https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
-999 Confidential
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Data on long-form data quality indicators for 2021 Census ethnic or cultural origin, population group and religion content, Canada, provinces and territories, census divisions and census subdivisions.
The Nonemployer Statistics by Demographics (NES-D): Company Summary estimates provide economic data classified by sex, ethnicity, race, and veteran status of nonemployer firms. The NES-D is not a survey; rather, it leverages existing administrative records to assign demographic characteristics to the universe of nonemployer businesses. The nonemployer universe is comprised of businesses with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries), and filing IRS tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series). Data for all firms are also presented. These estimates are produced by combining estimates for nonemployer firms from the Nonemployer Statistics by Demographics (NESD) and employer firms from the Annual Business Survey (ABS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Emergency medical services (EMS) workforce demographics in the United States do not reflect the diversity of the population served. Despite some efforts by professional organizations to create a more representative workforce, little has changed in the last decade. This scoping review aims to summarize existing literature on the demographic composition, recruitment, retention, and workplace experience of underrepresented groups within EMS. Peer-reviewed studies were obtained from a search of PubMed, CINAHL, Web of Science, ProQuest Thesis and Dissertations, and non-peer-reviewed (“gray”) literature from 1960 to present. Abstracts and included full-text articles were screened by two independent reviewers trained on inclusion/exclusion criteria. Studies were included if they pertained to the demographics, training, hiring, retention, promotion, compensation, or workplace experience of underrepresented groups in United States EMS by race, ethnicity, sexual orientation, or gender. Studies of non-EMS fire department activities were excluded. Disputes were resolved by two authors. A single reviewer screened the gray literature. Data extraction was performed using a standardized electronic form. Results were summarized qualitatively. We identified 87 relevant full-text articles from the peer-reviewed literature and 250 items of gray literature. Primary themes emerging from peer-reviewed literature included workplace experience (n = 48), demographics (n = 12), workforce entry and exit (n = 8), education and testing (n = 7), compensation and benefits (n = 5), and leadership, mentorship, and promotion (n = 4). Most articles focused on sex/gender comparisons (65/87, 75%), followed by race/ethnicity comparisons (42/87, 48%). Few articles examined sexual orientation (3/87, 3%). One study focused on telecommunicators and three included EMS physicians. Most studies (n = 60, 69%) were published in the last decade. In the gray literature, media articles (216/250, 86%) demonstrated significant industry discourse surrounding these primary themes. Existing EMS workforce research demonstrates continued underrepresentation of women and nonwhite personnel. Additionally, these studies raise concerns for pervasive negative workplace experiences including sexual harassment and factors that negatively affect recruitment and retention, including bias in candidate testing, a gender pay gap, and unequal promotion opportunities. Additional research is needed to elucidate recruitment and retention program efficacy, the demographic composition of EMS leadership, and the prevalence of racial harassment and discrimination in this workforce.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Race for the U.S., States, Metro Areas, Counties, and Places: 2022.Table ID.ABSNESD2022.AB00MYNESD01C.Survey/Program.Economic Surveys.Year.2022.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2022 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2025-05-08.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2023 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records, the 2022 Economic Census, and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2023 ABS collection year produces statistics for the 2022 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Race White Black or African American American Indian and Alaska Native Asian Native Hawaiian and Other Pacific Islander Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White) Equally minority/nonminority Nonminority (Firms classified as non-Hispanic and White) Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The 2022 data are shown for the total of all sectors (00) and the 2- to 6-digit NAICS code levels for:United StatesStates and the District of ColumbiaIn addition, the total of all sectors (00) NAICS and the 2-digit NAICS code levels for:Metropolitan Statistical AreasMicropolitan Statistical AreasMetropolitan DivisionsCombined Statistical AreasCountiesEconomic PlacesFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 6-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sa...
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Data on long-form data quality indicators for 2021 Census ethnic or cultural origin, population group and religion content, Canada, provinces and territories, census divisions and census subdivisions.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by territorial authority and Auckland local board.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 1.
The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated).
The variables for part 1 of the dataset are:
Download lookup file for part 1 from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Te Whata
Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
Study participation time series
In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Disability indicator
This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.
Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.
Symbol
-997 Not available
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the household income, median household income by race and by age group, Social Security income, the GINI Index, per capita income, median family income, and median household earnings by age, and by education level, in New Mexico. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area. NOTE: A '-666666666' entry indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
Decennial Census Summary File 3 (SF 3) Description Census 2000 Summary File 3 (SF3) Summary File 3 presents in-depth population and housing data collected on a sample basis from the Census 2000 long form questionnaire, as well as the topics from the short form 100-percent data (age, race, sex, Hispanic or Latino origin, tenure [whether a housing unit is owner- or renter-occupied], and vacancy status). Summary File 3 consists of 813 detailed tables of Census 2000 social, economic and housing characteristics compiled from a sample of approximately 19 million housing units (about 1 in 6 households) that received the Census 2000 long-form questionnaire. Fifty-one tables are repeated for nine major race and Hispanic or Latino groups: White alone; Black or African American alone; American Indian and Alaska Native alone; Asian alone; Native Hawaiian and Other Pacific Islander alone; Some other race alone; Two or more races; Hispanic or Latino; and White alone, not Hispanic or Latino. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see http://www.census.gov/prod/cen2000/doc/sf3.pdf. See Chapter 8 for computation of margins of error.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data collection was produced by the San Diego Association of Governments (SANDAG) and donated to the University of California, San Diego Social Science Data Collection (SSDC) for archival retention and public dissemination. The data consists of 1990 April 1 Census Bureau population and housing data and annual SANDAG intercensal estimates of population and housing data from 1991 through 2000. The data have been designed for comparability with historical census data, and these estimates may be used to evaluate changes occurring over time. Estimates are available for the San Diego region, major statistical areas (MSAs), subregional areas (SRAs), census tracts, cities, zip codes, County of San Diego Planning Areas, and City of San Diego Community Planning Areas. Almost 400 variables in the dataset include: Total Population, Population in Households, Housing Units by category, Households by income level, Median Household Income, Employment by broad sector, Occupation by broad category, and land area. Population estimates are available by sex/age/ethnicity. The data use 23 age groupings and four ethnic groupings. The four ethnic groups are Hispanic, non-Hispanic White, non- Hispanic Black, and non-Hispanic Asian. These groups are defined based on comb ined responses to two questions on the U.S. Census form, one concerning race and another concerning Hispanic origin. Those who wish to analyze the data with statistical software or merge the data with GIS boundary files may, from the SSDC files page, download the the original data files as they were distributed by SANDAG, or the merged data files created by SSDC staff, or create subsets and download those in any of a number of popular formats (e.g., SPSS, SAS, csv, etc.). Those who wish to quickly view the statistics in spreadsheet form may wish to use the links below to Excel spreadsheets created by SSDC staff. These spreadsheets do not contain all the data, but do contain the most often used variables and are easy to read and use . Those SANDAG maps and administrative digital boundary files that are available to everyone are available here through SSDC. The UCSD Library GIS Lab has additional digital boundary files that can be used only by UCSD faculty, students and staff.
A broad and generalized selection of 2012-2016 US Census Bureau 2016 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the household income, median household income by race and by age group, Social Security income, the GINI Index, per capita income, median family income, and median household earnings by age, and by education level, in New Mexico. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area. NOTE: A '-666666666' entry indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Ethnicity for the U.S., States, and Metro Areas: 2019.Table ID.ABSNESD2019.AB00MYNESD01B.Survey/Program.Economic Surveys.Year.2019.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2019 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2023-05-11.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2020 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2020 ABS collection year produces statistics for the 2019 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Ethnicity Hispanic Equally Hispanic/non-Hispanic Non-Hispanic Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the total of all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaMetropolitan Statistical AreasData are also shown for the 3-digit NAICS code for:United StatesStates and the District of ColumbiaFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 3-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the Census Bureau data sources...
https://doi.org/10.17026/fp39-0x58https://doi.org/10.17026/fp39-0x58
The study this datasets is part of focusses on intercultural Biblical hermeneutics and was necessary to gain insights into how the participants understood concepts and processes of forgiveness when reading Matthew 18.15-35. Moreover, since social identity complexity theory plays an important role in intercultural hermeneutics, it was necessary to gather the data in a social, or group reading context. Each of the two participating groups were largely homogenous in terms of race and culture. Demographic information was an important component in ascertaining to what extent social identity categories (such as race and culture) influence the hermeneutic perspectives of the participants. The participants self-reported their race, age and gender in an individual information session that took place before the first group meeting.In order to gain data from the participants related to their intercultural Biblical hermeneutic views of forgiveness, the researcher designed a series of group readings of the Biblical text in which the participants had the opportunity to read the text and then share their understandings of forgiveness with the researcher and the rest of the group. These group readings where structured in the form of focus group encounters in which the conversations were recorded by means of an audio recording device and then transcribed for later analysis.This dataset contains the raw data (transcripts) that was gathered in a series of 6 focus group meetings (datasets D1 - D6). The datasets each are numbered according to the Atlas.ti convention. The data is recorded in Rich Text File (RTF) format. In the heading of each data file the date and location of the recording of the data is noted (e.g., Church Street Methodist Church, 21/06/2015).The data has been anonymised in order to protect the privacy of the participants, except for the original Atlas.ti file (which is only available on request). Each participant has been allocated a code represent their inputs (P1-P12). The P* remains the same for that participant in all of the datasets. The interviewer has been allocated the symbol 'I' or [I].A methodology text and read me text are part of the dataset and explain the context of the dataset. In these documents, references are made to parts of the corresponding publication (PhD dissertation):Forster, DA. 2017. 'The (im)possibility of forgiveness? An empirical intercultural Bible reading of Matthew 18.15-35'. PHD thesis. Radboud University.
