U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows: GSI – 1m DCHG/DP/HC - 0.13m, 0.14m, 1m NY – 1m TII – 2m OPW – 2m WMCC - 0.25m Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Lidar point cloud data with classifications – unclassified (1), ground (2), low vegetation (3), medium vegetation (4), high vegetation (5), buildings (6), low point - noise (7), reserved – model keypoint (8), high noise (18).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets are original and specifically collected for research aimed at reducing registration errors between Camera-LiDAR datasets. Traditional methods often struggle with aligning 2D-3D data from sources that have different coordinate systems and resolutions. Our collection comprises six datasets from two distinct setups, designed to enhance versatility in our approach and improve matching accuracy across both high-feature and low-feature environments.Survey-Grade Terrestrial Dataset:Collection Details: Data was gathered across various scenes on the University of New Brunswick campus, including low-feature walls, high-feature laboratory rooms, and outdoor tree environments.Equipment: LiDAR data was captured using a Trimble TX5 3D Laser Scanner, while optical images were taken with a Canon EOS 5D Mark III DSLR camera.Mobile Mapping System Dataset:Collection Details: This dataset was collected using our custom-built Simultaneous Localization and Multi-Sensor Mapping Robot (SLAMM-BOT) in several indoor mobile scenes to validate our methods.Equipment: Data was acquired using a Velodyne VLP-16 LiDAR scanner and an Arducam IMX477 Mini camera, controlled via a Raspberry Pi board.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This record is for Approval for Access product AfA439. A habitat map derived from airborne data, specifically CASI (Compact Airborne Spectrographic Imager) and LIDAR (Light Detection and Ranging) data.
The habitat map is a polygon shapefile showing site relevant habitat classes. Geographical coverage is incomplete because of limits in data available. It includes those areas where the Environment Agency, Natural England and the Regional Coastal Monitoring Programme have carried out sufficient aerial and ground surveys in England.
The habitat map is derived from CASI multispectral data, LIDAR elevation data and other GIS products. The classification uses ground data from sites collected near to the time of CASI capture. We use ground data to identify the characteristics of the different habitats in the CASI and LIDAR data. These characteristics are then used to classify the remaining areas into one of the different habitats.
Habitat maps generated by Geomatics are often derived using multiple data sources (e.g. CASI, LIDAR and OS-base mapping data), which may or may not have been captured coincidentally. In instances where datasets are not coincidentally captured there may be some errors brought about by seasonal, developmental or anthropological change in the habitat.
The collection of ground data used in the classification has some limitations. It has not been collected at the same time as CASI or LIDAR capture; it is normally within a couple of months of CASI capture. Some variations between the CASI data and situation on site at the time of ground data collection are possible. A good spatial coverage of ground data around the site is recommended, although not always practically achievable. For a class to be mapped on site there must have been samples collected for it on site. If the class is not seen on site or samples are not collected for a class, it cannot be mapped.
No quantitative accuracy assessment has been carried out on the habitat map, although the classification was trained using ground data and the final habitat map has been critically evaluated using Aerial Photography captured simultaneously with the CASI data by the processors and independently by habitat specialists. Please note that this content contains Ordnance Survey data © Crown copyright and database right [2014] and you must ensure that a similar attribution statement is contained in any sub-licences of the Information that you grant, together with a requirement that any further sub-licences do the same.
The Argoverse 2 Lidar Dataset is a collection of 20,000 scenarios with lidar sensor data, HD maps, and ego-vehicle pose. It does not include imagery or 3D annotations. The dataset is designed to support research into self-supervised learning in the lidar domain, as well as point cloud forecasting.
The dataset is divided into train, validation, and test sets of 16,000, 2,000, and 2,000 scenarios. This supports a point cloud forecasting task in which the future frames of the test set serve as the ground truth. Nonetheless, we encourage the community to use the dataset broadly for other tasks, such as self-supervised learning and map automation.
