100+ datasets found
  1. Data from: Current and projected research data storage needs of Agricultural...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

  2. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  3. Raccoon Range - CWHR M153 [ds1936]

    • data.ca.gov
    • data.cnra.ca.gov
    • +2more
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Raccoon Range - CWHR M153 [ds1936] [Dataset]. https://data.ca.gov/dataset/raccoon-range-cwhr-m153-ds1936
    Explore at:
    arcgis geoservices rest api, kml, csv, geojson, htmlAvailable download formats
    Dataset updated
    Mar 17, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  4. M

    Minnesota Pheasant Range

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +2
    Updated Sep 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). Minnesota Pheasant Range [Dataset]. https://gisdata.mn.gov/dataset/env-pheasant-range-minnesota
    Explore at:
    gpkg, fgdb, shp, jpeg, htmlAvailable download formats
    Dataset updated
    Sep 1, 2022
    Dataset provided by
    Natural Resources Department
    Area covered
    Minnesota
    Description

    This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and non-range.

  5. Data from: FISBe: A real-world benchmark dataset for instance segmentation...

    • zenodo.org
    • data.niaid.nih.gov
    bin, json +3
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa (2024). FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [Dataset]. http://doi.org/10.5281/zenodo.10875063
    Explore at:
    zip, text/x-python, bin, json, txtAvailable download formats
    Dataset updated
    Apr 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 26, 2024
    Description

    General

    For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.

    Summary

    • A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
      • 30 completely labeled (segmented) images
      • 71 partly labeled images
      • altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
    • To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
    • A set of metrics and a novel ranking score for respective meaningful method benchmarking
    • An evaluation of three baseline methods in terms of the above metrics and score

    Abstract

    Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.

    Dataset documentation:

    We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:

    >> FISBe Datasheet

    Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.

    Files

    • fisbe_v1.0_{completely,partly}.zip
      • contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
    • fisbe_v1.0_mips.zip
      • maximum intensity projections of all samples, for convenience.
    • sample_list_per_split.txt
      • a simple list of all samples and the subset they are in, for convenience.
    • view_data.py
      • a simple python script to visualize samples, see below for more information on how to use it.
    • dim_neurons_val_and_test_sets.json
      • a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
    • Readme.md
      • general information

    How to work with the image files

    Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
    For each image, we provide a pixel-wise instance segmentation for all separable neurons.
    Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
    The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
    The segmentation mask for each neuron is stored in a separate channel.
    The order of dimensions is CZYX.

    We recommend to work in a virtual environment, e.g., by using conda:

    conda create -y -n flylight-env -c conda-forge python=3.9
    conda activate flylight-env

    How to open zarr files

    1. Install the python zarr package:
      pip install zarr
    2. Opened a zarr file with:

      import zarr
      raw = zarr.open(
      seg = zarr.open(

      # optional:
      import numpy as np
      raw_np = np.array(raw)

    Zarr arrays are read lazily on-demand.
    Many functions that expect numpy arrays also work with zarr arrays.
    Optionally, the arrays can also explicitly be converted to numpy arrays.

    How to view zarr image files

    We recommend to use napari to view the image data.

    1. Install napari:
      pip install "napari[all]"
    2. Save the following Python script:

      import zarr, sys, napari

      raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
      gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")

      viewer = napari.Viewer(ndisplay=3)
      for idx, gt in enumerate(gts):
      viewer.add_labels(
      gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
      viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
      viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
      viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
      napari.run()

    3. Execute:
      python view_data.py 

    Metrics

    • S: Average of avF1 and C
    • avF1: Average F1 Score
    • C: Average ground truth coverage
    • clDice_TP: Average true positives clDice
    • FS: Number of false splits
    • FM: Number of false merges
    • tp: Relative number of true positives

    For more information on our selected metrics and formal definitions please see our paper.

    Baseline

    To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
    For detailed information on the methods and the quantitative results please see our paper.

    License

    The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Citation

    If you use FISBe in your research, please use the following BibTeX entry:

    @misc{mais2024fisbe,
     title =    {FISBe: A real-world benchmark dataset for instance
             segmentation of long-range thin filamentous structures},
     author =    {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
             Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
             Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
     year =     2024,
     eprint =    {2404.00130},
     archivePrefix ={arXiv},
     primaryClass = {cs.CV}
    }

    Acknowledgments

    We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
    discussions.
    P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
    This work was co-funded by Helmholtz Imaging.

