26 datasets found
  1. d

    Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Sep 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida (NPS, GRD, GRI, EVER, EVER digital map) adapted from Florida Geological Survey Open File Map Series maps by Green, Campbell, Scott, Means and Arthur (1995, 1996, 1997, 1998 and 1999), and Open-File Report map by Scott (2001), and U.S. Geological Survey Bulletin map by Bergendahl (1956), Open-File Report map by McCartan and Moy (1995), and Water-Resources maps by Causaras, Reese and Cunningham (1985, 1986 and 2000) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-everglades-national-park-and-vicinity-florida-nps-grd-gri-ever
    Explore at:
    Dataset updated
    Sep 14, 2025
    Dataset provided by
    National Park Service
    Area covered
    Florida
    Description

    The Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. U

    USA SSURGO - Soil Hydrologic Group

    • data.unep.org
    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    • +2more
    Updated Dec 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN World Environment Situation Room (2022). USA SSURGO - Soil Hydrologic Group [Dataset]. https://data.unep.org/app/dataset/wesr-arcgis-wm-usa-ssurgo---soil-hydrologic-group
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    UN World Environment Situation Room
    Area covered
    United States
    Description

    When rain falls over land, a portion of it runs off into stream channels and storm water systems while the remainder infiltrates into the soil or returns to the atmosphere directly through evaporation.Physical properties of soil affect the rate that water is absorbed and the amount of runoff produced by a storm. Hydrologic soil group provides an index of the rate that water infiltrates a soil and is an input to rainfall-runoff models that are used to predict potential stream flow.For more information on using hydrologic soil group in hydrologic modeling see the publication Urban Hydrology for Small Watersheds (Natural Resources Conservation Service, United States Department of Agriculture, Technical Release–55).Dataset SummaryPhenomenon Mapped: Soil hydrologic groupUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydrologic group is derived from the gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant Conditions (hydgrpdcd).The seven classes of hydrologic soil group followed by definitions:Group A - Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.Group B - Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.Group C - Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.Group D - Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.Group A/D - Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.Group B/D - Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.Group C/D - Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "soil hydrologic group" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "soil hydrologic group" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  3. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • giscommons-countyplanning.opendata.arcgis.com
    • +2more
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  4. Earth Observation with Satellite Remote Sensing in ArcGIS Pro

    • ckan.americaview.org
    Updated May 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Earth Observation with Satellite Remote Sensing in ArcGIS Pro [Dataset]. https://ckan.americaview.org/dataset/earth-observation-with-satellite-remote-sensing-in-arcgis-pro
    Explore at:
    Dataset updated
    May 3, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Lesson 1. An Introduction to working with multispectral satellite data in ArcGIS Pro In which we learn: • How to unpack tar and gz files from USGS EROS • The basic map interface in ArcGIS • How to add image files • What each individual band of Landsat spectral data looks like • The difference between: o Analysis-ready data: surface reflectance and surface temperature o Landsat Collection 1 Level 3 data: burned area and dynamic surface water o Sentinel2data o ISRO AWiFS and LISS-3 data Lesson 2. Basic image preprocessing In which we learn: • How to composite using the composite band tool • How to represent composite images • All about band combinations • How to composite using raster functions • How to subset data into a rectangle • How to clip to a polygon Lesson 3. Working with mosaic datasets In which we learn: o How to prepare an empty mosaic dataset o How to add images to a mosaic dataset o How to change symbology in a mosaic dataset o How to add a time attribute o How to add a time dimension to the mosaic dataset o How to view time series data in a mosaic dataset Lesson 4. Working with and creating derived datasets In which we learn: • How to visualize Landsat ARD surface temperature • How to calculate F° from K° using ARD surface temperature • How to generate and apply .lyrx files • How to calculate an NDVI raster using ISRO LISS-3 data • How to visualize burned areas using Landsat Level 3 data • How to visualize dynamic surface water extent using Landsat Level 3 data

  5. Terrain 3D

    • wri-data-catalogue-worldresources.hub.arcgis.com
    • cacgeoportal.com
    • +5more
    Updated Dec 9, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Terrain 3D [Dataset]. https://wri-data-catalogue-worldresources.hub.arcgis.com/datasets/7029fb60158543ad845c7e1527af11e4
    Explore at:
    Dataset updated
    Dec 9, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  6. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  7. USA Flood Hazard Areas

