100+ datasets found
  1. G

    GIS Mapping Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-533095
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.

  2. Big Bend National Park Small-Scale Base GIS Data

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Big Bend National Park Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/big-bend-national-park-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  3. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    Canada, United States
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  4. Death Valley National Park Small-Scale Base GIS Data

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Death Valley National Park Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/death-valley-national-park-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  5. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2025). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  6. P

    Professional Map Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Professional Map Services Report [Dataset]. https://www.archivemarketresearch.com/reports/professional-map-services-55164
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Professional Map Services market is experiencing robust growth, projected to reach $1003.7 million in 2025. While the exact CAGR isn't provided, considering the rapid technological advancements in GIS, AI-powered mapping, and the increasing reliance on location-based services across various sectors, a conservative estimate of the CAGR for the forecast period (2025-2033) would be between 8% and 12%. This growth is fueled by several key drivers. The burgeoning adoption of smart city initiatives necessitates detailed and accurate mapping solutions. Furthermore, the increasing demand for precise navigation systems in the transportation and logistics industries, coupled with the rising popularity of location-based marketing and advertising, significantly contribute to market expansion. The integration of advanced technologies like AI and machine learning into mapping solutions is further enhancing accuracy, efficiency, and functionality, driving market growth. The market is segmented by service type (consulting and advisory, deployment and integration, support and maintenance) and application (utilities, construction, transportation, government, automotive, others), reflecting the diverse needs of various industries. The competitive landscape is characterized by a mix of established players like Esri, Google, TomTom, and Mapbox, alongside emerging innovative companies. Geographic expansion, particularly in developing economies with rapidly urbanizing populations, presents a significant opportunity for growth. However, challenges such as data security concerns and the high cost of advanced mapping technologies could act as potential restraints. The market's future growth hinges on continuous technological advancements and the expansion of data accessibility. The increasing adoption of cloud-based mapping solutions is streamlining data management and improving collaboration. Furthermore, the growing integration of map data into various applications, such as autonomous vehicles and augmented reality experiences, is creating new market avenues. Regulatory changes and data privacy regulations will play a crucial role in shaping the market landscape in the coming years. The diverse application segments ensure market resilience, as growth in one sector can offset potential slowdowns in another. The ongoing expansion into new geographical territories, particularly in Asia-Pacific and other developing regions, presents substantial growth opportunities for market participants.

  7. Blue Ridge Parkway Small-Scale Base GIS Data

    • catalog.data.gov
    • gimi9.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Blue Ridge Parkway Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/blue-ridge-parkway-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Blue Ridge Parkway
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  8. S

    Sales Mapping System Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Sales Mapping System Report [Dataset]. https://www.datainsightsmarket.com/reports/sales-mapping-system-1938791
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Sales Mapping System market! Explore key trends, growth drivers, and leading companies shaping this $2.5 billion (2025) industry. Learn how GIS integration, CRM compatibility, and advanced analytics are transforming sales strategies. Get the data-driven insights you need to succeed.

  9. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Coal Oil Point
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  10. GIS Data Italy | Mapping Data | 4.5M+ Places in Italy

    • datarade.ai
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). GIS Data Italy | Mapping Data | 4.5M+ Places in Italy [Dataset]. https://datarade.ai/data-products/gis-data-italy-mapping-data-4-5m-places-in-italy-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    Infobelhttp://www.infobel.com/
    Authors
    InfobelPRO
    Area covered
    Italy
    Description

    Unlock precise, high-quality GIS data covering 4.5M+ verified locations across Italy. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  11. G