    Changelog

    There have been no changes to the dataset so far.
    All future change will be listed on the changelog page.

    Contributing

    If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.

    All contributions are welcome!

  6. Z

    Fused Image dataset for convolutional neural Network-based crack Detection...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Canchila (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6383043
    Explore at:
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Carlos Canchila
    Wei Song
    Shanglian Zhou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  7. BLM ID Range Improvements Poly

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM ID Range Improvements Poly [Dataset]. https://catalog.data.gov/dataset/blm-id-range-improvements-poly-hub
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Description

    This geodatabase of point, line and polygon features is an effort to consolidate all of the range improvement locations on BLM-managed land in Idaho into one database. Currently, the polygon feature class has some data for all of the BLM field offices except the Coeur d'Alene and Cottonwood field offices. Range improvements are structures intended to enhance rangeland resources, including wildlife, watershed, and livestock management. Examples of range improvements include water troughs, spring headboxes, culverts, fences, water pipelines, gates, wildlife guzzlers, artificial nest structures, reservoirs, developed springs, corrals, exclosures, etc. These structures were first tracked by the Bureau of Land Management (BLM) in the Job Documentation Report (JDR) System in the early 1960s, which was predominately a paper-based tracking system. In 1988 the JDRs were migrated into and replaced by the automated Range Improvement Project System (RIPS), and version 2.0 is currently being used today. It tracks inventory, status, objectives, treatment, maintenance cycle, maintenance inspection, monetary contributions and reporting. Not all range improvements are documented in the RIPS database; there may be some older range improvements that were built before the JDR tracking system was established. There also may be unauthorized projects that are not in RIPS. Official project files of paper maps, reports, NEPA documents, checklists, etc., document the status of each project and are physically kept in the office with management authority for that project area. In addition, project data is entered into the RIPS system to enable managers to access the data to track progress, run reports, analyze the data, etc. Before Geographic Information System technology most offices kept paper atlases or overlay systems that mapped the locations of the range improvements. The objective of this geodatabase is to migrate the location of historic range improvement projects into a GIS for geospatial use with other data and to centralize the range improvement data for the state. This data set is a work in progress and does not have all range improvement projects that are on BLM lands. Some field offices have not migrated their data into this database, and others are partially completed. New projects may have been built but have not been entered into the system. Historic or unauthorized projects may not have case files and are being mapped and documented as they are found. Many field offices are trying to verify the locations and status of range improvements with GPS, and locations may change or projects that have been abandoned or removed on the ground may be deleted. Attributes may be incomplete or inaccurate. This data was created using the standard for range improvements set forth in Idaho IM 2009-044, dated 6/30/2009. However, it does not have all of the fields the standard requires. Fields that are missing from the polygon feature class that are in the standard are: ALLOT_NO, POLY_TYPE, MGMT_AGCY, ADMIN_ST, and ADMIN_OFF. The polygon feature class also does not have a coincident line feature class, so some of the fields from the polygon arc feature class are included in the polygon feature class: COORD_SRC, COORD_SRC2, DEF_FET, DEF_FEAT2, ACCURACY, CREATE_DT, CREATE_BY, MODIFY_DT, MODIFY_BY, GPS_DATE, and DATAFILE. There is no National BLM standard for GIS range improvement data at this time. For more information contact us at blm_id_stateoffice@blm.gov.

  8. m

    Surgical Waste Dataset

    • data.mendeley.com
    Updated Apr 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Ferdous (2022). Surgical Waste Dataset [Dataset]. http://doi.org/10.17632/rnhz3fvbj2.1
    Explore at:
    Dataset updated
    Apr 19, 2022
    Authors
    Md Ferdous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite our paper titled 'A Computer Vision-based System for Surgical Waste Detection'

    Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130366

    The dataset is built based on real-time images from our surroundings including roads, beaches, water, maintenance holes and so on. Several images of the dataset are synthetic. Moreover, most of them are natural. Some images are taken using the Samsung Galaxy A51 smartphone camera and the rest of the images are taken from internet mining. Images are chosen from close range and distance range to make the dataset a distance variant. The angle variation left, right, back and top angle images are taken. The dataset comprises diverse gesture conditions such as curling and kneeling. At the time of image collection, this study tries to take different types of colored masks and gloves. The color variation of the mask is white, sky blue, pink, black and others. Different types of masks are included surgical, N95, Cone-style, KN95 and so on. Surgical gloves also have blue, white, black and pink colors. Transparent gloves are included with more eagerness to make the system as robust and reliable underwater as well as an object floating on the water condition. According to the above criteria, 1153 images are collected from different internet sources and smartphones camera.