All Argoverse datasets contain lidar data from two out-of-phase 32 beam sensors rotating at 10 Hz. While this can be aggregated into 64 beam frames at 10 Hz, it is also reasonable to think of this as 32 beam frames at 20 Hz. Furthermore, all Argoverse datasets contain raw lidar returns with per-point timestamps, so the data does not need to be interpreted in quantized frames.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains linework of lineaments mapped on 4 <1-m-resolution lidar datasets and the 10-m-resolution National Elevation Dataset digital elevation models in the Pit River region of northeastern California. Lineaments are classified by confidence in tectonic origin, map certainty, and the ages of the bedrock and surficial deposits they cross.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Many Ontario lidar point cloud datasets have been made available for direct download by the Government of Canada through the federal Open Government Portal under the LiDAR Point Clouds – CanElevation Series record. Instructions for bulk data download are available in the Download Instructions document linked from that page. To download individual tiles, zoom in on the map in GeoHub and click a tile for a pop-up containing a download link.
See the LIO Support - Large Data Ordering Instructions to obtain a copy of data for projects that are not yet available for direct download. Data can be requested by project area or a set of tiles. To determine which project contains your area of interest or to view single tiles, zoom in on the map above and click. For bulk tile orders follow the link in the Additional Documentation section below to download the tile index in shapefile format. Data sizes by project area are listed below.
The Ontario Point Cloud (Lidar-Derived) consists of points containing elevation and intensity information derived from returns collected by an airborne topographic lidar sensor. The minimum point cloud classes are Unclassified, Ground, Water, High and Low Noise. The data is structured into non-overlapping 1-km by 1-km tiles in LAZ format.
This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters, accuracy and sensors may vary by project. Some project have additional classes, such as vegetation and buildings. See the detailed User Guide and contractor metadata reports linked below for additional information, including information about interpreting the index for placement of data orders.
Raster derivatives have been created from the point clouds. These products may meet your needs and are available for direct download. For a representation of bare earth, see the Ontario Digital Terrain Model (Lidar-Derived). For a model representing all surface features, see the Ontario Digital Surface Model (Lidar-Derived).
You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page.
Additional Documentation
Ontario Classified Point Cloud (Lidar-Derived) - User Guide (DOCX)
OMAFRA Lidar 2016-18 - Cochrane - Additional Metadata (PDF) OMAFRA Lidar 2016-18 - Peterborough - Additional Metadata (PDF) OMAFRA Lidar 2016-18 - Lake Erie - Additional Metadata (PDF) CLOCA Lidar 2018 - Additional Contractor Metadata (PDF) South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Huron - Additional Metadata (PDF) OMAFRA Lidar 2022 - Lake Simcoe - Additional Metadata (PDF) Huron-Georgian Bay Lidar 2022-23 - Additional Metadata (Word) Kawartha Lakes Lidar 2023 - Additional Metadata (Word) Sault Ste Marie Lidar 2023-24 - Additional Metadata (Word) Thunder Bay Lidar 2023-24 - Additional Metadata (Word) Timmins Lidar 2024 - Additional Metadata (Word)
