100+ datasets found
  1. BLM ID Range Improvement Line

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • s.cnmilf.com
    • +2more
    Updated May 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM ID Range Improvement Line [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/blm-id-range-improvement-line-hub
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Description

    This geodatabase of point, line and polygon features is an effort to consolidate all of the range improvement locations on BLM-managed land in Idaho into one database. Currently, the line feature class has some data for all of the BLM field offices except the Coeur d'Alene and Cottonwood field offices. Range improvements are structures intended to enhance rangeland resources, including wildlife, watershed, and livestock management. Examples of range improvements include water troughs, spring headboxes, culverts, fences, water pipelines, gates, wildlife guzzlers, artificial nest structures, reservoirs, developed springs, corrals, exclosures, etc. These structures were first tracked by the Bureau of Land Management (BLM) in the Job Documentation Report (JDR) System in the early 1960s, which was predominately a paper-based tracking system. In 1988 the JDRs were migrated into and replaced by the automated Range Improvement Project System (RIPS), and version 2.0 is currently being used today. It tracks inventory, status, objectives, treatment, maintenance cycle, maintenance inspection, monetary contributions and reporting. Not all range improvements are documented in the RIPS database; there may be some older range improvements that were built before the JDR tracking system was established. There also may be unauthorized projects that are not in RIPS. Official project files of paper maps, reports, NEPA documents, checklists, etc., document the status of each project and are physically kept in the office with management authority for that project area. In addition, project data is entered into the RIPS system to enable managers to access the data to track progress, run reports, analyze the data, etc. Before Geographic Information System technology most offices kept paper atlases or overlay systems that mapped the locations of the range improvements. The objective of this geodatabase is to migrate the location of historic range improvement projects into a GIS for geospatial use with other data and to centralize the range improvement data for the state. This data set is a work in progress and does not have all range improvement projects that are on BLM lands. Some field offices have not migrated their data into this database, and others are partially completed. New projects may have been built but have not been entered into the system. Historic or unauthorized projects may not have case files and are being mapped and documented as they are found. Many field offices are trying to verify the locations and status of range improvements with GPS, and locations may change or projects that have been abandoned or removed on the ground may be deleted. Attributes may be incomplete or inaccurate. This data was created using the standard for range improvements set forth in Idaho IM 2009-044, dated 6/30/2009. However, it does not have all of the fields the standard requires. Fields that are missing from the line feature class that are in the standard are: ALLOT_NO, MGMT_AGCY, ADMIN_ST, ADMIN_OFF, SRCE_AGCY, MAX_PDOP, MAX_HDOP, CORR_TYPE, RCVR_TYPE, GPS_TIME, UPDATE_STA, UNFILT_POS, FILT_POS, DATA_DICTI, GPS_LENGTH, GPS_3DLGTH, AVE_VERT_P, AVE_HORZ_P, WORST_VERT, WORST_HORZ and CONF_LEVEL. Several additional fields have been added that are not part of the standard: top_fence, btm_fence, admin_fo_line and year_checked. There is no National BLM standard for GIS range improvement data at this time. For more information contact us at blm_id_stateoffice@blm.gov.

  2. Z

    Fused Image dataset for convolutional neural Network-based crack Detection...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei Song (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6383043
    Explore at:
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Carlos Canchila
    Wei Song
    Shanglian Zhou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  3. Simulation Data Set

    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  4. M

    Minnesota Pheasant Range

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +2
    Updated Sep 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). Minnesota Pheasant Range [Dataset]. https://gisdata.mn.gov/dataset/env-pheasant-range-minnesota
    Explore at:
    gpkg, jpeg, shp, fgdb, htmlAvailable download formats
    Dataset updated
    Sep 1, 2022
    Dataset provided by
    Natural Resources Department
    Area covered
    Minnesota
    Description

    This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and non-range.

  5. Global Roads Open Access Data Set, Version 1 (gROADSv1) - Dataset - NASA...

    • data.nasa.gov
    Updated May 16, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2013). Global Roads Open Access Data Set, Version 1 (gROADSv1) - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/global-roads-open-access-data-set-version-1-groadsv1
    Explore at:
    Dataset updated
    May 16, 2013
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.