    GIS Mapping Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-532774
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Oct 20, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Global GIS Mapping Tools Market is poised for significant expansion, projected to reach a substantial market size of $10 billion by 2025, with an anticipated Compound Annual Growth Rate (CAGR) of 12.5% through 2033. This robust growth trajectory is fueled by the increasing demand for advanced spatial analysis and visualization capabilities across a multitude of sectors. Key drivers include the escalating need for accurate geological exploration to identify and manage natural resources, the critical role of GIS in planning and executing complex water conservancy projects for sustainable water management, and the indispensable application of GIS in urban planning for efficient city development and infrastructure management. Furthermore, the burgeoning adoption of cloud-based and web-based GIS solutions is democratizing access to powerful mapping tools, enabling broader use by organizations of all sizes. The market is also benefiting from advancements in data processing, artificial intelligence integration, and the growing availability of open-source GIS platforms. Despite the optimistic outlook, certain restraints could temper the market's full potential. High initial investment costs for sophisticated GIS software and hardware, coupled with a shortage of skilled GIS professionals in certain regions, may pose challenges. However, the overwhelming benefits of enhanced decision-making, improved operational efficiency, and the ability to gain deep insights from spatial data are compelling organizations to overcome these hurdles. The competitive landscape is dynamic, featuring established players like Esri and Autodesk alongside innovative providers such as Mapbox and CARTO, all vying for market share by offering specialized features, user-friendly interfaces, and integrated solutions. The continuous evolution of GIS technology, driven by the integration of remote sensing data, big data analytics, and real-time information, will continue to shape the market's future. Here's a comprehensive report description on GIS Mapping Tools, incorporating your specified requirements:

    This in-depth report provides a panoramic view of the global GIS Mapping Tools market, meticulously analyzing its landscape from the Historical Period (2019-2024) through to the Forecast Period (2025-2033), with 2025 serving as both the Base Year and the Estimated Year. The study period encompasses 2019-2033, offering a robust historical context and forward-looking projections. The market is valued in the millions of US dollars, with detailed segment-specific valuations and growth trajectories. The report is structured to deliver actionable intelligence to stakeholders, covering market concentration, key trends, regional dominance, product insights, and critical industry dynamics. It delves into the intricate interplay of companies such as Esri, Hexagon, Autodesk, CARTO, and Mapbox, alongside emerging players like Geoway and Shenzhen Edraw Software, across diverse applications including Geological Exploration, Water Conservancy Projects, and Urban Planning. The analysis also differentiates between Cloud Based and Web Based GIS solutions, providing a granular understanding of market segmentation.

  12. G

    Geographic Information System Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information System Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-system-1364410
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and infrastructure development necessitate sophisticated spatial data management and analysis, fueling demand for GIS solutions across various sectors. The construction industry, for instance, leverages GIS for project planning, site surveying, and resource management, while utilities companies use it for network optimization and asset management. Furthermore, the growing adoption of cloud-based GIS platforms enhances accessibility, scalability, and cost-effectiveness, attracting a wider user base. Precision agriculture, another significant driver, utilizes GIS for efficient land management, crop monitoring, and yield optimization. Technological advancements, particularly in areas like sensor technology (imaging sensors, LIDAR), GNSS/GPS, and improved data analytics capabilities, continuously enhance GIS functionalities and expand its applications. Competitive landscape includes major players like Esri, Hexagon, and Autodesk, driving innovation and fostering market competitiveness. However, the market faces some challenges. The high initial investment required for implementing GIS solutions, along with the need for specialized technical expertise, can be barriers to entry, particularly for smaller businesses. Data security and privacy concerns also remain a significant factor influencing market growth. Despite these restraints, the long-term outlook for the GIS market remains positive, driven by continued technological progress, increasing data availability, and growing awareness of the benefits of spatial data analysis across diverse industries. The market is expected to witness substantial growth in regions like Asia Pacific and North America owing to high adoption rates and increasing investment in infrastructure projects. The consistent improvements in accuracy and cost-effectiveness of GIS technology will continue to open up new application areas, further fueling market expansion throughout the forecast period.

  13. d

    GIS Data the Netherlands | Mapping Data | 3.7M+ Places in the Netherlands

    • datarade.ai
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). GIS Data the Netherlands | Mapping Data | 3.7M+ Places in the Netherlands [Dataset]. https://datarade.ai/data-products/gis-data-the-netherlands-mapping-data-3-7m-places-in-the-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Netherlands
    Description

    Unlock precise, high-quality GIS data covering 3.7M+ verified locations across the Netherlands. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  14. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Japan, Europe, United Arab Emirates, South Korea, North America, South America, Germany, United States, Brazil, United Kingdom
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
    By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
    

    What will be the Size of the GIS Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.