OMAFRA Lidar Point Cloud 2016-18 - Cochrane - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2016-18- Peterborough - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2016-18 - Lake Erie - Lift Metadata (SHP) CLOCA Lidar Point Cloud 2018 - Lift Metadata (SHP) South Nation Lidar Point Cloud 2018-19 - Lift Metadata (SHP) York-Lake Simcoe Lidar Point Cloud 2019 - Lift Metadata (SHP) Ottawa River Lidar Point Cloud 2019-20 - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2022 - Lake Huron - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2022 - Lake Simcoe - Lift Metadata (SHP) Eastern Ontario Lidar Point Cloud 2021-22 - Lift Medatadata (SHP) DEDSFM Huron-Georgian Bay Lidar Point Cloud 2022-23 - Lift Metadata (SHP) DEDSFM Kawartha Lakes Lidar Point Cloud 2023 - Lift Metadata (SHP) DEDSFM Sault Ste Marie Lidar Point Cloud 2023-24 - Lift Metadata (SHP) DEDSFM Sudbury Lidar Point Cloud 2023-24 - Lift Metadata (SHP) DEDSFM Thunder Bay Lidar Point Cloud 2023-24 - Lift Metadata (SHP) DEDSFM Timmins Lidar Point Cloud 2024 - Lift Metadata (SHP) GTA 2023 - Lift Metadata (SHP)
Ontario Classified Point Cloud (Lidar-Derived) - Tile Index (SHP)
Ontario Lidar Project Extents (SHP)
Data Package Sizes
LEAP 2009 - 22.9 GB
OMAFRA Lidar 2016-18 - Cochrane - 442 GB OMAFRA Lidar 2016-18 - Lake Erie - 1.22 TB OMAFRA Lidar 2016-18 - Peterborough - 443 GB
GTA 2014 - 57.6 GB GTA 2015 - 63.4 GB Brampton 2015 - 5.9 GB Peel 2016 - 49.2 GB Milton 2017 - 15.3 GB Halton 2018 - 73 GB
CLOCA 2018 - 36.2 GB
South Nation 2018-19 - 72.4 GB
York Region-Lake Simcoe Watershed 2019 - 75 GB
Ottawa River 2019-20 - 836 GB
Lake Nipissing 2020 - 700 GB
Ottawa-Gatineau 2019-20 - 551 GB
Hamilton-Niagara 2021 - 660 GB
OMAFRA Lidar 2022 - Lake Huron - 204 GB OMAFRA Lidar 2022 - Lake Simcoe - 154 GB
Belleville 2022 - 1.09 TB
Eastern Ontario 2021-22 - 1.5 TB
Huron Shores 2021 - 35.5 GB
Muskoka 2018 - 72.1 GB Muskoka 2021 - 74.2 GB Muskoka 2023 - 532 GB The Muskoka lidar projects are available in the CGVD2013 or CGVD28 vertical datums. Please specifify which datum is needed when ordering data.
Digital Elevation Data to Support Flood Mapping 2022-26:
Huron-Georgian Bay 2022 - 1.37 TB Huron-Georgian Bay 2023 - 257 GB Huron-Georgian Bay 2023 Bruce - 95.2 GB Kawartha Lakes 2023 - 385 GB Sault Ste Marie 2023-24 - 1.15 TB Sudbury 2023-24 - 741 GB Thunder Bay 2023-24 - 654 GB Timmins 2024 - 318 GB
GTA 2023 - 985 GB
Status On going: Data is continually being updated
Maintenance and Update Frequency As needed: Data is updated as deemed necessary
Contact Ontario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
The i.c.sens Visual-Inertial-LiDAR Dataset is a data set for the evaluation of dead reckoning or SLAM approaches in the context of mobile robotics. It consists of street-level monocular RGB camera images, a front-facing 180° point cloud, angular velocities, accelerations and an accurate ground truth trajectory. In total, we provide around 77 GB of data resulting from a 15 minutes drive, which is split into 8 rosbags of 2 minutes (10 GB) each. Besides, the intrinsic camera parameters and the extrinsic transformations between all sensor coordinate systems are given. Details on the data and its usage can be found in the provided documentation file.
https://data.uni-hannover.de/dataset/0bcea595-0786-44f6-a9e2-c26a779a004b/resource/0ff90ef9-fa61-4ee3-b69e-eb6461abc57b/download/sensor_platform_small.jpg" alt="">
Image credit: Sören Vogel
The data set was acquired in the context of the measurement campaign described in Schoen2018. Here, a vehicle, which can be seen below, was equipped with a self-developed sensor platform and a commercially available Riegl VMX-250 Mobile Mapping System. This Mobile Mapping System consists of two laser scanners, a camera system and a localization unit containing a highly accurate GNSS/IMU system.