  6. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  7. Z

    Data from: FISBe: A real-world benchmark dataset for instance segmentation...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reinke, Annika (2024). FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10875062
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset provided by
    Mais, Lisa
    Hirsch, Peter
    Ihrke, Gudrun
    Reinke, Annika
    Kainmueller, Dagmar
    Rumberger, Josef Lorenz
    Managan, Claire
    Maier-Hein, Lena
    Kandarpa, Ramya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General

    For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.

    Summary

    A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains

    30 completely labeled (segmented) images

    71 partly labeled images

    altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)

    To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects

    A set of metrics and a novel ranking score for respective meaningful method benchmarking

    An evaluation of three baseline methods in terms of the above metrics and score

    Abstract

    Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.

    Dataset documentation:

    We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:

    FISBe Datasheet

    Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.

    Files

    fisbe_v1.0_{completely,partly}.zip

    contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.

    fisbe_v1.0_mips.zip

    maximum intensity projections of all samples, for convenience.

    sample_list_per_split.txt

    a simple list of all samples and the subset they are in, for convenience.

    view_data.py

    a simple python script to visualize samples, see below for more information on how to use it.

    dim_neurons_val_and_test_sets.json

    a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.

    Readme.md

    general information

    How to work with the image files

    Each sample consists of a single 3d MCFO image of neurons of the fruit fly.For each image, we provide a pixel-wise instance segmentation for all separable neurons.Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.The segmentation mask for each neuron is stored in a separate channel.The order of dimensions is CZYX.

    We recommend to work in a virtual environment, e.g., by using conda:

    conda create -y -n flylight-env -c conda-forge python=3.9conda activate flylight-env

    How to open zarr files

    Install the python zarr package:

    pip install zarr

    Opened a zarr file with:

    import zarrraw = zarr.open(, mode='r', path="volumes/raw")seg = zarr.open(, mode='r', path="volumes/gt_instances")

    optional:import numpy as npraw_np = np.array(raw)

    Zarr arrays are read lazily on-demand.Many functions that expect numpy arrays also work with zarr arrays.Optionally, the arrays can also explicitly be converted to numpy arrays.

    How to view zarr image files

    We recommend to use napari to view the image data.

    Install napari:

    pip install "napari[all]"

    Save the following Python script:

    import zarr, sys, napari

    raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")

    viewer = napari.Viewer(ndisplay=3)for idx, gt in enumerate(gts): viewer.add_labels( gt, rendering='translucent', blending='additive', name=f'gt_{idx}')viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')napari.run()

    Execute:

    python view_data.py /R9F03-20181030_62_B5.zarr

    Metrics

    S: Average of avF1 and C

    avF1: Average F1 Score

    C: Average ground truth coverage

    clDice_TP: Average true positives clDice

    FS: Number of false splits

    FM: Number of false merges

    tp: Relative number of true positives

    For more information on our selected metrics and formal definitions please see our paper.

    Baseline

    To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..For detailed information on the methods and the quantitative results please see our paper.

    License

    The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Citation

    If you use FISBe in your research, please use the following BibTeX entry:

    @misc{mais2024fisbe, title = {FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures}, author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller}, year = 2024, eprint = {2404.00130}, archivePrefix ={arXiv}, primaryClass = {cs.CV} }

    Acknowledgments

    We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuablediscussions.P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.This work was co-funded by Helmholtz Imaging.

    Changelog

    There have been no changes to the dataset so far.All future change will be listed on the changelog page.

    Contributing

    If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.

    All contributions are welcome!

  8. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  9. e

    Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Jul 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/global-roads-open-access-data-set-2010
    Explore at:
    Dataset updated
    Jul 25, 2018
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.

