Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterThis data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
Facebook
TwitterThis dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer contains the locations of ongoing and completed habitat restoration projects funded by the Ecosystem Restoration Program, and contained as a subset of the California Habitat Restoration Project Database (CHRPD). Project locations are georeferenced by heads-up digitizing in as much detail as possible based on maps submitted by grant recipients. A background layer of 1:24,000 DRG Quads was used to locate the projects precisely. WHAT EACH RECORD REPRESENTS: The records represent individual project sites of a completed or ongoing restoration project funded by the Ecosystem Restoration Program through 2008. Many of the projects have multiple sites. Each site is represented by a center point. A separate shapefile records the entire footprint of those sites in this shapefile that occur over a larger area, and is available on request.
Facebook
TwitterCertified businesses enterprises in the District of Columbia as identified by the DC Department of Small and Local Business. A Certified Business Enterprise (CBE) is a business that is headquartered in the District of Columbia and has been certified by the Department of Small and Local Business Development (DSLBD). Businesses with CBE certification receive preferred procurement and contracting opportunities.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.
Facebook
TwitterParcel boundary lines in this dataset are published once a year, after the boundary adjustments have been approved by Planning and Zoning and certified through the Assessor's Office. Attribute data is published at different times throughout the year, as detailed below.
*Attribute data excludes ownership and address data in this dataset. If you wish to have these data, please fill out the Public Information request form found in the Download Datasets page of the GIS Portal and email to lfrederick@co.valley.id.us.
ATTRIBUTE DATA - MONTHLY UPDATES
These fields are updated in the dataset monthly. After the public table updates are run by the Assessor's Office, Valley County GIS analyst exports the tables to append/update the new data values.
ATTRIBUTE DATA - ANNUAL UPDATES
These fields are updated annually after certification of parcel boundaries and valuation have been completed.
Facebook
TwitterThis dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.
Maintenance of these locations is a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.
Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. Some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so various records included in this file may in fact be inactive or inaccurately located.
Note that multiple programs may occur at the same location and are represented as separate records. For example, an elementary and secondary school may be in the same building, but each has a separate record in the data layer. Users may leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.
This data is also available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.
Facebook
Twitter[Metadata] This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Downloaded from National Geodetic Survey website Feb 2025. Each geodetic control station in this dataset has either a precise Latitude/Longitude used for horizontal control or a precise Orthometric Height used for vertical control, or both. The National Geodetic Survey (NGS) serves as the Nation's depository for geodetic data. The NGS distributes geodetic data worldwide to a variety of users. These geodetic data include the final results of geodetic surveys, software programs to format, compute, verify, and adjust original survey observations or to convert values from one geodetic datum to another, and publications that describe how to obtain and use Geodetic Data products and services.
Note: This data was projected to the State's standard projection/datum of UTM Zone 4, NAD 83 HARN for use in the State's GIS database, The State posts an un-projected version of the layer on its legacy site (https://planning.hawaii.gov/gis/download-gis-data-expanded/#013), or users can visit the National Geodetic Survey site directly, at https://geodesy.noaa.gov/datasheets/.
For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/ngs_geodetic_ctrl_stns_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
TwitterTotal and Most Recent Electronic Health Record (EHR) Payments and Addresses for Eligible Providers. Eligible Medi-Cal professionals and hospitals are able to receive incentive payments to assist in purchasing, installing, and using electronic health records in their practices.
Facebook
TwitterThe Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
TwitterCDFW BIOS GIS Dataset, Contact: Dana Morawitz, Description: Cal-IPC, with funding from the California Wildlife Conservation Board (CWCB) Prop 1 Stream Flow Enhancement Program, has mapped Arundo donax across the Central Valley at high resolution to serve as a foundation for removal projects. Our goal is for this dataset to help RCDs and others plan successful Arundo control programs and get funding to implement them. The Arundo distribution data ensures that a control program can be implemented strategically over an entire watershed, from top to bottom.
Facebook
TwitterDESCRIPTION OF ORIGINAL PARCELS DATASET HOSTED BY NJ OGIS: The statewide composite of parcels (cadastral) data for New Jersey is made available here in Web Mercator projection (3857.) It was developed during the Parcels Normalization Project in 2008-2014 by the NJ Office of Information Technology, Office of GIS (NJOGIS). The normalized parcels data are compatible with the New Jersey Department of Treasury MOD-IV system currently used by Tax Assessors and selected attributes from that system have been joined with the parcels in this dataset. Please see the NJGIN parcel dataset page for additional resources, including a downloadable zip file of the statewide data: https://njgin.nj.gov/njgin/edata/parcels/index.html#!/This composite of parcels data serves as one of New Jersey's framework GIS data sets. Stewardship and maintenance of the data will continue to be the purview of county and municipal governments, but the statewide composite will be maintained by NJOGIS.Parcel attributes were normalized to a standard structure, specified in the NJ GIS Parcel Mapping Standard, to store parcel information and provide a PIN (parcel identification number) field that can be used to match records with suitably-processed property tax data. The standard is available for viewing and download at https://njgin.state.nj.us/oit/gis/NJ_NJGINExplorer/docs/NJGIS_ParcelMappingStandardv3.2.pdf. The PIN also can be constructed from attributes available in the MOD-IV Tax List Search table (see below).This dataset includes a large number of additional attributes from matched MOD-IV records; however, not all MOD-IV records match to a parcel, for reasons explained elsewhere in this metadata record. The statewide property tax table, including all MOD-IV records, is available as a separate download "MOD-IV Tax List Search Plus Database of New Jersey." Users who need only the parcel boundaries with limited attributes may obtain those from a separate download "Parcels Composite of New Jersey ". Also available separately are countywide parcels and tables of property ownership and tax information extracted from the NJ Division of Taxation database.The polygons delineated in this dataset do not represent legal boundaries and should not be used to provide a legal determination of land ownership. Parcels are not survey data and should not be used as such. Please note that these parcel datasets are not intended for use as tax maps. They are intended to provide reasonable representations of parcel boundaries for planning and other purposes. Please see Data Quality / Process Steps for details about updates to this composite since its first publication.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterOVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.
Facebook
TwitterThe Medi-Cal Electronic Health Record (EHR) Incentive Program makes payments to eligible Medi-Cal providers. This dataset displays a list of Eligible Hospitals that have been paid Via the Medi-Cal Incentive Program and includes National Provider Identifiers, payment dates, payment and program years of Medicaid eligible professionals (EPs) and eligible hospitals (EHs) that have successfully demonstrated Adopt, Implement, or Upgrade (A/I/U) and received a payment.
Facebook
TwitterThis service represents the jurisdictional boundaries of Certified Unified Program Agencies (CUPAs) and their associated Participating Agencies (PAs). Each area provides contact and program information for agencies responsible for responding to a hazardous materials incident at a specified location.
This layer is used in the CUPA Boundary Zone Lookup tool which is used to increase efficiency for emergency response teams and address CUPA assignment challenges
More information can be found at CUPA GIS Project | CERS, Locate your CUPA? · calcupa.org
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.