https://data.uni-hannover.de/dataset/0bcea595-0786-44f6-a9e2-c26a779a004b/resource/2a1226b8-8821-4c46-b411-7d63491963ed/download/vehicle_small.jpg" alt="">
Image credit: Sören Vogel
The data acquisition took place in May 2019 during a sunny day in the Nordstadt of Hannover (coordinates: 52.388598, 9.716389). The route we took can be seen below. This route was completed three times in total, which amounts to a total driving time of 15 minutes.
https://data.uni-hannover.de/dataset/0bcea595-0786-44f6-a9e2-c26a779a004b/resource/8a570408-c392-4bd7-9c1e-26964f552d6c/download/google_earth_overview_small.png" alt="">
The self-developed sensor platform consists of several sensors. This dataset provides data from the following sensors:
To inspect the data, first start a rosmaster and launch rviz using the provided configuration file:
roscore & rosrun rviz rviz -d icsens_data.rviz
Afterwards, start playing a rosbag with
rosbag play icsens-visual-inertial-lidar-dataset-{number}.bag --clock
Below we provide some exemplary images and their corresponding point clouds.
https://data.uni-hannover.de/dataset/0bcea595-0786-44f6-a9e2-c26a779a004b/resource/dc1563c0-9b5f-4c84-b432-711916cb204c/download/combined_examples_small.jpg" alt="">
R. Voges, C. S. Wieghardt, and B. Wagner, “Finding Timestamp Offsets for a Multi-Sensor System Using Sensor Observations,” Photogrammetric Engineering & Remote Sensing, vol. 84, no. 6, pp. 357–366, 2018.
R. Voges and B. Wagner, “RGB-Laser Odometry Under Interval Uncertainty for Guaranteed Localization,” in Book of Abstracts of the 11th Summer Workshop on Interval Methods (SWIM 2018), Rostock, Germany, Jul. 2018.
R. Voges and B. Wagner, “Timestamp Offset Calibration for an IMU-Camera System Under Interval Uncertainty,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, Oct. 2018.
R. Voges and B. Wagner, “Extrinsic Calibration Between a 3D Laser Scanner and a Camera Under Interval Uncertainty,” in Book of Abstracts of the 12th Summer Workshop on Interval Methods (SWIM 2019), Palaiseau, France, Jul. 2019.
R. Voges, B. Wagner, and V. Kreinovich, “Efficient Algorithms for Synchronizing Localization Sensors Under Interval Uncertainty,” Reliable Computing (Interval Computations), vol. 27, no. 1, pp. 1–11, 2020.
R. Voges, B. Wagner, and V. Kreinovich, “Odometry under Interval Uncertainty: Towards Optimal Algorithms, with Potential Application to Self-Driving Cars and Mobile Robots,” Reliable Computing (Interval Computations), vol. 27, no. 1, pp. 12–20, 2020.
R. Voges and B. Wagner, “Set-Membership Extrinsic Calibration of a 3D LiDAR and a Camera,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, Oct. 2020, accepted.
R. Voges, “Bounded-Error Visual-LiDAR Odometry on Mobile Robots Under Consideration of Spatiotemporal Uncertainties,” PhD thesis, Gottfried Wilhelm Leibniz Universität, 2020.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Elevation datasets in New Jersey have been collected over several years as several discrete projects. Each project covers a geographic area, which is a subsection of the entire state, and has differing specifications based on the available technology at the time and project budget. The geographic extent of one project may overlap that of a neighboring project. Each of the 18 projects contains deliverable products such as LAS (Lidar point cloud) files, unclassified/classified, tiled to cover project area; relevant metadata records or documents, most adhering to the Federal Geographic Data Committee’s (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM); tiling index feature class or shapefile; flights lines feature class or shapefile; Digital Elevation Model in image format or Esri grid format; other derivative data products such as contour lines feature class or shapefile.