  10. Public Land Survey System (PLSS): Township and Range

    • gis.data.ca.gov
    • data.ca.gov
    • +5more
    Updated May 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2019). Public Land Survey System (PLSS): Township and Range [Dataset]. https://gis.data.ca.gov/datasets/cadoc::public-land-survey-system-plss-township-and-range/about
    Explore at:
    Dataset updated
    May 14, 2019
    Dataset authored and provided by
    California Department of Conservationhttp://www.conservation.ca.gov/
    Area covered
    Description

    In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed

  11. m

    Surgical Waste Dataset

    • data.mendeley.com
    Updated Apr 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Ferdous (2022). Surgical Waste Dataset [Dataset]. http://doi.org/10.17632/rnhz3fvbj2.1
    Explore at:
    Dataset updated
    Apr 19, 2022
    Authors
    Md Ferdous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite our paper titled 'A Computer Vision-based System for Surgical Waste Detection'

    Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130366

    The dataset is built based on real-time images from our surroundings including roads, beaches, water, maintenance holes and so on. Several images of the dataset are synthetic. Moreover, most of them are natural. Some images are taken using the Samsung Galaxy A51 smartphone camera and the rest of the images are taken from internet mining. Images are chosen from close range and distance range to make the dataset a distance variant. The angle variation left, right, back and top angle images are taken. The dataset comprises diverse gesture conditions such as curling and kneeling. At the time of image collection, this study tries to take different types of colored masks and gloves. The color variation of the mask is white, sky blue, pink, black and others. Different types of masks are included surgical, N95, Cone-style, KN95 and so on. Surgical gloves also have blue, white, black and pink colors. Transparent gloves are included with more eagerness to make the system as robust and reliable underwater as well as an object floating on the water condition. According to the above criteria, 1153 images are collected from different internet sources and smartphones camera.

  12. a

    Global Roads Open Access Data Set, Version 1 (gROADSv1)-Copy

    • hub.arcgis.com
    • arcgis.com
    • +2more
    Updated May 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Global Roads Open Access Data Set, Version 1 (gROADSv1)-Copy [Dataset]. https://hub.arcgis.com/maps/e4e59bdbebc44208964aa1fb677416ec
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. The purpose is to provide an open access, well documented global data set of roads between settlements using a consistent data model (UNSDI-T v.2) which is, to the extent possible, topologically integrated.Dataset SummaryThe Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.Documentation for the Global Roads Open Access Data Set, Version 1 (gROADSv1)Recommended CitationCenter for International Earth Science Information Network - CIESIN - Columbia University, and Information Technology Outreach Services - ITOS - University of Georgia. 2013. Global Roads Open Access Data Set, Version 1 (gROADSv1). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4VD6WCT. Accessed DAY MONTH YEAR.

  13. Lunar Orbiter Laser Altimeter (LOLA) one-way Laser Ranging Full Rate Data...

    • catalog.data.gov
    • s.cnmilf.com
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA/GSFC/SED/ESD/GGL/CDDIS (2025). Lunar Orbiter Laser Altimeter (LOLA) one-way Laser Ranging Full Rate Data (all ranges collected, ground stations, aggregate of normal points daily) from NASA CDDIS [Dataset]. https://catalog.data.gov/dataset/lunar-orbiter-laser-altimeter-lola-one-way-laser-ranging-full-rate-data-all-ranges-collect
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Lunar Orbiter Laser Altimeter (LOLA) one-way laser ranging full rate data. These files contain the full rate data (all ranges collected) as delivered from the ground stations participating in one way ranging. Each file is an aggregate of full rate data collected for every station on a particular day. Note that this does not constitute the official data delivered by the LOLA mission; for these data, please visit the LOLA Planetary Data System listed in the reference. The ground station only data may be useful for those who wish to do their own transmit-receive pairing from onboard spacecraft data.

  14. Crowd Counting Dataset

    • kaggle.com
    Updated Feb 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2024). Crowd Counting Dataset [Dataset]. https://www.kaggle.com/datasets/trainingdatapro/crowd-counting-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 16, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Crowd Counting Dataset

    The dataset includes images featuring crowds of people ranging from 0 to 5000 individuals. The dataset includes a diverse range of scenes and scenarios, capturing crowds in various settings. Each image in the dataset is accompanied by a corresponding JSON file containing detailed labeling information for each person in the crowd for crowd count and classification.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F4b51a212e59f575bd6978f215a32aca0%2FFrame%2064.png?generation=1701336719197861&alt=media" alt="">

    Types of crowds in the dataset: 0-1000, 1000-2000, 2000-3000, 3000-4000 and 4000-5000

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F72e0fed3ad13826d6545ff75a79ed9db%2FFrame%2065.png?generation=1701337622225724&alt=media" alt="">

    This dataset provides a valuable resource for researchers and developers working on crowd counting technology, enabling them to train and evaluate their algorithms with a wide range of crowd sizes and scenarios. It can also be used for benchmarking and comparison of different crowd counting algorithms, as well as for real-world applications such as public safety and security, urban planning, and retail analytics.

