collect your own data, you'll need to install:
A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.
If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:
Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.
R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.
Usage
Experiment replication
This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.
To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.
cd experimentdocker-compose up
This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.
In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:
Group N (no hints): http://localhost:3000/0CAN
Group L (error locations): http://localhost:3000/CA0L
Group E (counter-example): http://localhost:3000/350E
Group D (error description): http://localhost:3000/27AD
In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.
Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.
Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.
After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:
Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.
Analysis of other applications of the experiment
This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.
The analysis script expects data in 4 CSV files,
Facebook
Twitterhttps://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html
The data analytic market size is projected to grow from USD 69.40 billion in the current year to USD 877.12 billion by 2035, representing a CAGR of 25.93%, during the forecast period till 2035.
Facebook
TwitterThis is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Generative AI In Data Analytics Market Size 2025-2029
The generative ai in data analytics market size is valued to increase by USD 4.62 billion, at a CAGR of 35.5% from 2024 to 2029. Democratization of data analytics and increased accessibility will drive the generative ai in data analytics market.
Market Insights
North America dominated the market and accounted for a 37% growth during the 2025-2029.
By Deployment - Cloud-based segment was valued at USD 510.60 billion in 2023
By Technology - Machine learning segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 621.84 million
Market Future Opportunities 2024: USD 4624.00 million
CAGR from 2024 to 2029 : 35.5%
Market Summary
The market is experiencing significant growth as businesses worldwide seek to unlock new insights from their data through advanced technologies. This trend is driven by the democratization of data analytics and increased accessibility of AI models, which are now available in domain-specific and enterprise-tuned versions. Generative AI, a subset of artificial intelligence, uses deep learning algorithms to create new data based on existing data sets. This capability is particularly valuable in data analytics, where it can be used to generate predictions, recommendations, and even new data points. One real-world business scenario where generative AI is making a significant impact is in supply chain optimization. In this context, generative AI models can analyze historical data and generate forecasts for demand, inventory levels, and production schedules. This enables businesses to optimize their supply chain operations, reduce costs, and improve customer satisfaction. However, the adoption of generative AI in data analytics also presents challenges, particularly around data privacy, security, and governance. As businesses continue to generate and analyze increasingly large volumes of data, ensuring that it is protected and used in compliance with regulations is paramount. Despite these challenges, the benefits of generative AI in data analytics are clear, and its use is set to grow as businesses seek to gain a competitive edge through data-driven insights.
What will be the size of the Generative AI In Data Analytics Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free SampleGenerative AI, a subset of artificial intelligence, is revolutionizing data analytics by automating data processing and analysis, enabling businesses to derive valuable insights faster and more accurately. Synthetic data generation, a key application of generative AI, allows for the creation of large, realistic datasets, addressing the challenge of insufficient data in analytics. Parallel processing methods and high-performance computing power the rapid analysis of vast datasets. Automated machine learning and hyperparameter optimization streamline model development, while model monitoring systems ensure continuous model performance. Real-time data processing and scalable data solutions facilitate data-driven decision-making, enabling businesses to respond swiftly to market trends. One significant trend in the market is the integration of AI-powered insights into business operations. For instance, probabilistic graphical models and backpropagation techniques are used to predict customer churn and optimize marketing strategies. Ensemble learning methods and transfer learning techniques enhance predictive analytics, leading to improved customer segmentation and targeted marketing. According to recent studies, businesses have achieved a 30% reduction in processing time and a 25% increase in predictive accuracy by implementing generative AI in their data analytics processes. This translates to substantial cost savings and improved operational efficiency. By embracing this technology, businesses can gain a competitive edge, making informed decisions with greater accuracy and agility.
Unpacking the Generative AI In Data Analytics Market Landscape
In the dynamic realm of data analytics, Generative AI algorithms have emerged as a game-changer, revolutionizing data processing and insights generation. Compared to traditional data mining techniques, Generative AI models can create new data points that mirror the original dataset, enabling more comprehensive data exploration and analysis (Source: Gartner). This innovation leads to a 30% increase in identified patterns and trends, resulting in improved ROI and enhanced business decision-making (IDC).