Note: The shapefile download may fail when downloading the entire dataset. If this happens, download the file geodatabase instead.Feature class contains 2-foot interval contours of the area surrounding and including the Eugene urban growth boundary. Contours have been derived by LCOG from 2009 LiDAR data. The LiDAR data was prepared by Watershed Science for DOGAMI. General processing includes (1) joining Junction City, Coburg, Eugene East and Eugene West bare-earth quads into one mosaic, (2) smoothing the mosaic with a focal mean (3 x 3 rectangle), (3) contouring the smoothed bare-earth mosaic, and (4) quality-checking along the edges of the quads to insure matching contours. (DISCLAIMER: The maps and data available for access from the City of Eugene are provided "as is" without warranty or any representation of accuracy, timeliness or completeness. The burden for determining accuracy, completeness, timeliness, merchantability and fitness for or the appropriateness for use rests solely on the user accessing this information. The City of Eugene makes no warranties, expressed or implied, as to the use of the maps and data available for access at this website. There are no implied warranties of merchantability or fitness for a particular purpose. The user acknowledges and accepts all inherent limitations of the maps and data, including the fact that the maps and data are dynamic and in a constant state of maintenance, correction and revision. Any maps and associated data for access do not represent a survey. No liability is assumed for the accuracy of the data delineated on any map, either expressed or implied.)
Lidar Digital Elevation Models (DEMs) at 2-meter resolution have been used to derive watershed boundaries for the State of Maine. Geographic Information Systems (GIS) software was used to hydrologically enforce lidar DEMs and delineate watershed boundaries at pre-existing pour point locations (Price, 2016). The watershed boundaries are comparable in size to the 12-digit Hydrologic Unit catchments and have a 12-digit Hydrologic Unit Code (HUC12) identifier attribute field that has a one-to-one match with the national WBD dataset (https://www.usgs.gov/national-hydrography/watershed-boundary-dataset). This data release consists of a zip file containing an ESRI polygon shapefile (vector GIS dataset). This work was conducted in cooperation with Maine Department of Transportation and Maine Office of GIS. Curtis Price, 20160606, WBD HU12 Pour Points derived from NHDPlus: U.S. Geological Survey data release, https://www.sciencebase.gov/catalog/item/5762b664e4b07657d19a71ea
This data set is tiled lidar point cloud LAS files v1.4, for the 2016 Alabama 25 County lidar area of interest (AOI).
USGS NGTOC task order G17PD00243 required Spring 2017 LiDAR surveys to be collected over 18,845 square miles covering part or all of 25 counties in Alabama. These counties are Autauga, Baldwin, Barbour, Bullock, Butler, Chambers, Cherokee, Clarke, Conecuh, Covington, Cre...
This dataset is Lidar data that has been collected by the Scottish public sector and made available under the Open Government Licence. The data are available as point cloud (LAS format or in LAZ compressed format), along with the derived Digital Terrain Model (DTM) and Digital Surface Model (DSM) products as Cloud optimized GeoTIFFs (COG) or standard GeoTIFF. The dataset contains multiple subsets of data which were each commissioned and flown in response to different organisational requirements. The details of each can be found at https://remotesensingdata.gov.scot/data#/list
ESCAMBIA: The Light Detection and Ranging (LiDAR) LAS dataset is a survey of select areas within Escambia County, Florida. These data were produced for Dewberry and Davis LLC. The Escambia County LiDAR Survey project area consists of approximately 803 square miles. The LiDAR point cloud was flown at a density sufficient to support a maximum final post spacing of 6 feet for unobscured areas. Lan...
The State of Utah, including the Utah Automated Geographic Reference Center, Utah Geological Survey, and the Utah Division of Emergency Management, along with local and federal partners, including Salt Lake County and local cities, the Federal Emergency Management Agency, the U.S. Geological Survey, and the U.S. Environmental Protection Agency, have funded and collected over 8380 km2 (3236 mi2) of high-resolution (0.5 or 1 meter) Lidar data across the state since 2011, in support of a diverse set of flood mapping, geologic, transportation, infrastructure, solar energy, and vegetation projects. The datasets include point cloud, first return digital surface model (DSM), and bare-earth digital terrain/elevation model (DEM) data, along with appropriate metadata (XML, project tile indexes, and area completion reports).