    Full version of the dataset includes 647 labeled images of crowds, leave a request on TrainingData to buy the dataset

    Statistics for the dataset (number of images by the crowd's size and image width):

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F2e9f36820e62a2ef62586fc8e84387e2%2FFrame%2063.png?generation=1701336725293625&alt=media" alt="">

    OTHER BIOMETRIC DATASETS:

    Get the Dataset

    This is just an example of the data

    Leave a request on https://trainingdata.pro/datasets to learn about the price and buy the dataset

    Content

    • images - includes original images of crowds placed in subfolders according to its size,
    • labels - includes json-files with labeling and visualised labeling for the images in the previous folder,
    • csv file - includes information for each image in the dataset

    File with the extension .csv

    • id: id of the image,
    • image: link to access the original image,
    • label: link to access the json-file with labeling,
    • type: type of the crowd on the photo

    TrainingData provides high-quality data annotation tailored to your needs

    keywords: crowd counting, crowd density estimation, people counting, crowd analysis, image annotation, computer vision, deep learning, object detection, object counting, image classification, dense regression, crowd behavior analysis, crowd tracking, head detection, crowd segmentation, crowd motion analysis, image processing, machine learning, artificial intelligence, ai, human detection, crowd sensing, image dataset, public safety, crowd management, urban planning, event planning, traffic management

  15. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    • arcticdata.io
    grib
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Sep 1, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

  16. TIGER/Line Shapefile, 2023, County, Stone County, MO, Address Range-Feature

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2025). TIGER/Line Shapefile, 2023, County, Stone County, MO, Address Range-Feature [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2023-county-stone-county-mo-address-range-feature
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    United States Census Bureauhttp://census.gov/
    Area covered
    Stone County, Missouri
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.

  17. d

    Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data [Dataset]. https://catalog.data.gov/dataset/variable-terrestrial-gps-telemetry-detection-rates-parts-1-7data
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    Studies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.

  18. Z

    Data from: Aircraft Marshaling Signals Dataset of FMCW Radar and Event-Based...

    • data.niaid.nih.gov
    Updated Dec 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sherif Eissa (2023). Aircraft Marshaling Signals Dataset of FMCW Radar and Event-Based Camera for Sensor Fusion [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7656910
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset provided by
    Manolis Sifalakis
    Sander Stuijk
    Amirreza Yousefzadeh
    Paul Detterer
    Sherif Eissa
    Federico Corradi
    Leon Müller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Introduction The advent of neural networks capable of learning salient features from variance in the radar data has expanded the breadth of radar applications, often as an alternative sensor or a complementary modality to camera vision. Gesture recognition for command control is arguably the most commonly explored application. Nevertheless, more suitable benchmarking datasets than currently available are needed to assess and compare the merits of the different proposed solutions and explore a broader range of scenarios than simple hand-gesturing a few centimeters away from a radar transmitter/receiver. Most current publicly available radar datasets used in gesture recognition provide limited diversity, do not provide access to raw ADC data, and are not significantly challenging. To address these shortcomings, we created and make available a new dataset that combines FMCW radar and dynamic vision camera of 10 aircraft marshalling signals (whole body) at several distances and angles from the sensors, recorded from 13 people. The two modalities are hardware synchronized using the radar's PRI signal. Moreover, in the supporting publication we propose a sparse encoding of the time domain (ADC) signals that achieve a dramatic data rate reduction (>76%) while retaining the efficacy of the downstream FFT processing (<2% accuracy loss on recognition tasks), and can be used to create an sparse event-based representation of the radar data. In this way the dataset can be used as a two-modality neuromorphic dataset. Synchronization of the two modalities The PRI pulses from the radar have been hard-wired to the event stream of the DVS sensor, and timestamped using the DVS clock. Based on this signal the DVS event stream has been segmented such that groups of events (time-bins) of the DVS are mapped with individual radar pulses (chirps). Data storage DVS events (x,y coords and timestamps) are stored in structured arrays, and one such structured array object is associated with the data of a radar transmission (pulse/chirp). A radar transmission is a vector of 512 ADC levels that correspond to sampling points of chirping signal (FMCW radar) that lasts about ~1.3ms. Every 192 radar transmissions are stacked in a matrix called a radar frame (each transmission is a row in that matrix). A data capture (recording) consisting of some thousands of continuous radar transmissions is therefore segmented in a number of radar frames. Finally radar frames and the corresponding DVS structured arrays are stored in separate containers in a custom-made multi-container file format (extension .rad). We provide a (rad file) parser for extracting the data out of these files. There is one file per capture of continuous gesture recording of about 10s. Note the number of 192 transmissions per radar frame is an ad-hoc segmentation that suits the purpose of obtaining sufficient signal resolution in a 2D FFT typical in radar signal processing, for the range resolution of the specific radar. It also served the purpose of fast streaming storing of the data during capture. For extracting individual data points for the dataset however, one can pool together (concat) all the radar frames from a single capture file and re-segment them according to liking. The data loader that we provide offers this, with a default of re-segmenting every 769 transmissions (about 1s of gesturing). Data captures directory organization (radar8Ghz-DVS-marshaling_signals_20220901_publication_anonymized.7z) The dataset captures (recordings) are organized in a common directory structure which encompasses additional metadata information about the captures. dataset_dir///--/ofxRadar8Ghz_yyyy-mm-dd_HH-MM-SS.rad Identifiers