    • community-climatesolutions.hub.arcgis.com
    • climate-center-lincolninstitute.hub.arcgis.com
    • +1more
    Updated Oct 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Flood Hazard Areas [Dataset]. https://community-climatesolutions.hub.arcgis.com/datasets/11955f1b47ec41a3af86650824e0c634
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: December 18, 2024This layer is derived from the December 18, 2024 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 88 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 88 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census' boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel.Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  8. a

    Environmental Justice Block Groups 2022

    • hub.arcgis.com
    • data.ct.gov
    • +3more
    Updated May 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2023). Environmental Justice Block Groups 2022 [Dataset]. https://hub.arcgis.com/maps/CTDEEP::environmental-justice-block-groups-2022-2
    Explore at:
    Dataset updated
    May 23, 2023
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Environmental Justice Block Groups 2022 was created from Connecticut block group boundary data located in the Census Bureau's 2020 TIGER/Line Shapefiles. The poverty data used to determine which block groups qualified as EJ communities (see CT State statute 22a-20a) was based on the Census Bureau's 2020 ACS 5-year estimate. This poverty data was joined with the block group boundaries in ArcPro. Block groups in which the percent of the population below 200% of the federal poverty level was greater than or equal to 30.0 were selected and the resulting selection was exported as a new shapefile. The block groups were then clipped so that only those block groups outside of distressed municipalities were displayed. Maintenance – This layer will be updated annually and will coincide with the annual distressed municipalities update (around August/September). The latest ACS 5-year estimate data should be used to update this layer. Environmental Justice Distressed Municipalities 2020 was created from Connecticut town boundary data located in the Census Bureau's 2020 TIGER/Line Shapefiles (County Subdivisions).

    From this shapefile, "select by attribute" was used to select the distressed municipalities by town name (note: the list of 2022 distressed municipalities was provided by the CT Department of Economic and Community Development). The selection was then exported a new shapefile. The “Union” tool was used to unite the new shapefile with tribal lands (American Indian Area Geography) boundary data from the 2020 TIGER/Line files. In the resulting layer, the tribal lands were deleted so only the distressed municipalities remained. Maintenance – This layer will be updated annually when the DECD produces its new list of distressed municipalities (around August/September).

    Note: A distressed municipality, as designated by the Connecticut Department of Economic and Community Development, includes municipalities that no longer meet the threshold requirements but are still in a 5-year grace period. (See definition at CGS Sec. 32-9p(b).) Fitting into that grace period, eight towns continue to be eligible for distressed municipality benefits because they dropped off the list within the last five years. Those are Enfield, Killingly, Naugatuck, Plymouth, New Haven, Preston, Stratford, and Voluntown.

  9. a

    Catchment Scale Land Use 2023, Date of Mapping

    • digital.atlas.gov.au
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Digital Atlas of Australia (2024). Catchment Scale Land Use 2023, Date of Mapping [Dataset]. https://digital.atlas.gov.au/datasets/a7cc8e5e32f2457394cbfc70a1ae398e
    Explore at:
    Dataset updated
    Jun 1, 2024
    Dataset authored and provided by
    Digital Atlas of Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Abstract The Catchment Scale Land Use of Australia – Update December 2023 dataset is the national compilation of catchment scale land use data available for Australia (CLUM), as of December 2023. It replaces the Catchment Scale Land Use of Australia – Update December 2020. It is a seamless raster dataset that combines land use data for all state and territory jurisdictions, compiled at a resolution of 50 metres by 50 metres. The CLUM data shows a single dominant land use for a given area, based on the primary management objective of the land manager (as identified by state and territory agencies). Land use is classified according to the Australian Land Use and Management Classification version 8. It has been compiled from vector land use datasets collected as part of state and territory mapping programs and other authoritative sources, through the Australian Collaborative Land Use and Management Program. Catchment scale land use data was produced by combining land tenure and other types of land use information including, fine-scale satellite data, ancillary datasets, and information collected in the field. The date of mapping (2008 to 2023) and scale of mapping (1:5,000 to 1:250,000) vary, reflecting the source data, capture date and scale. Date and scale of mapping are provided in supporting datasets.