    The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.

    How is this GIS Industry segmented?

    The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.

    The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.

    Request Free Sample

    The Software segment was valued at USD 5.06 billion in 2019 and sho

  15. BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil & Gas Pipelines

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Nov 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Ocean Energy Management (BOEM) (2016). BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil & Gas Pipelines [Dataset]. https://koordinates.com/layer/15435-boem-bsee-marine-cadastre-layers-national-scale-ocs-oil-gas-pipelines/
    Explore at:
    dwg, kml, mapinfo tab, geopackage / sqlite, mapinfo mif, geodatabase, shapefile, csv, pdfAvailable download formats
    Dataset updated
    Nov 16, 2016
    Dataset provided by
    Federal government of the United Stateshttp://www.usa.gov/
    Bureau of Ocean Energy Managementhttp://www.boem.gov/
    Authors
    US Bureau of Ocean Energy Management (BOEM)
    Area covered
    Description

    This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    © MarineCadastre.gov This layer is a component of BOEMRE Layers.

    This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.

    For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov

    The REST services for National Level Data can be found here: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer

    REST services for regional level data can be found by clicking on the region of interest from the following URL: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE

    Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL: http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx

    Currently the following layers are available from this REST location:

    OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.

    OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.

    OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.

    BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.

    BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.

    Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.

    Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip

    BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest. http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.

    BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf

  16. GIS Data USA | Mapping Data | 43M+ Places in the United States

    • datarade.ai
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). GIS Data USA | Mapping Data | 43M+ Places in the United States [Dataset]. https://datarade.ai/data-products/gis-data-usa-mapping-data-43m-places-in-the-united-states-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    Infobelhttp://www.infobel.com/
    Authors
    InfobelPRO
    Area covered
    United States
    Description

    Unlock precise, high-quality GIS data covering 43M+ verified locations across the USA. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  17. d

    GIS Data | Mapping Data | Global Coverage: US UK Germany France (...) |...

    • datarade.ai
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). GIS Data | Mapping Data | Global Coverage: US UK Germany France (...) | 164M+ Places [Dataset]. https://datarade.ai/data-products/gis-data-mapping-data-global-coverage-us-uk-germany-f-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    France, United Kingdom, United States, Germany
    Description

    Unlock precise, high-quality GIS data covering 164M+ verified locations across 220+ countries. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  18. G

    Mobile GIS Data Collection Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Mobile GIS Data Collection Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/mobile-gis-data-collection-software-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Mobile GIS Data Collection Software Market Outlook



    According to our latest research, the global Mobile GIS Data Collection Software market size reached USD 2.14 billion in 2024, and is anticipated to grow at a robust CAGR of 13.7% during the forecast period, reaching approximately USD 6.42 billion by 2033. This strong growth trajectory is primarily driven by the increasing demand for real-time geospatial data across multiple industries, the proliferation of mobile devices, and the integration of advanced technologies such as IoT and AI into GIS solutions. As organizations globally seek to enhance operational efficiency and decision-making capabilities, the adoption of mobile GIS data collection software continues to accelerate, reshaping the landscape of field data management and spatial analytics.




    One of the pivotal growth factors for the Mobile GIS Data Collection Software market is the rapid digital transformation across industries such as utilities, transportation, agriculture, and government. Organizations are increasingly leveraging geospatial data to streamline field operations, optimize resource allocation, and improve asset management. The shift towards digitized workflows has created a surge in demand for mobile GIS solutions that enable real-time data capture, analysis, and sharing from remote locations. Furthermore, the growing emphasis on smart infrastructure and sustainable urban planning has amplified the need for accurate, up-to-date geographic information, positioning mobile GIS software as a critical tool in supporting these initiatives. The convergence of cloud computing, 5G connectivity, and mobile technologies is further enhancing the capabilities and accessibility of GIS platforms, making them indispensable for modern enterprises.