    stage [train, test]. room: [conference_room, foyer, open_space]. subject: [0-9]. Note that 0 stands for no person, and 1 for an unlabeled, random person (only present in test). gesture: ['none', 'emergency_stop', 'move_ahead', 'move_back_v1', 'move_back_v2', 'slow_down' 'start_engines', 'stop_engines', 'straight_ahead', 'turn_left', 'turn_right']. distance: 'xxx', '100', '150', '200', '250', '300', '350', '400', '450'. Note that xxx is used for none gestures when there is no person present in front of the radar (i.e. background samples), or when a person is walking in front of the radar with varying distances but performing no gesture. The test data captures contain both subjects that appear in the train data as well as previously unseen subjects. Similarly the test data contain captures from the spaces that train data were recorded at, as well as from a new unseen open space. Files List radar8Ghz-DVS-marshaling_signals_20220901_publication_anonymized.7z This is the actual archive bundle with the data captures (recordings). rad_file_parser_2.py Parser for individual .rad files, which contain capture data. loader.py A convenience PyTorch Dataset loader (partly Tonic compatible). You practically only need this to quick-start if you don't want to delve too much into code reading. When you init a DvsRadarAircraftMarshallingSignals class object it automatically downloads the dataset archive and the .rad file parser, unpacks the archive, and imports the .rad parser to load the data. One can then request from it a training set, a validation set and a test set as torch.Datasets to work with.
    aircraft_marshalling_signals_howto.ipynb Jupyter notebook for exemplary basic use of loader.py Contact For further information or questions try contacting first M. Sifalakis or F. Corradi.

  19. Clear-sky profile database for the development of Land Surface Temperature...

    • zenodo.org
    nc
    Updated May 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sofia L. Ermida; Sofia L. Ermida; Isabel F. Trigo; Isabel F. Trigo (2022). Clear-sky profile database for the development of Land Surface Temperature algorithms [Dataset]. http://doi.org/10.5281/zenodo.5779543
    Explore at:
    ncAvailable download formats
    Dataset updated
    May 11, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sofia L. Ermida; Sofia L. Ermida; Isabel F. Trigo; Isabel F. Trigo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes clear sky atmospheric profiles from the European Centre for Medium Range Forecast (ECMWF) version-5 reanalysis (ERA5), specially selected to support the development of algorithms of Land Surface Temperature (LST) retrieval from Earth observation (EO) data. The profiles were re-sampled from an ERA5 dataset covering the 2009-2019 period, with a 1x1 degree spatial resolution, hourly sampling and using the full vertical resolution (137 model levels). The re-sampling technique is based on a dissimilarity criterion applied to profiles of temperature and specific humidity, in order to obtain regular distributions of atmospheric variables of relevance for LST retrieval in the Thermal Infrared (TIR) spectral range. The database is limited to clear-sky conditions over land, being therefore suitable for the development of satellite land products relying on optical and thermal infrared imagery in general, despite targeting especially LST.