  9. Open data

    • ecmwf.int
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts, Open data [Dataset]. https://www.ecmwf.int/en/forecasts/datasets/open-data
    Explore at:
    application/x-grib;application/x-netcdf(1 datasets)Available download formats
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    subject to appropriate attribution.

  10. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Aug 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 3, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 28, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

  11. r

    Dataset for The effects of a number line intervention on calculation skills

    • researchdata.edu.au
    • figshare.mq.edu.au
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas (2023). Dataset for The effects of a number line intervention on calculation skills [Dataset]. http://doi.org/10.25949/22799717.V1
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset provided by
    Macquarie University
    Authors
    Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas
    Description

    Study information

    The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset.

    All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders.

    The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point.

    The number of measurement points were distributed across participants as follows:

    Participant 1 – 3 baseline, 6 treatment, 1 post-treatment

    Participant 3 – 2 baseline, 7 treatment, 1 post-treatment

    Participant 5 – 2 baseline, 5 treatment, 1 post-treatment

    Participant 6 – 3 baseline, 4 treatment, 1 post-treatment

    Participant 7 – 2 baseline, 5 treatment, 1 post-treatment

    In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.


    Measures

    Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.


    Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.


    Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.


    Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.


    The Number Line Intervention

    During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.


    Variables in the dataset

    Age = age in ‘years, months’ at the start of the study

    Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents)

    Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).


    The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.


    The second part of the variable name refers to the task, as follows:

    DC = dot comparison

    SDC = single-digit computation

    NLE_UT = number line estimation (untrained set)

    NLE_T= number line estimation (trained set)

    CE = multidigit computational estimation

    NC = number comparison

    The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).


    Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.





  12. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  13. m

    THVD (Talking Head Video Dataset)

    • data.mendeley.com
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mario Peedor (2025). THVD (Talking Head Video Dataset) [Dataset]. http://doi.org/10.17632/ykhw8r7bfx.1
    Explore at:
    Dataset updated
    Apr 2, 2025
    Authors
    Mario Peedor
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    About

    We provide a comprehensive talking-head video dataset with over 50,000 videos, totaling more than 500 hours of footage and featuring 23,841 unique identities from around the world.

    Distribution

    Detailing the format, size, and structure of the dataset: Data Volume: -Total Size: 2.5TB

    -Total Videos: 47,200

    -Identities Covered: 23,000

    -Resolution: 60% 4k(1980), 33% fullHD(1080)

    -Formats: MP4

    -Full-length videos with visible mouth movements in every frame.

    -Minimum face size of 400 pixels.

    -Video durations range from 20 seconds to 5 minutes.

    -Faces have not been cut out, full screen videos including backgrounds.

    Usage

    This dataset is ideal for a variety of applications:

    Face Recognition & Verification: Training and benchmarking facial recognition models.

    Action Recognition: Identifying human activities and behaviors.

    Re-Identification (Re-ID): Tracking identities across different videos and environments.

    Deepfake Detection: Developing methods to detect manipulated videos.

    Generative AI: Training high-resolution video generation models.

    Lip Syncing Applications: Enhancing AI-driven lip-syncing models for dubbing and virtual avatars.

    Background AI Applications: Developing AI models for automated background replacement, segmentation, and enhancement.

    Coverage

    Explaining the scope and coverage of the dataset:

    Geographic Coverage: Worldwide

    Time Range: Time range and size of the videos have been noted in the CSV file.

    Demographics: Includes information about age, gender, ethnicity, format, resolution, and file size.

    Languages Covered (Videos):

    English: 23,038 videos

    Portuguese: 1,346 videos

    Spanish: 677 videos

    Norwegian: 1,266 videos

    Swedish: 1,056 videos

    Korean: 848 videos

    Polish: 1,807 videos

    Indonesian: 1,163 videos

    French: 1,102 videos

    German: 1,276 videos

    Japanese: 1,433 videos

    Dutch: 1,666 videos

    Indian: 1,163 videos

    Czech: 590 videos

    Chinese: 685 videos

    Italian: 975 videos

    Who Can Use It

    List examples of intended users and their use cases:

    Data Scientists: Training machine learning models for video-based AI applications.