Data security protocols are paramount in this context, with Classification Algorithms and Clustering Algorithms ensuring data privacy and compliance alignment. Machine Learning Pipelines and Deep Learning Frameworks facilitate seamless integration with Predictive Modeling Tools and Automated Report Generation on Cloud
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The dataset has been collected in the frame of the Prac1 of the subject Tipology and Data Life Cycle of the Master's Degree in Data Science of the Universitat Oberta de Catalunya (UOC).
The dataset contains 25 variables and 52478 records corresponding to books on the GoodReads Best Books Ever list (the larges list on the site).
Original code used to retrieve the dataset can be found on github repository: github.com/scostap/goodreads_bbe_dataset
The data was retrieved in two sets, the first 30000 books and then the remainig 22478. Dates were not parsed and reformated on the second chunk so publishDate and firstPublishDate are representet in a mm/dd/yyyy format for the first 30000 records and Month Day Year for the rest.
Book cover images can be optionally downloaded from the url in the 'coverImg' field. Python code for doing so and an example can be found on the github repo.
The 25 fields of the dataset are:
| Attributes | Definition | Completeness |
| ------------- | ------------- | ------------- |
| bookId | Book Identifier as in goodreads.com | 100 |
| title | Book title | 100 |
| series | Series Name | 45 |
| author | Book's Author | 100 |
| rating | Global goodreads rating | 100 |
| description | Book's description | 97 |
| language | Book's language | 93 |
| isbn | Book's ISBN | 92 |
| genres | Book's genres | 91 |
| characters | Main characters | 26 |
| bookFormat | Type of binding | 97 |
| edition | Type of edition (ex. Anniversary Edition) | 9 |
| pages | Number of pages | 96 |
| publisher | Editorial | 93 |
| publishDate | publication date | 98 |
| firstPublishDate | Publication date of first edition | 59 |
| awards | List of awards | 20 |
| numRatings | Number of total ratings | 100 |
| ratingsByStars | Number of ratings by stars | 97 |
| likedPercent | Derived field, percent of ratings over 2 starts (as in GoodReads) | 99 |
| setting | Story setting | 22 |
| coverImg | URL to cover image | 99 |
| bbeScore | Score in Best Books Ever list | 100 |
| bbeVotes | Number of votes in Best Books Ever list | 100 |
| price | Book's price (extracted from Iberlibro) | 73 |
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Data Analytics market size 2021 was recorded $28.007 Billion whereas by the end of 2025 it will reach $72.4 Billion. According to the author, by 2033 Data Analytics market size will become $483.83. Data Analytics market will be growing at a CAGR of 26.8% during 2025 to 2033.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data files for the examples in the book Geographic Data Science in R: Visualizing and Analyzing Environmental Change by Michael C. Wimberly.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global market size for Pseudonymization Pipelines for Data Science in 2024 stands at USD 1.38 billion, reflecting robust adoption across multiple sectors. The market is experiencing a healthy expansion, with a compound annual growth rate (CAGR) of 19.2% projected from 2025 to 2033. By 2033, the market is expected to reach USD 6.24 billion, driven primarily by stricter data privacy regulations, heightened cybersecurity concerns, and the exponential growth of data-driven initiatives across industries. As per our latest research, the increasing integration of artificial intelligence and machine learning in data science workflows is a significant growth factor for this market, as organizations seek advanced solutions to ensure data privacy without compromising analytical capabilities.