    Currency Date modified: December 2023 Publication Date: June 2024 Modification frequency: As needed (approximately annual) Data Extent Coordinate reference: WGS84 / Mercator Auxiliary Sphere Spatial Extent North: -9.995 South: -44.005 East: 154.004 West: 112.505 Source information Data, Metadata, Maps and Interactive views are available from Catchment Scale Land Use of Australia - Update 2023 Catchment Scale Land Use of Australia - Update 2023 – Descriptive metadata The data was obtained from Department of Agriculture, Fisheries and Forestry - Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). ABARES is providing this data to the public under a Creative Commons Attribution 4.0 license. Lineage statement This catchment scale land use dataset provides the latest compilation of land use mapping information for Australia’s regions as at December 2023. It is used by the Department of Agriculture, Fisheries and Forestry, state agencies and regional natural resource management groups to address issues such as agricultural productivity and sustainability, biodiversity conservation, biosecurity, land use planning, natural disaster management and natural resource monitoring and investment. The data vary in date of mapping (2008 to 2023) and scale (1:5,000 to 1:250,000). 2023 updates include more current data and/or reclassification of existing data. The following areas have updated data since the December 2020 version:

    New South Wales (2017 v1.5 from v1.2). Northern Territory (2022 from 2020). Tasmania (2021 from 2019). Victoria (2021 from 2017). Data were also added from the Great Barrier Reef Natural Resource Management (NRM) regions in Queensland (2021 from a variety of dates 2009 to 2017). the Australian Tree Crops. Australian Protected Cropping Structures and Queensland Soybean Crops maps as downloaded on 30 November 2023. The capital city of Adelaide was updated using 2021 mesh block information from the Australian Bureau of Statistics. Minor reclassifications were made for Western Australia and mining area within mining tenements more accurately delineated in South Australia.

    Links to land use mapping datasets and metadata are available at the ACLUMP data download page at agriculture.gov.au. State and territory vector catchment scale land use data were produced by combining land tenure and other types of land use information, fine-scale satellite data and information collected in the field, as outlined in 'Guidelines for land use mapping in Australia: principles, procedures and definitions, 4th edition' (ABARES 2011). The Northern Territory, Queensland, South Australia, Tasmania, Victoria and Western Australia were mapped to version 8 of the ALUM classification (‘The Australian Land Use and Management Classification Version 8’, ABARES 2016). The Australian Capital Territory was mapped to version 7 of the ALUM classification and converted to version 8 using a look-up table based on Appendix 1 of ABARES (2016). Purpose for which the material was obtained: This catchment scale land use dataset provides the latest compilation of land use mapping information for Australia’s regions as at December 2023. It is used by the Department of Agriculture, Fisheries and Forestry, state agencies and regional natural resource management groups to address issues such as agricultural productivity and sustainability, biodiversity conservation, biosecurity, land use planning, natural disaster management and natural resource monitoring and investment. The data vary in date of mapping (2008 to 2023) and scale (1:5,000 to 1:250,000). Do not use this data to:

    Derive national statistics. The Land use of Australia data series should be used for this purpose. Calculate land use change. The Land use of Australia data series should be used for this purpose.

    It is not possible to calculate land use change statistics between annual CLUM national compilations as not all regions are updated each year; land use mapping methodologies, precision, accuracy and source data and satellite imagery have improved over the years; and the land use classification has changed over time. It is only possible to calculate change when earlier land use datasets have been revised and corrected to ensure that changes detected are real change and not an artefact of the mapping process. Note: The Digital Atlas of Australia downloaded and created a copy of the source data in October 2024 that was suitable to be hosted through ArcGIS Image Server & Image Dedicated. A copy of the raster was created with RGB fields as a colour map with Geoprocessing tools in ArcPro. Note: The Digital Atlas of Australia downloaded and created a copy of the source data in February 2025 that was suitable to be hosted through ArcGIS Image Server & Image Dedicated. A copy of the raster dataset was created with RGB fields as a colour map with Geoprocessing tools in ArcPro, and the raster dataset was re-projected from 1994 Australia Albers to WGS 1984 Web Mercator (Auxiliary Sphere). Data dictionary

    Field name DField description Code values

    OID Internal feature number that uniquely identifies each row Integer

    Service Pixel value (Date) The year for which land use was mapped in the vector data provided by state and territory agencies or others, Date Range: 2008 to 2023 Integer

    Count Count of the number of raster cells in each class of VALUE Integer

    Label Reflecting the Date of the source data ranges from 2008 to 2023 Text

    Contact Department of Agriculture, Fisheries and Forestry (ABARES), info.ABARES@aff.gov.au

  10. o

    Data from: The high-resolution map of Oxia Planum, Mars; the landing site of...