    Researchers: Studying human behavior, facial analysis, or video AI advancements.

    Businesses: Developing facial recognition systems, video analytics, or AI-driven media applications.

    Additional Notes

    Ensure ethical usage and compliance with privacy regulations. The dataset’s quality and scale make it valuable for high-performance AI training. Potential preprocessing (cropping, down sampling) may be needed for different use cases. Dataset has not been completed yet and expands daily, please contact for most up to date CSV file. The dataset has been divided into 100GB zipped files and is hosted on a private server (with the option to upload to the cloud if needed). To verify the dataset's quality, please contact me for the full CSV file. I’d be happy to provide example videos selected by the potential buyer.

  14. N

    Dataset for Grass Range, MT Census Bureau Income Distribution by Race

    • neilsberg.com
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Grass Range, MT Census Bureau Income Distribution by Race [Dataset]. https://www.neilsberg.com/research/datasets/80cf6307-9fc2-11ee-b48f-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 3, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Grass Range
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Grass Range median household income by race. The dataset can be utilized to understand the racial distribution of Grass Range income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Grass Range, MT median household income breakdown by race betwen 2011 and 2021
    • Median Household Income by Racial Categories in Grass Range, MT (2021, in 2022 inflation-adjusted dollars)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Grass Range median household income by race. You can refer the same here

  15. Data from: Regression-Test History Data for Flaky Test-Research, Dataset

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philipp Wendler; Philipp Wendler; Stefan Winter; Stefan Winter (2024). Regression-Test History Data for Flaky Test-Research, Dataset [Dataset]. http://doi.org/10.5281/zenodo.10639030
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Aug 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Philipp Wendler; Philipp Wendler; Stefan Winter; Stefan Winter
    Description

    The dataset comprises developer test results of Maven projects with flaky tests across a range of consecutive commits from the projects' git commit histories. The Maven projects are a subset of those investigated in an OOPSLA 2020 paper. The commit range for this dataset has been chosen as the flakiness-introducing commit (FIC) and iDFlakies-commit (see the OOPSLA paper for details). The commit hashes have been obtained from the IDoFT dataset.

    The dataset will be presented at the 1st International Flaky Tests Workshop 2024 (FTW 2024). Please refer to our extended abstract for more details about the motivation for and context of this dataset.

    The following table provides a summary of the data.

    Slug (Module)FIC HashTestsCommitsAv. Commits/TestFlaky TestsTests w/ Consistent FailuresTotal Distinct Histories
    TooTallNate/Java-WebSocket 822d40146 75 7524 12.6x10^9
    apereo/java-cas-client (cas-client-core) 5e3655157 6561.7 3 21.0x10^7
    eclipse-ee4j/tyrus (tests/e2e/standard-config) ce3b8c185 16 1612 0 261
    feroult/yawp (yawp-testing/yawp-testing-appengine) abae17 1191191 1 1 8
    fluent/fluent-logger-java 5fd463 19131105.611 28.0x10^32
    fluent/fluent-logger-java 87e957 19160122.411 32.1x10^31
    javadelight/delight-nashorn-sandbox d0d651 81113100.6 2 54.2x10^10
    javadelight/delight-nashorn-sandbox d19eee 81 9383.5 1 52.6x10^9
    sonatype-nexus-community/nexus-repository-helm 5517c8 18 32 32 0 0 18
    spotify/helios (helios-services) 23260190448448 0 37 190
    spotify/helios (helios-testing) 78a864 43474474 0 7 43

    The columns are composed of the following variables:

    • Slug (Module): The project's GitHub slug (i.e., the project's URL is https://github.com/{Slug}) and, if specified, the module for which tests have been executed.
    • FIC Hash: The flakiness-introducing commit hash for a known flaky test as described in this OOPSLA 2020 paper. As different flaky tests have different FIC hashes, there may be multiple rows for the same slug/module with different FIC hashes.
    • Tests: The number of distinct test class and method combinations over the entire considered commit range.
    • Commits: The number of commits in the considered commit range
    • Av. Commits/Test: The average number of commits per test class and method combination in the considered commit range. The number of commits may vary for each test class, as some tests may be added or removed within the considered commit range.
    • Flaky Tests: The number of distinct test class and method combinations that have more than one test result (passed/skipped/error/failure + exception type, if any + assertion message, if any) across 30 repeated test suite executions on at least one commit in the considered commit range.
    • Tests w/ Consistent Failures: The number of distinct test class and method combinations that have the same error or failure result (error/failure + exception type, if any + assertion message, if any) across all 30 repeated test suite executions on at least one commit in the considered commit range.
    • Total Distinct Histories: The number of distinct test results (passed/skipped/error/failure + exception type, if any + assertion message, if any) for all test class and method combinations along all commits for that test in the considered commit range.
  16. N