This 0.5-meter 2013-2014 Wasatch Front dataset includes most of the Salt Lake and Utah Valleys (Utah), and the Wasatch (Utah and Idaho), and West Valley fault zones (Utah).
Other recently acquired State of Utah data include the 2011 Utah Geological Survey Lidar dataset covering Cedar and Parowan Valleys, the east shore/wetlands of Great Salt Lake, the Hurricane fault zone, the west half of Ogden Valley, North Ogden, and part of the Wasatch Plateau in Utah.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download. The DSM data is available in the form of 1-km by 1-km non-overlapping tiles grouped into packages for download.This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters and sensors may vary by project. See the detailed User Guide linked below for additional information.
You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page.
Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connectionusing the REST endpoint URL. The service draws using the Web Mercator projection.
For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca.
Service Endpoints
https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_LidarDerived/ImageServer https://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_LidarDerived/ImageServer (Government of Ontario Internal Users)
Additional Documentation
Ontario DSM (Lidar-Derived) - User Guide (DOCX)
OMAFRA Lidar 2016-2018 -Cochrane-Additional Contractor Metadata (PDF) OMAFRA Lidar 2016-2018 -Peterborough-AdditionalContractorMetadata (PDF) OMAFRA Lidar 2016-2018 -Lake Erie-AdditionalContractorMetadata (PDF) CLOCA Lidar 2018 - Additional Contractor Metadata (PDF) South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Huron - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Simcoe - Additional Contractor Metadata (PDF) Huron-Georgian Bay Lidar 2022-23 - Additional Contractor Metadata (Word) Kawartha Lakes Lidar 2023 - Additional Contractor Metadata (Word) Sault Ste Marie Lidar 2023-24 - Additional Contractor Metadata (Word) Thunder Bay Lidar 2023-24 - Additional Contractor Metadata (Word) Timmins Lidar 2024 - Additional Contractor Metadata (Word)
Ontario DSM (Lidar-Derived) - Tile Index (SHP) Ontario Lidar Project Extents (SHP)
Product Packages Download links for the Ontario DSM (Lidar-Derived) (Word) Projects:
LEAP 2009 GTA 2014-18 OMAFRA 2016-18 CLOCA 2018 South Nation CA 2018-19 Muskoka 2018-23 York-Lake Simcoe 2019 Ottawa River 2019-20 Ottawa-Gatineau 2019-20 Lake Nipissing 2020 Hamilton-Niagara 2021 Huron Shores 2021 Eastern Ontario 2021-22 OMAFRA Lake Huron 2022 OMAFRA Lake Simcoe 2022 Belleville 2022 Digital Elevation Data to Support Flood Mapping 2022-26 Huron-Georgian Bay 2022-23 Kawartha Lakes 2023 Sault Ste Marie 2023-24 Sudbury 2023-24 Thunder Bay 2023-24 Timmins 2024
Greater Toronto Area Lidar 2023
Status On going: Data is continually being updated
Maintenance and Update Frequency As needed: Data is updated as deemed necessary
Contact Ontario Ministry of Natural Resources - Geospatial Ontario,geospatial@ontario.ca
BLM 3DEP LIDAR Priority Planning Areas map service for viewing BLM’s participation to the USGS 3DEP (3D Elevation Program) to collaborate to acquire high-resolution LiDAR data that is available through the USGS National Map. The implementation of this map service allows the BLM to have more flexibility for tracking ongoing BLM 3DEP acquisition through this USGS and BLM partnership. Additionally, BLM high, medium, and low priorities are included, as well as areas where BLM projects have been completed and are available on the USGS National Map.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point ...