    • ordo.open.ac.uk
    • datasetcatalog.nlm.nih.gov
    • +1more
    zip
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Fawdon; Csilla Orgel; Solmaz Adeli; Matt Balme; Fred Calef; Joel M. Davis; Alessandro Frigeri; Peter Grindrod; Ernst Hauber; Laetitia Le Deit; Damien Loizeau; Andrea Nass; Cathy Quantin-Nataf; Elliot Sefton-Nash; Nick Thomas; Ines Torres; Jorge L. Vago; Matthieu Volat; Sander De Witte; F. (Francesca) Altieri; Andrea Apuzzo; Julene Aramendia; Gorka Arana; Rickbir Bahia; Steven G. Banham; Robert Barnes; Alex Barrett; Wolf-Stefan benedix; Anshuman Bhardwaj; Sarah Boazman; Tomaso R.R. Bontognali; John Bridges; Benjamin Bultel; Valérie Ciarletti; Maria Cristina De Sanctis; Zack Dickeson; Elena Favaro; Marco Ferrari; Frédéric Foucher; Walter Goetz; Albert Haldemann; Elise Harrington; Angeliki Kapatza; Detlef Koschny; Agata Krzesinska; Alice Le Gall; Stephen Lewis; Tanya Lim; J. Madariaga; Lucia Mandon; N. MANGOLD; Joseph McNeil; Antonio Molina; Andoni G. Moral; Sara Motaghian; Jack Wright; Sergei Nikiforov; Nicolas Oudart; Andrea Pacifici; Adam Parkes Bowen; Dirk Plettemeier; Pantelis Poulakis; Alfiah Rizky Diana Putri; Ottaviano Ruesch; Lydia Sam; Christian Schröder; Christoph Statz; Rebecca Thomas; Daniela Tirsch; Zsuzsanna Tóth; Stuart Turner; Martin Voelker; Stephanie Werner; Frances Westall; Barry Whiteside; Adam Williams; Rebecca Williams; Maria-Paz Zorzano (2023). The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission [Dataset]. http://doi.org/10.21954/ou.rd.24147231.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 21, 2023
    Dataset provided by
    The Open University
    Authors
    Peter Fawdon; Csilla Orgel; Solmaz Adeli; Matt Balme; Fred Calef; Joel M. Davis; Alessandro Frigeri; Peter Grindrod; Ernst Hauber; Laetitia Le Deit; Damien Loizeau; Andrea Nass; Cathy Quantin-Nataf; Elliot Sefton-Nash; Nick Thomas; Ines Torres; Jorge L. Vago; Matthieu Volat; Sander De Witte; F. (Francesca) Altieri; Andrea Apuzzo; Julene Aramendia; Gorka Arana; Rickbir Bahia; Steven G. Banham; Robert Barnes; Alex Barrett; Wolf-Stefan benedix; Anshuman Bhardwaj; Sarah Boazman; Tomaso R.R. Bontognali; John Bridges; Benjamin Bultel; Valérie Ciarletti; Maria Cristina De Sanctis; Zack Dickeson; Elena Favaro; Marco Ferrari; Frédéric Foucher; Walter Goetz; Albert Haldemann; Elise Harrington; Angeliki Kapatza; Detlef Koschny; Agata Krzesinska; Alice Le Gall; Stephen Lewis; Tanya Lim; J. Madariaga; Lucia Mandon; N. MANGOLD; Joseph McNeil; Antonio Molina; Andoni G. Moral; Sara Motaghian; Jack Wright; Sergei Nikiforov; Nicolas Oudart; Andrea Pacifici; Adam Parkes Bowen; Dirk Plettemeier; Pantelis Poulakis; Alfiah Rizky Diana Putri; Ottaviano Ruesch; Lydia Sam; Christian Schröder; Christoph Statz; Rebecca Thomas; Daniela Tirsch; Zsuzsanna Tóth; Stuart Turner; Martin Voelker; Stephanie Werner; Frances Westall; Barry Whiteside; Adam Williams; Rebecca Williams; Maria-Paz Zorzano
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ~1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context.This data set contains:1/ A geodatabase of feature classes for the high resolution geological mapFile name: (DATA_MapGeodatabase_v1.gbd).zipUnzip with: winzip, File explorer, ExpressZipOpens with: ESRI ArcPro, ESRI ArcMap, QGIS.2/ The Map sheet (A0) as published in Fawdon et al., 2024 "The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission"File name: ExoMars_Landingsitemap_v1.pdfOpens with: Adobe acrobat reader3/ Shapefiles for the high resolution geological map - [not yet complete, available from the author on request]Filenames:(TBD.shp).zipUnzip with: winzip, File explorer, ExpressZipOpens with: ESRI ArcPro, ESRI ArcMap, QGIS.4/ AcrPro layer files and symbolization information for the shapefiles - [not yet complete, available from the author on request]Filenames: TBD.lyrxOpens with: ESRI ArcPro, ESRI ArcMap, QGIS and other standard gis applications5/ Raters images (geofit) of the major geological units - [not yet complete, available from the author on request]Filenames: TBD.tifOpens with: ESRI ArcPro, ESRI ArcMap, QGIS and other standard gis applications, image processing softwereAdditionally a browsable web-map of the the data is available at https://arcg.is/0y4bSa