    Dataset for South Range, MI Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for South Range, MI Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3d3f4c3-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Range household income by gender. The dataset can be utilized to understand the gender-based income distribution of South Range income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • South Range, MI annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • South Range, MI annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of South Range income distribution by gender. You can refer the same here

  17. GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5) V034 -...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5) V034 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/glas-icesat-l1b-global-waveform-based-range-corrections-data-hdf5-v034
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    GLAH05 Level-1B waveform parameterization data include output parameters from the waveform characterization procedure and other parameters required to calculate surface slope and relief characteristics. GLAH05 contains parameterizations of both the transmitted and received pulses and other characteristics from which elevation and footprint-scale roughness and slope are calculated. The received pulse characterization uses two implementations of the retracking algorithms: one tuned for ice sheets, called the standard parameterization, used to calculate surface elevation for ice sheets, oceans, and sea ice; and another for land (the alternative parameterization). Each data granule has an associated browse product.

  18. N

    Dataset for Grass Range, MT Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Grass Range, MT Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3b45159-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Grass Range
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Grass Range household income by gender. The dataset can be utilized to understand the gender-based income distribution of Grass Range income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Grass Range, MT annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Grass Range, MT annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Grass Range income distribution by gender. You can refer the same here

  19. Z

    Data from: Dataset for evaluation of range-based people tracker classifiers...

    • data.niaid.nih.gov
    • portalcientifico.unileon.es
    Updated Feb 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Álvarez-Aparicio, Claudia (2021). Dataset for evaluation of range-based people tracker classifiers in mobile robots [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4541258
    Explore at:
    Dataset updated
    Feb 16, 2021
    Dataset provided by
    Álvarez-Aparicio, Claudia
    Guerrero-Higueras, Ángel Manuel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset can be used to evaluate the performance of different approaches for detecting and tracking people by using lidar sensors. Information contained in the dataset is especially suitable to be used as test data for neural network-based classifiers.

    This dataset contains 25 Rosbag files recorded in different locations with Orbi-One robot stood still. Two sorts of Rosbag files have been recorded. In 17 Rosbag files (1-17), there were people stood still in the scene. They were placed in known locations to get ground-truth data. The locations where the people were placed for each rosbag are the following:

    1.bag: [1] 2.bag: [1, 2] 3.bag: [1, 2, 3] 4.bag: [2, 3, 4] 5.bag: [1, 2, 4] 6.bag: [5, 6, 7] 7.bag: [6, 7] 8.bag: [6, 7, 8] 9.bag: [11, 12, 13, 14] 10.bag: [11, 12, 13, 14, 15] 11.bag: [11, 12, 13] 12.bag: [13, 15] 13.bag: [14, 15] 14.bag: [10, 11] 15.bag: [11] 16.bag: [6] 17.bag: [6, 7]

    The (x, y) positions of each point on the map are the following:

    1: [1.30, 0.76] 2: [2.10, 1.56] 3: [2.90, 1.16] 4: [3.70, 0.55] 5: [6.53, 1.75] 6: [7.73, 1.16] 7: [8.93, 1.75] 8: [9.73, 0.75] 9: [14.16, 1.14] 10: [15.36, 0.14] 11: [16.56, 1.76] 12: [16.96, 0.14] 13: [17.76, 0.54] 14: [18.16, 1.54]

    The remaining 8 Rosbag files (18-25) were recorded without people in the scene in order to evaluate the True Negatives rate.

  20. N

    Dataset for South Range, MI Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for South Range, MI Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a513dcc-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Range population by race and ethnicity. The dataset can be utilized to understand the racial distribution of South Range.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • South Range, MI Population Breakdown by Race
    • South Range, MI Non-Hispanic Population Breakdown by Race
    • South Range, MI Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
Organization logo

Data from: Current and projected research data storage needs of Agricultural Research Service researchers in 2016

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Servicehttps://www.ars.usda.gov/
Description

The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

Search
Clear search
Close search
Google apps
Main menu