    Dataset description:

    The dataset is divided in multiple netCDF4 files based on the range of skin temperature (Tskin; Kelvin) and the range of total column water vapour (TCWV; mm). Each file includes the following variables:

    • Time
    • Longitude
    • Latitude
    • 2-m temperature (t2m)
    • Surface pressure (sp)
    • Total cloud cover (tcc)
    • Total column water vapour (tcwv)
    • Skin temperature (skt)
    • Surface emissivity (emis)
    • Land cover classification (lcc)
    • Temperature profile (t)
    • Specific humidity profile (q)
    • Ozone profile (o3)
    • Pressure profile (p)

    All profiles are provided on model levels. For each profile, 6 values of skin temperature and 25 values of emissivity are provided (see publication for details). Emissivity values correspond to the wavelengths of ~11 and ~12 µm.

    Credit:

    To use this data please cite this dataset and the respective journal publication:

    Ermida, S.L.; Trigo, I.F. (2022) A Comprehensive Clear-Sky Database for the Development of Land Surface Temperature Algorithms. Remote Sens., 14, 2329. https://doi.org/10.3390/rs14102329

    Access:

    Currently, Zenodo does not provide a simple way to download datasets with a large number of files. We recomend trying the Zenodo_get to simplify the download.

  20. o

    Burn Model System National Longitudinal Public Access Dataset 2024

    • openicpsr.org
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Humbert; Dagmar Amtmann; Haig Yenikomshian; Karen Kowalske; Jeffrey C Schneider; Barclay Stewart (2024). Burn Model System National Longitudinal Public Access Dataset 2024 [Dataset]. http://doi.org/10.3886/E209847V1
    Explore at:
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    University of Washington
    Spaulding Rehabilitation Hospital
    University of Southern California, Keck School of Medicine
    University of Texas Southwestern Medical Center at Dallas
    Authors
    Andrew Humbert; Dagmar Amtmann; Haig Yenikomshian; Karen Kowalske; Jeffrey C Schneider; Barclay Stewart
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Severe burns are one of the most complex forms of traumatic injury. People with burn injuries often require long-term rehabilitation. Survivors of a burn injury often have a wide range of physical and psychosocial problems that can affect their quality of life. The Burn Model System (BMS) program began in 1994, with funding from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR), in the Administration of Community Living and the U.S. Department of Education. The BMS program seeks to improve, through research, care and outcomes for people with burn injuries. Its research programs are housed in clinical burn centers that provide a coordinated and multidisciplinary system of rehabilitation care, including emergency medical, acute medical, post-acute, and long-term follow-up services. In addition, and with funding from NIDILRR, each BMS center conducts research and contributes follow-up data to the BMS National Data and Statistical Center (BMS NDSC). The four BMS centers are: Boston-Harvard Burn Injury Model System (BH-BIMS) in Boston, Massachusetts North Texas Burn Rehabilitation Model System (NTBRMS) in Dallas, Texas Northwest Regional Burn Model System (NWRBMS) in Seattle, Washington; andSouthern California Burn Model System (SCBMS) in Los Angeles, CaliforniaPast centers include the University of Texas Medical Branch Burn Injury Rehabilitation Model System in Galveston, Texas, the Johns Hopkins University Burn Model System in Baltimore, Maryland, the University of Colorado Denver National Data and Statistical Center, and the University of Colorado Denver Burn Model System Center.The BMS NDSC supports the research teams in the clinical burn centers. It also manages data collected by the BMS centers on more than 7,000 people who have received medical care for burn injuries. The data include a wide range of information—including pre-injury; injury; acute care; rehabilitation; recovery; and outcomes at 6, 12, 24 months, and every five years after the burn injury. To be included in the database, the burn injuries of participants must meet several criteria (as of 2015): ·More than 10% total body surface area (TBSA) burned, 65 years of age and older with burn surgery for wound closure;More than 20% TBSA burned, 0–64 years of age with burn surgery for wound closure; Electrical high voltage/lightning injury with burn surgery for wound closure; or Hand burn and/or face burn and/or feet burn with burn surgery for wound closure.In 2015, the BMS began a major initiative to collect data every five years after the injury and to collect new psychometrically sound, patient-reported outcome measures. On December 31, 2023, the database contained information for 4,913 adults (18 years of age and older at the time of burn) and 2,402 children (17 years of age and younger at the time of burn). The BMS program disseminates evidence-based information to patients, family members, health care providers, educators, policymakers, and the general public. The BMS centers provide information in many ways: peer-reviewed publications, presentations at national professional meetings, fact sheets about different aspects of living with a burn injury, newsletters for patients on BMS research and center events, outreach satellite clinics for patients living in rural areas, and peer-support groups. The BMS program also collaborates with the NIDILRR-funded Model Systems Knowledge Translation Center to promote the adoption of research findings by rehabilitation professionals, policymakers, and persons with burn injuries and their family members. The BMS program establishes partnerships to increase the overall impact of research; information dissemination; and training of clinicians, researchers, and policymakers. Current partners include the American Burn Association (ABA) and the Phoenix Society. Together, these partners help the BMS to ensure that NIDILRR-funded research addresses issues that are relevant to people with burn injuries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bureau of Land Management (2025). BLM ID Range Improvement Line [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/blm-id-range-improvement-line-hub
Organization logo