One of the primary growth factors for the Pseudonymization Pipelines for Data Science market is the intensification of global data privacy regulations, such as the General Data Protection Regulation (GDPR) in Europe, the California Consumer Privacy Act (CCPA) in the United States, and similar frameworks in Asia-Pacific and Latin America. These regulations place stringent requirements on how organizations collect, store, and process personal data, making pseudonymization a critical compliance tool. As organizations across healthcare, BFSI, and government sectors increasingly handle sensitive personal data, the demand for robust pseudonymization solutions has surged. The ability of these pipelines to protect individual privacy while enabling advanced analytics is a key value proposition, fueling widespread adoption and investment in this market. Furthermore, the growing awareness among enterprises regarding the financial and reputational risks associated with data breaches is prompting a proactive stance toward data protection, thereby accelerating market growth.
Another significant driver is the rising complexity and volume of data generated by digital transformation initiatives. Organizations are leveraging big data analytics, machine learning, and artificial intelligence to gain competitive advantages, but these technologies often require access to extensive datasets containing personal or sensitive information. Pseudonymization pipelines enable organizations to anonymize data at scale, thus facilitating compliance while maintaining data utility for analytical purposes. This capability is especially vital in sectors such as healthcare, where patient data must be protected, and in financial services, where transaction data is highly sensitive. The seamless integration of pseudonymization tools with existing data science workflows, coupled with advancements in automation and orchestration, is further propelling market expansion. Additionally, the emergence of cloud-based solutions has democratized access to sophisticated pseudonymization technologies, enabling small and medium enterprises (SMEs) to implement data privacy best practices without significant upfront investments.
The market is also benefiting from the increased collaboration between technology vendors, regulatory bodies, and industry stakeholders to develop standardized frameworks and best practices for data pseudonymization. This collaborative approach is fostering innovation and ensuring that solutions are not only technically robust but also aligned with evolving regulatory requirements. Furthermore, the proliferation of data sharing and data monetization initiatives, especially in sectors like retail and telecommunications, is creating new opportunities for pseudonymization pipelines. Organizations are increasingly seeking to share data with partners, researchers, and third-party vendors while minimizing privacy risks, thereby driving the demand for scalable and interoperable pseudonymization solutions. The heightened focus on ethical AI and responsible data use is also contributing to market growth, as organizations strive to balance innovation with privacy and trust.
From a regional perspective, North America currently dominates the Pseudonymization Pipelines for Data Science market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The North American market is characterized by a mature regulatory landscape, high digital adoption rates, and significant investments in data security and privacy technologies. Europe’s leadership in data privacy regulation,
Facebook
TwitterThe high performance computing (HPC) and big data (BD) communities traditionally have pursued independent trajectories in the world of computational science. HPC has been synonymous with modeling and simulation, and BD with ingesting and analyzing data from diverse sources, including from simulations. However, both communities are evolving in response to changing user needs and technological landscapes. Researchers are increasingly using machine learning (ML) not only for data analytics but also for modeling and simulation; science-based simulations are increasingly relying on embedded ML models not only to interpret results from massive data outputs but also to steer computations. Science-based models are being combined with data-driven models to represent complex systems and phenomena. There also is an increasing need for real-time data analytics, which requires large-scale computations to be performed closer to the data and data infrastructures, to adapt to HPC-like modes of operation. These new use cases create a vital need for HPC and BD systems to deal with simulations and data analytics in a more unified fashion. To explore this need, the NITRD Big Data and High-End Computing R&D Interagency Working Groups held a workshop, The Convergence of High-Performance Computing, Big Data, and Machine Learning, on October 29-30, 2018, in Bethesda, Maryland. The purposes of the workshop were to bring together representatives from the public, private, and academic sectors to share their knowledge and insights on integrating HPC, BD, and ML systems and approaches and to identify key research challenges and opportunities. The 58 workshop participants represented a balanced cross-section of stakeholders involved in or impacted by this area of research. Additional workshop information, including a webcast, is available at https://www.nitrd.gov/nitrdgroups/index.php?title=HPC-BD-Convergence.
Facebook
Twitterhttps://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
H-1B visa sponsorship trends for Senior Data Scientist, covering top employers, salary insights, approval rates, and geographic distribution. Explore how job title impacts the U.S. job market under the H-1B program.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.