    Another significant driver is the increasing adoption of IoT and sensor technologies, which are generating vast volumes of spatial data that require efficient collection, processing, and analysis. Mobile GIS data collection software enables seamless integration with IoT devices, allowing for automated data acquisition and real-time monitoring of assets, environmental conditions, and infrastructure. This capability is particularly valuable in sectors like environmental monitoring, utilities management, and agriculture, where timely and accurate geospatial data is essential for informed decision-making. Additionally, advancements in artificial intelligence and machine learning are empowering GIS software to deliver predictive analytics, anomaly detection, and advanced visualization, further expanding the application scope and value proposition of mobile GIS solutions.




    The market is also benefiting from the increasing focus on regulatory compliance and safety standards, particularly in industries such as oil and gas, construction, and transportation. Mobile GIS data collection software facilitates compliance by providing accurate and auditable records of field activities, asset inspections, and environmental assessments. Moreover, the growing need for disaster management, emergency response, and public health surveillance is driving government agencies to invest in robust GIS platforms that support rapid data collection and situational awareness. As a result, vendors are continuously innovating to offer user-friendly, scalable, and secure solutions that cater to the evolving needs of diverse end-users, further fueling market expansion.



    The integration of Mobile Mapping System technology into mobile GIS solutions is revolutionizing the way geospatial data is collected and analyzed. By utilizing vehicles equipped with advanced sensors and cameras, Mobile Mapping Systems enable the rapid and accurate capture of geospatial data across large areas. This technology is particularly beneficial for urban planning, infrastructure management, and environmental monitoring, where timely and precise data is crucial. As industries strive to enhance their operational capabilities, the adoption of Mobile Mapping Systems is becoming increasingly prevalent, providing a competitive edge through improved data accuracy and efficiency.




    Regionally, North America currently dominates the Mobile GIS Data Collection Software market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, high adoption rates of digital soluti

  19. c

    Data Table for Map of ECM Counties

    • gis.data.ca.gov
    • data.ca.gov
    • +8more
    Updated Jan 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2024). Data Table for Map of ECM Counties [Dataset]. https://gis.data.ca.gov/datasets/CADHCS::data-table-for-map-of-ecm-counties
    Explore at:
    Dataset updated
    Jan 24, 2024
    Dataset authored and provided by
    California Department of Health Care Services
    Description

    ECM Community Support Services tables for a Quarterly Implementation Report. Including the County and Plan Details for both ECM and Community Support.This Medi-Cal Enhanced Care Management (ECM) and Community Supports Calendar Year Quarterly Implementation Report provides a comprehensive overview of ECM and Community Supports implementation in the programs' first year. It includes data at the state, county, and plan levels on total members served, utilization, and provider networks.ECM is a statewide MCP benefit that provides person-centered, community-based care management to the highest need members. The Department of Health Care Services (DHCS) and its MCP partners began implementing ECM in phases by Populations of Focus (POFs), with the first three POFs launching statewide in CY 2022.Community Supports are services that address members’ health-related social needs and help them avoid higher, costlier levels of care. Although it is optional for MCPs to offer these services, every Medi-Cal MCP offered Community Supports in 2022, and at least two Community Supports services were offered and available in every county by the end of the year.

  20. Data from: Digital Terrain Model (DTM) from 2005 LiDAR for the Green Lakes...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Anderson (2019). Digital Terrain Model (DTM) from 2005 LiDAR for the Green Lakes Valley, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F733%2F2
    Explore at:
    Dataset updated
    Apr 4, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Robert Anderson
    Time period covered
    Sep 29, 2005
    Area covered
    Description

    This 1m Digital Terrain Model (DTM) is derived from bare-ground Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. This dataset is better suited for derived layers such as slope angle, aspect, and contours. The DTM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DTM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DTM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Surface Model (DSM), is a first-stop elevation layer. A processing report and readme file are included with this data release. The DTM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-533095

GIS Mapping Tools Report

Explore at:
pdf, doc, pptAvailable download formats
Dataset updated
May 21, 2025
Dataset authored and provided by
Data Insights Market
License

https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.

Search
Clear search
Close search
Google apps
Main menu