  11. e

    USA Coal Fields

    • atlas.eia.gov
    • sal-urichmond.hub.arcgis.com
    Updated May 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Coal Fields [Dataset]. https://atlas.eia.gov/datasets/esri::usa-coal-fields
    Explore at:
    Dataset updated
    May 3, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This layer displays coal fields of the Conterminous United States from the U.S. Coal Resources and Reserves Assessment Project by the U.S. Geological Survey (USGS) Energy Resources Program.Dataset SummaryPhenomenon Mapped: Coal Fields of the United StatesCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Conterminous United StatesVisible Scale: All ScalesSource: National Coal Resource AssessmentPublication Date: 2013East, J.A., 2013, Coal fields of the conterminous United States—National Coal Resource Assessment updated version: U.S. Geological Survey Open-File Report 2012–1205, one sheet, scale 1:5,000,000, available at https://pubs.usgs.gov/of/2012/1205/. What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  12. c

    Boundary

    • cacgeoportal.com
    Updated Aug 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Maps for the Nation (2019). Boundary [Dataset]. https://www.cacgeoportal.com/datasets/nation::boundary
    Explore at:
    Dataset updated
    Aug 9, 2019
    Dataset authored and provided by
    ArcGIS Maps for the Nation
    Area covered
    Description

    This basemap was designed with the Vizzuality team for use in the Half-Earth Project globe. The saturated palette and rich landcover tones are meant to engage an audience and to provide the sense that the earth is a charming and beautiful place worthy of thoughtful stewardship. As you zoom in, the saturated basemap is slowly replaced by imagery.This basemap is the major component of the Vibrant Map. The Vibrant Map is configured to use these basemap tiles from global to regional extents, then transition to Esri's World Imagery basemap tiles for a seamless transition from small to large scale.Find more information about this basemap, and its contributing data, here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/creating-the-half-earth-vibrant-basemap/Learn more about the Half-Earth Project here and explore highlighted areas of biodiversity here.Happy Mapping! John

  13. a

    Full Range Heat Anomalies - USA 2023

    • keep-cool-global-community.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Full Range Heat Anomalies - USA 2023 [Dataset]. https://keep-cool-global-community.hub.arcgis.com/items/e89a556263e04cb9b0b4638253ca8d10
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  14. ACS Median Household Income Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +8more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. Grocery Access Map Gallery