Facebook
TwitterThis dataset presents the assessment tool used to analyze 20 Data Management Plan (DMP) templates on the Argos platform, along with the pre-print of the manuscript for an article that is about to be published in the Journal Biblios of the University of Pittsburgh. The main objective of this study was to investigate the need to implement a DMP at Universidad Centroamericana José Simeón Cañas (UCA) to improve accessibility, discovery, and reuse of research. Using a qualitative case study methodology, we worked with 10 selected research groups to evaluate and adapt a base model for the DMP. The results indicated a significant improvement in research data management and a positive perception from users regarding the processing and organization of their data. This set includes the DMP format generated for UCA, as well as recommendations for other institutions interested in adopting similar data management practices, contributing to the continued growth of scholarly output and the ethical and..., Method: A qualitative case study methodology was employed, which included participant observation of researchers and administrative staff from various 2024 research groups, along with an analysis of documentation and LibGuides. A benchmarking process was also conducted, comparing 20 PGDI templates to extract the best structure and practices from various research institutions. Content analysis: This method was used to examine a set of 20 PGDI templates from the ARGOS initiative, a platform developed by OpenAIRE and EUDAT for planning and managing research data. A systematic review of the structure and content of each of these templates was conducted, assessing the clarity, consistency, and adequacy of the information presented. Through this content analysis, key elements were identified that needed to be incorporated or improved in the base template provided to UCA research groups. This process allowed us to highlight best practices and identify areas that required additional attention, ..., , # Data from: Data management plan (DMP): Towards more efficient scientific management at the Universidad Centroamericana José Simeón Cañas
https://doi.org/10.5061/dryad.1zcrjdg25
README for the Dataset: Implementation of a Data Management Plan (DMP)
This dataset includes the evaluation instrument used to analyze 20 Data Management Plan (DMP) templates on the Argos platform. Additionally, the pre-print of the manuscript of the article that is set to be published in the Journal Biblios at the University of Pittsburgh has been attached. Furthermore, the format of the Data Management Plan generated for the Universidad Centroamericana José Simeón Cañas (UCA), developed from this research, is included.
The primary objective of this study was to investigate the need to implement a Data Management Plan (DMP) to improve the accessibility, discoverability...
Facebook
TwitterData scientist is the sexiest job in the world. How many times have you heard that? Analytics India Annual Salary Study which aims to understand a wide range of trends data science says that the median analytics salary in India for the year 2017 is INR 12.7 Lakhs across all experience level and skill sets. So given the job description and other key information can you predict the range of salary of the job posting? What kind of factors influence the salary of a data scientist? The study also says that in the world of analytics, Mumbai is the highest paymaster at almost 13.3 Lakhs per annum, followed by Bengaluru at 12.5 Lakhs. The industry of the data scientist can also influence the salary. Telecom industry pays the highest median salaries to its analytics professionals at 18.6 Lakhs. What are you waiting for, solve the problem by predicting how much a data scientist or analytics professional will be paid by analysing the data given. Bonus Tip: You can analyse the data and get key insights for your career as well. The best data scientists and machine learning engineers will be given awesome prizes at the end of hackathon. Share this hackathon with a colleague who may be interested in mining the dataset for insights and make great predictions. Data The dataset is based on salary and job postings in India across the internet. The train and the test data consists of attributes mentioned below. The rows of train dataset has rich amount of information regarding the job posting such as name of the designation and key skills required for the job. The training data and test data comprise of 19802 samples and of 6601 samples each. This is a dataset which has been collected over some time to gather relevant analytics jobs posting over the years. Features Name of the company (Encoded) Years of experience Job description Job designation Job Type Key skills Location Salary in Rupees Lakhs(To be predicted) Problem Statement Based on the given attributes and salary information, build a robust machine learning model that predicts the salary range of the salary post. calender Event Duration 10 Dec 2018 to 20 Jan 2030
hlevelBeginne