BLM ID Range Improvement Line

Explore at:
Dataset updated
May 9, 2025
Dataset provided by
Bureau of Land Managementhttp://www.blm.gov/
Description

This geodatabase of point, line and polygon features is an effort to consolidate all of the range improvement locations on BLM-managed land in Idaho into one database. Currently, the line feature class has some data for all of the BLM field offices except the Coeur d'Alene and Cottonwood field offices. Range improvements are structures intended to enhance rangeland resources, including wildlife, watershed, and livestock management. Examples of range improvements include water troughs, spring headboxes, culverts, fences, water pipelines, gates, wildlife guzzlers, artificial nest structures, reservoirs, developed springs, corrals, exclosures, etc. These structures were first tracked by the Bureau of Land Management (BLM) in the Job Documentation Report (JDR) System in the early 1960s, which was predominately a paper-based tracking system. In 1988 the JDRs were migrated into and replaced by the automated Range Improvement Project System (RIPS), and version 2.0 is currently being used today. It tracks inventory, status, objectives, treatment, maintenance cycle, maintenance inspection, monetary contributions and reporting. Not all range improvements are documented in the RIPS database; there may be some older range improvements that were built before the JDR tracking system was established. There also may be unauthorized projects that are not in RIPS. Official project files of paper maps, reports, NEPA documents, checklists, etc., document the status of each project and are physically kept in the office with management authority for that project area. In addition, project data is entered into the RIPS system to enable managers to access the data to track progress, run reports, analyze the data, etc. Before Geographic Information System technology most offices kept paper atlases or overlay systems that mapped the locations of the range improvements. The objective of this geodatabase is to migrate the location of historic range improvement projects into a GIS for geospatial use with other data and to centralize the range improvement data for the state. This data set is a work in progress and does not have all range improvement projects that are on BLM lands. Some field offices have not migrated their data into this database, and others are partially completed. New projects may have been built but have not been entered into the system. Historic or unauthorized projects may not have case files and are being mapped and documented as they are found. Many field offices are trying to verify the locations and status of range improvements with GPS, and locations may change or projects that have been abandoned or removed on the ground may be deleted. Attributes may be incomplete or inaccurate. This data was created using the standard for range improvements set forth in Idaho IM 2009-044, dated 6/30/2009. However, it does not have all of the fields the standard requires. Fields that are missing from the line feature class that are in the standard are: ALLOT_NO, MGMT_AGCY, ADMIN_ST, ADMIN_OFF, SRCE_AGCY, MAX_PDOP, MAX_HDOP, CORR_TYPE, RCVR_TYPE, GPS_TIME, UPDATE_STA, UNFILT_POS, FILT_POS, DATA_DICTI, GPS_LENGTH, GPS_3DLGTH, AVE_VERT_P, AVE_HORZ_P, WORST_VERT, WORST_HORZ and CONF_LEVEL. Several additional fields have been added that are not part of the standard: top_fence, btm_fence, admin_fo_line and year_checked. There is no National BLM standard for GIS range improvement data at this time. For more information contact us at blm_id_stateoffice@blm.gov.

Search
Clear search
Close search
Google apps
Main menu