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated Apr 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Grocery Access Map Gallery [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/datasets/UrbanObservatory::grocery-access-map-gallery
    Explore at:
    Dataset updated
    Apr 20, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Measure and Map Access to Grocery StoresFrom the perspective of the people living in each neighborhood How do people in your city get to the grocery store? The answer to that question depends on the person and where they live. This collection of layers, maps and apps help answer the question.Some live in cities and stop by a grocery store within a short walk or bike ride of home or work. Others live in areas where car ownership is more prevalent, and so they drive to a store. Some do not own a vehicle, and rely on a friend or public transit. Others rely on grocery delivery for their needs. And, many live in rural areas far from town, so a trip to a grocery store is an infrequent event involving a long drive.This map from Esri shows which areas are within a ten minute walk (in green) or ten minute drive (in blue) of a grocery store in the United States and Puerto Rico. Darker color indicates access to more stores. Summarizing this data shows that 20% of U.S. population live within a 10 minute walk of a grocery store, and 90% of the population live within a 10 minute drive of a grocery store. Click on the map to see a summary for each state.Every census block is scored with a count of walkable and drivable stores nearby, making this a map suitable for a dashboard for any city, or any of the 50 states, DC and Puerto Rico. Two colorful layers visualize this definition of access, one for walkable access (suitable for looking at a city neighborhood by neighborhood) and one for drivable access (suitable for looking across a city, county, region or state).On the walkable layer, shades of green define areas within a ten minute walk of one or more grocery stores. The colors become more intense and trend to a blue-green color for the busiest neighborhoods, such as downtown San Francisco. As you zoom in, a layer of Census block points visualizes the local population with or without walkable access. As you zoom out to see the entire city, the map adds a light blue - to dark blue layer, showing which parts of the region fall within ten minutes' drive of one or more grocery stores. As a result, the map is useful at all scales, from national to regional, state and local levels. It becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car? How to Use This MapUse this map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying against their own experiences. The map was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access. There is data behind the map, which can be summarized to show how many people have walkable access to local grocery stores. The map includes a feature layer of population in Census block points, which are visible when you zoom in far enough. This feature layer of Census block centroids can be plugged into an app like this one that summarizes the population with/without walkable or drivable access. Lastly, this map can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples). The map is a useful visual and analytic resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved. Data sourcesPopulation data is from the 2020 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer. Grocery store locations are from SafeGraph, reflecting what was in the data as of September 2024. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters. The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis. The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels. The SafeGraph grocery store locations were provided by SafeGraph. The source data included NAICS code 445110 and 452311 as an initial screening. The CSV file was imported using the Data Interoperability geoprocessing tools in ArcGIS Pro, where a definition query was applied to the layer to exclude any records that were not grocery stores. The final layer used in the analysis had approximately 63,000 records. In this map, this layer is included as a vector tile layer. MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway. A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in. The results for each analysis were captured in a Lines layer, which shows which origins are within the 10 minute cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle). The Lines layer is not published but is used to count how many stores each origin has access to over the road network. The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step. Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool used a 100 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect. Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle.

  16. c

    USDA Census of Agriculture 2017 - Cotton Production

    • resilience.climate.gov
    • livingatlas-dcdev.opendata.arcgis.com
    • +1more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Cotton Production [Dataset]. https://resilience.climate.gov/maps/esri::usda-census-of-agriculture-2017-cotton-production
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cotton production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cotton ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BalesSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  17. d

    BLM Natl MLRS Land Use Authorization- Rights of Way ROW

    • catalog.data.gov
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM Natl MLRS Land Use Authorization- Rights of Way ROW [Dataset]. https://catalog.data.gov/dataset/blm-natl-mlrs-land-use-authorization-rights-of-way-row
    Explore at:
    Dataset updated
    Sep 11, 2025
    Dataset provided by
    Bureau of Land Management
    Description

    This dataset contains land use authorization- rights-of-way cases derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land Management's, BLM, Mineral and Land Record System(MLRS) and geocoded (mapped) using the Public Land Survey System (PLSS) derived from the most accurate survey data available through BLM Cadastral Survey workforce. The minimum data entry requirement for legal descriptions for linear authorizations is to the nearest 40 acre aliquot level (e.g.,NENW). Legal descriptions for non-linear authorizations are as described on the authorizing document. Geospatial representations might be missing for some cases that can not be geocoded using the MLRS algorithm. This data set contains cases with the dispositions of 'Authorized', 'Pending','Closed', and 'Interim'. Each case is given a data quality score based on how well it mapped. These can be lumped into seven groups to provide a simplified way to understand the scores. Group 1: Direct PLSS Match. Scores “0”, “1”, “2”, “3” should all have a match to the PLSS data. There are slight differences, but the primary expectation is that these match the PLSS. Group 2: Calculated PLSS Match. Scores “4”, “4.1”, “5”, “6”, “7” and “8” were generated through a process of creating the geometry that is not a direct capture from the PLSS. They represent a best guess based on the underlining PLSS Group 3 – Mapped to Section. Score of “8.1”, “8.2”, “8.3”, “9” and “10” are mapped to the Section for various reasons (refer to log information in data quality field). Group 4- Combination of mapped and unmapped areas. Score of 15 represents a case that has some portions that would map and others that do not. Group 5 – No NLSDB Geometry, Only Attributes. Scores “11”, “12”, “20”, “21” and “22” do not have a match to the PLSS and no geometry is in the NLSDB, and only attributes exist in the data. Group 6 – Mapped to County. Scores of “25” map to the County. Group 7 – Improved Geometry. Scores of “100” are cases that have had their geometry edited by BLM staff using ArcGIS Pro or MLRS bulk upload tool.