This dataset contains aggregate data concerning the number of children that exited DCF care to be Reunified with a parent/guardian from whom they had been removed. These figures are broken out by the DCF Region and Office responsible for the child's care, by their Age Group, and by whether they had been Reunified within 12 months of their entry to care or not. It would be appropriate to roll up the data from all variables across multiple time periods, as they represent specific events in the lives of these children. Please note that these figures do not represent unique children, and so should not be used as the basis for creating a rate based on the child population of the state. These data form the basis of measurement for the Juan F. Consent Decree Exit Plan Outcome #7: Reunification Within 12 Months, although those figures are reported to the DCF Court Monitor on a quarterly rather than annual schedule.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
See story map for coverage and composition rates.Download lookup file from Stats NZ map hub or Stats NZ geographic data service.Interim coverage ratesCoverage rates use dual system estimation (DSE) benchmarks as the denominator to calculate interim coverage rates. Dataset contains interim coverage rates for the usually resident population and for people of Māori descent, and for Māori, Pacific, and Asian ethnic groups.Composition ratesDataset contains composition rates (data sources used to count the census usually resident population) for the usually resident population and for each of the six ethnic groups (European; Māori; Pacific; Asian; Middle Eastern, Latin American, and African (MELAA); and Other).Data sources used to count the census usually resident population:Proportion individual response – census individual forms received.Proportion partial response – partial census form responses (from the paper dwelling form or online household set-up form but where an individual form for the person was not received).Proportion admin enumeration – the use of admin data to add people to the usually resident census population when a census response was not received.
The London Borough Profiles help paint a general picture of an area by presenting a range of headline indicator data in both spreadsheet and map form to help show statistics covering demographic, economic, social and environmental datasets for each borough, alongside relevant comparator areas. The London Borough Atlas does the same but provides further detailed breakdowns and time-series data for each borough. The full datasets and more information for each of the indicators are usually available on the London Datastore. A link to each of the datasets is contained in the spreadsheet and map.
On opening the Microsoft Excel version, a simple drop down box allows you to choose which borough profile you are interested in. Selecting this will display data for that borough, plus either Inner or Outer London, London and a national comparator (usually England where data is available). To see the full set of data for all 33 local authorities in London plus the comparator areas in Excel, click the 'Data' worksheet. A chart and a map are also available to help visualise the data for all boroughs (macros must be enabled for the Excel map to function). The data is set out across 11 themes covering most of the key indicators relating to demographic, economic, social and environmental data. Sources are provided in the spreadsheet. Notes about the indicator are provided in comment boxes attached to the indicator names. For a geographical and bar chart representation of the profile data, choose the InstantAtlas version. Choose indicators from the left hand side. Click on the comparators to make them appear on the chart and map. Sources, links to data, and notes are all contained in the box in the bottom right hand corner.
![]() | ![]() |
These profiles include data relating to: Population, Households (census), Demographics, Migrant population, Ethnicity, Language, Employment, NEET, DWP Benefits (client group), Housing Benefit, Qualifications, Earnings, Volunteering, Jobs density, Business Survival, Crime, Fires, House prices, New homes, Tenure, Greenspace, Recycling, Carbon Emissions, Cars, Public Transport Accessibility (PTAL), Indices of Multiple Deprivation, GCSE results, Children looked after, Children in out-of-work families, Life Expectancy, Teenage conceptions, Happiness levels, Political control, and Election turnout.
To access even more data at local authority level, use the London Borough Atlas. It contains data about the same topics as the profiles but provides further detailed breakdowns and time-series data for each borough. There is also an InstantAtlas version available.
![]() | ![]() |
The London boroughs are: City of London, Barking and Dagenham, Barnet, Bexley, Brent, Bromley, Camden, Croydon, Ealing, Enfield, Greenwich, Hackney, Hammersmith and Fulham, Haringey, Harrow, Havering, Hillingdon, Hounslow, Islington, Kensington and Chelsea, Kingston upon Thames, Lambeth, Lewisham, Merton, Newham, Redbridge, Richmond upon Thames, Southwark, Sutton, Tower Hamlets, Waltham Forest, Wandsworth, Westminster. You may also find our small area profiles useful - Ward, LSOA, and "/dataset/msoa-atlas">MS
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Ethnicity for the U.S., States, Metro Areas, and Counties: 2021.Table ID.ABSNESD2021.AB00MYNESD01B.Survey/Program.Economic Surveys.Year.2021.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2021 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2024-08-08.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2022 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2022 ABS collection year produces statistics for the 2021 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Ethnicity Hispanic Equally Hispanic/non-Hispanic Non-Hispanic Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the total of all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaMetropolitan Statistical AreasCountiesData are also shown for the 3- and 4-digit NAICS code for:United StatesStates and the District of ColumbiaFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 4-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the C...
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
-999 Confidential
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.