  18. a

    World Imagery - ESRI

    • hub.arcgis.com
    • fesec-cesj.opendata.arcgis.com
    Updated Feb 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre d'enseignement Saint-Joseph de Chimay (2019). World Imagery - ESRI [Dataset]. https://hub.arcgis.com/maps/CESJ::world-imagery-esri/about
    Explore at:
    Dataset updated
    Feb 14, 2019
    Dataset authored and provided by
    Centre d'enseignement Saint-Joseph de Chimay
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  19. ACS Poverty Status Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +10more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. d

    BLM Natl MLRS Mineral Materials

    • catalog.data.gov
    Updated Sep 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM Natl MLRS Mineral Materials [Dataset]. https://catalog.data.gov/dataset/blm-natl-mlrs-mineral-materials
    Explore at:
    Dataset updated
    Sep 19, 2025
    Dataset provided by
    Bureau of Land Management
    Description

    This dataset contains mineral materials cases derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land Management's, BLM, Mineral and Land Record System(MLRS) and geocoded (mapped) using the Public Land Survey System (PLSS) derived from the most accurate survey data available through BLM Cadastral Survey workforce. Geospatial representations might be missing for some cases that can not be geocoded using the MLRS algorithm. Mineral materials include common varieties of sand, stone,gravel, pumice, pumicite, clay, rock, and semi-precious and non-precious gemstone. This data set contains cases within the case type groupings for mineral materials of exploration permit, nonexclusive sale, exclusive sale, and free use with the case disposition of 'Authorized', 'Pending','Closed', or 'Interim'.Each case is given a data quality score based on how well it mapped. These can be lumped into seven groups to provide a simplified way to understand the scores.Group 1: Direct PLSS Match. Scores “0”, “1”, “2”, “3” should all have a match to the PLSS data. There are slight differences, but the primary expectation is that these match the PLSS. Group 2: Calculated PLSS Match. Scores “4”, “4.1”, “5”, “6”, “7” and “8” were generated through a process of creating the geometry that is not a direct capture from the PLSS. They represent a best guess based on the underlining PLSS Group 3 – Mapped to Section. Score of “8.1”, “8.2”, “8.3”, “9” and “10” are mapped to the Section for various reasons (refer to log information in data quality field). Group 4- Combination of mapped and unmapped areas. Score of 15 represents a case that has some portions that would map and others that do not. Group 5 – No NLSDB Geometry, Only Attributes. Scores “11”, “12”, “20”, “21” and “22” do not have a match to the PLSS and no geometry is in the NLSDB, and only attributes exist in the data. Group 6 – Mapped to County. Scores of “25” map to the County.Group 7 – Improved Geometry. Scores of “100” are cases that have had their geometry edited by BLM staff using ArcGIS Pro or MLRS bulk upload tool.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida (NPS, GRD, GRI, EVER, EVER digital map) adapted from Florida Geological Survey Open File Map Series maps by Green, Campbell, Scott, Means and Arthur (1995, 1996, 1997, 1998 and 1999), and Open-File Report map by Scott (2001), and U.S. Geological Survey Bulletin map by Bergendahl (1956), Open-File Report map by McCartan and Moy (1995), and Water-Resources maps by Causaras, Reese and Cunningham (1985, 1986 and 2000) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-everglades-national-park-and-vicinity-florida-nps-grd-gri-ever

Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida (NPS, GRD, GRI, EVER, EVER digital map) adapted from Florida Geological Survey Open File Map Series maps by Green, Campbell, Scott, Means and Arthur (1995, 1996, 1997, 1998 and 1999), and Open-File Report map by Scott (2001), and U.S. Geological Survey Bulletin map by Bergendahl (1956), Open-File Report map by McCartan and Moy (1995), and Water-Resources maps by Causaras, Reese and Cunningham (1985, 1986 and 2000)

Explore at:
Dataset updated
Sep 14, 2025
Dataset provided by
National Park Service
Area covered
Florida
Description

The Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu