60 datasets found
  1. Data from: Water-quality data imputation with a high percentage of missing...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    csv
    Updated Jun 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 8, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

    This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

    To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

    IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

    In this dataset, we include the original and imputed values for the following variables:

    • Water temperature (Tw)

    • Dissolved oxygen (DO)

    • Electrical conductivity (EC)

    • pH

    • Turbidity (Turb)

    • Nitrite (NO2-)

    • Nitrate (NO3-)

    • Total Nitrogen (TN)

    Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

    More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

    If you use this dataset in your work, please cite our paper:
    Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

  2. h

    Restricted Boltzmann Machine for Missing Data Imputation in Biomedical...

    • datahub.hku.hk
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen Ma (2020). Restricted Boltzmann Machine for Missing Data Imputation in Biomedical Datasets [Dataset]. http://doi.org/10.25442/hku.12752549.v1
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    HKU Data Repository
    Authors
    Wen Ma
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description
    1. NCCTG Lung cancer datasetSurvival in patients with advanced lung cancer from the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities.2.CNV measurements of CNV of GBM This dataset records the information about copy number variation of Glioblastoma (GBM).Abstract:In biology and medicine, conservative patient and data collection malpractice can lead to missing or incorrect values in patient registries, which can affect both diagnosis and prognosis. Insufficient or biased patient information significantly impedes the sensitivity and accuracy of predicting cancer survival. In bioinformatics, making a best guess of the missing values and identifying the incorrect values are collectively called “imputation”. Existing imputation methods work by establishing a model based on the data mechanism of the missing values. Existing imputation methods work well under two assumptions: 1) the data is missing completely at random, and 2) the percentage of missing values is not high. These are not cases found in biomedical datasets, such as the Cancer Genome Atlas Glioblastoma Copy-Number Variant dataset (TCGA: 108 columns), or the North Central Cancer Treatment Group Lung Cancer (NCCTG) dataset (NCCTG: 9 columns). We tested six existing imputation methods, but only two of them worked with these datasets: The Last Observation Carried Forward (LOCF) and K-nearest Algorithm (KNN). Predictive Mean Matching (PMM) and Classification and Regression Trees (CART) worked only with the NCCTG lung cancer dataset with fewer columns, except when the dataset contains 45% missing data. The quality of the imputed values using existing methods is bad because they do not meet the two assumptions.In our study, we propose a Restricted Boltzmann Machine (RBM)-based imputation method to cope with low randomness and the high percentage of the missing values. RBM is an undirected, probabilistic and parameterized two-layer neural network model, which is often used for extracting abstract information from data, especially for high-dimensional data with unknown or non-standard distributions. In our benchmarks, we applied our method to two cancer datasets: 1) NCCTG, and 2) TCGA. The running time, root mean squared error (RMSE) of the different methods were gauged. The benchmarks for the NCCTG dataset show that our method performs better than other methods when there is 5% missing data in the dataset, with 4.64 RMSE lower than the best KNN. For the TCGA dataset, our method achieved 0.78 RMSE lower than the best KNN.In addition to imputation, RBM can achieve simultaneous predictions. We compared the RBM model with four traditional prediction methods. The running time and area under the curve (AUC) were measured to evaluate the performance. Our RBM-based approach outperformed traditional methods. Specifically, the AUC was up to 19.8% higher than the multivariate logistic regression model in the NCCTG lung cancer dataset, and the AUC was higher than the Cox proportional hazard regression model, with 28.1% in the TCGA dataset.Apart from imputation and prediction, RBM models can detect outliers in one pass by allowing the reconstruction of all the inputs in the visible layer with in a single backward pass. Our results show that RBM models have achieved higher precision and recall on detecting outliers than other methods.
  3. d

    Replication Data for: The MIDAS Touch: Accurate and Scalable Missing-Data...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lall, Ranjit; Robinson, Thomas (2023). Replication Data for: The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning [Dataset]. http://doi.org/10.7910/DVN/UPL4TT
    Explore at:
    Dataset updated
    Nov 23, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Lall, Ranjit; Robinson, Thomas
    Description

    Replication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.

  4. o

    Data from: Identifying Missing Data Handling Methods with Text Mining

    • openicpsr.org
    delimited
    Updated Mar 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krisztián Boros; Zoltán Kmetty (2023). Identifying Missing Data Handling Methods with Text Mining [Dataset]. http://doi.org/10.3886/E185961V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Mar 8, 2023
    Dataset provided by
    Hungarian Academy of Sciences
    Authors
    Krisztián Boros; Zoltán Kmetty
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1999 - Dec 31, 2016
    Description

    Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.

  5. Class_Grades

    • kaggle.com
    Updated Oct 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Himanshu Kumar (2022). Class_Grades [Dataset]. https://www.kaggle.com/datasets/himanshu2222/classgrades/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 10, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Himanshu Kumar
    Description

    Dataset

    This dataset was created by Himanshu Kumar

    Contents

  6. Quarterly Labour Force Survey Household Dataset, April - June, 2021

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2023). Quarterly Labour Force Survey Household Dataset, April - June, 2021 [Dataset]. http://doi.org/10.5255/ukda-sn-8852-3
    Explore at:
    Dataset updated
    2023
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    Office For National Statistics
    Description
    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Household datasets
    Up to 2015, the LFS household datasets were produced twice a year (April-June and October-December) from the corresponding quarter's individual-level data. From January 2015 onwards, they are now produced each quarter alongside the main QLFS. The household datasets include all the usual variables found in the individual-level datasets, with the exception of those relating to income, and are intended to facilitate the analysis of the economic activity patterns of whole households. It is recommended that the existing individual-level LFS datasets continue to be used for any analysis at individual level, and that the LFS household datasets be used for analysis involving household or family-level data. From January 2011, a pseudonymised household identifier variable (HSERIALP) is also included in the main quarterly LFS dataset instead.

    Change to coding of missing values for household series
    From 1996-2013, all missing values in the household datasets were set to one '-10' category instead of the separate '-8' and '-9' categories. For that period, the ONS introduced a new imputation process for the LFS household datasets and it was necessary to code the missing values into one new combined category ('-10'), to avoid over-complication. This was also in line with the Annual Population Survey household series of the time. The change was applied to the back series during 2010 to ensure continuity for analytical purposes. From 2013 onwards, the -8 and -9 categories have been reinstated.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each volume alongside the appropriate questionnaire for the year concerned. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS
    LFS User Guidance page before commencing analysis.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly datasets; Secure Access datasets (see below); two-quarter and five-quarter longitudinal datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    End User Licence and Secure Access QLFS Household datasets
    Users should note that there are two discrete versions of the QLFS household datasets. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. Secure Access household datasets for the QLFS are available from 2009 onwards, and include additional, detailed variables not included in the standard EUL versions. Extra variables that typically can be found in the Secure Access versions but not in the EUL versions relate to: geography; date of birth, including day; education and training; household and family characteristics; employment; unemployment and job hunting; accidents at work and work-related health problems; nationality, national identity and country of birth; occurrence of learning difficulty or disability; and benefits. For full details of variables included, see data dictionary documentation. The Secure Access version (see SN 7674) has more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Changes to variables in QLFS Household EUL datasets
    In order to further protect respondent confidentiality, ONS have made some changes to variables available in the EUL datasets. From July-September 2015 onwards, 4-digit industry class is available for main job only, meaning that 3-digit industry group is the most detailed level available for second and last job.

    Review of imputation methods for LFS Household data - changes to missing values
    A review of the imputation methods used in LFS Household and Family analysis resulted in a change from the January-March 2015 quarter onwards. It was no longer considered appropriate to impute any personal characteristic variables (e.g. religion, ethnicity, country of birth, nationality, national identity, etc.) using the LFS donor imputation method. This method is primarily focused to ensure the 'economic status' of all individuals within a household is known, allowing analysis of the combined economic status of households. This means that from 2015 larger amounts of missing values ('-8'/-9') will be present in the data for these personal characteristic variables than before. Therefore if users need to carry out any time series analysis of households/families which also includes personal characteristic variables covering this time period, then it is advised to filter off 'ioutcome=3' cases from all periods to remove this inconsistent treatment of non-responders.

    Occupation data for 2021 and 2022 data files

    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

    Latest edition information

    For the third edition (September 2023), the variables NSECM20, NSECMJ20, SC2010M, SC20SMJ, SC20SMN, SOC20M and SOC20O have been replaced with new versions. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

  7. f

    Data_Sheet_1_ImputEHR: A Visualization Tool of Imputation for the Prediction...

    • frontiersin.figshare.com
    • figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yi-Hui Zhou; Ehsan Saghapour (2023). Data_Sheet_1_ImputEHR: A Visualization Tool of Imputation for the Prediction of Biomedical Data.PDF [Dataset]. http://doi.org/10.3389/fgene.2021.691274.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Yi-Hui Zhou; Ehsan Saghapour
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Electronic health records (EHRs) have been widely adopted in recent years, but often include a high proportion of missing data, which can create difficulties in implementing machine learning and other tools of personalized medicine. Completed datasets are preferred for a number of analysis methods, and successful imputation of missing EHR data can improve interpretation and increase our power to predict health outcomes. However, use of the most popular imputation methods mainly require scripting skills, and are implemented using various packages and syntax. Thus, the implementation of a full suite of methods is generally out of reach to all except experienced data scientists. Moreover, imputation is often considered as a separate exercise from exploratory data analysis, but should be considered as art of the data exploration process. We have created a new graphical tool, ImputEHR, that is based on a Python base and allows implementation of a range of simple and sophisticated (e.g., gradient-boosted tree-based and neural network) data imputation approaches. In addition to imputation, the tool enables data exploration for informed decision-making, as well as implementing machine learning prediction tools for response data selected by the user. Although the approach works for any missing data problem, the tool is primarily motivated by problems encountered for EHR and other biomedical data. We illustrate the tool using multiple real datasets, providing performance measures of imputation and downstream predictive analysis.

  8. d

    Tutorial data for the article \"Handling Planned and Unplanned Missing Data...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caron-Diotte, Mathieu; Pelletier-Dumas, Mathieu; Lacourse, Éric; Dorfman, Anna; Stolle, Dietlind; Lina, Jean-Marc; de la Sablonnière, Roxane (2023). Tutorial data for the article \"Handling Planned and Unplanned Missing Data in a Longitudinal Study\" [2020, Canada] [Dataset]. http://doi.org/10.5683/SP3/P8OUOT
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Caron-Diotte, Mathieu; Pelletier-Dumas, Mathieu; Lacourse, Éric; Dorfman, Anna; Stolle, Dietlind; Lina, Jean-Marc; de la Sablonnière, Roxane
    Time period covered
    Apr 6, 2020 - Jun 10, 2020
    Area covered
    Canada
    Description

    [ENG] This dataset contains the data used in the tutorial article "Handling Planned and Unplanned Missing Data in a Longitudinal Study", in press at "The Quantitative Methods for Psychology". It contains a subset of longitudinal data collected within the context of a survey about COVID-19 (data on sleep and emotions). This dataset is intended for tutorial purposes only. With the observations and variables in this dataset, the analyses presented in the tutorial can be reproduced. For more information, see de la Sablonnière et al. (2020). [FRE] Ce jeu de données contient les données utilisées dans l'article tutoriel "Handling Planned and Unplanned Missing Data in a Longitudinal Study", sous presse à "The Quantitative Methods for Psychology". Il contient un sous-ensemble de données longitudinales collectées dans le cadre d'une enquête sur le COVID-19 (données sur le sommeil et les émotions). Cet ensemble de données est destiné à des fins didactiques uniquement. Avec les observations et les variables de ce jeu de données, les analyses présentées dans le tutoriel peuvent être reproduites. Pour plus d'informations, voir de la Sablonnière et al. (2020).

  9. n

    Data from: Using multiple imputation to estimate missing data in...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    E. Hance Ellington; Guillaume Bastille-Rousseau; Cayla Austin; Kristen N. Landolt; Bruce A. Pond; Erin E. Rees; Nicholas Robar; Dennis L. Murray (2015). Using multiple imputation to estimate missing data in meta-regression [Dataset]. http://doi.org/10.5061/dryad.m2v4m
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 25, 2015
    Dataset provided by
    University of Prince Edward Island
    Trent University
    Authors
    E. Hance Ellington; Guillaume Bastille-Rousseau; Cayla Austin; Kristen N. Landolt; Bruce A. Pond; Erin E. Rees; Nicholas Robar; Dennis L. Murray
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description
    1. There is a growing need for scientific synthesis in ecology and evolution. In many cases, meta-analytic techniques can be used to complement such synthesis. However, missing data is a serious problem for any synthetic efforts and can compromise the integrity of meta-analyses in these and other disciplines. Currently, the prevalence of missing data in meta-analytic datasets in ecology and the efficacy of different remedies for this problem have not been adequately quantified. 2. We generated meta-analytic datasets based on literature reviews of experimental and observational data and found that missing data were prevalent in meta-analytic ecological datasets. We then tested the performance of complete case removal (a widely used method when data are missing) and multiple imputation (an alternative method for data recovery) and assessed model bias, precision, and multi-model rankings under a variety of simulated conditions using published meta-regression datasets. 3. We found that complete case removal led to biased and imprecise coefficient estimates and yielded poorly specified models. In contrast, multiple imputation provided unbiased parameter estimates with only a small loss in precision. The performance of multiple imputation, however, was dependent on the type of data missing. It performed best when missing values were weighting variables, but performance was mixed when missing values were predictor variables. Multiple imputation performed poorly when imputing raw data which was then used to calculate effect size and the weighting variable. 4. We conclude that complete case removal should not be used in meta-regression, and that multiple imputation has the potential to be an indispensable tool for meta-regression in ecology and evolution. However, we recommend that users assess the performance of multiple imputation by simulating missing data on a subset of their data before implementing it to recover actual missing data.
  10. f

    Dataset for handling missing values in well-log curves with a gated graph...

    • figshare.com
    zip
    Updated Aug 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chunbi Jiang (2021). Dataset for handling missing values in well-log curves with a gated graph neural network [Dataset]. http://doi.org/10.6084/m9.figshare.15141021.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 28, 2021
    Dataset provided by
    figshare
    Authors
    Chunbi Jiang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used in the article titled "Handling missing values in well-log curves with a gated graph neural network".

  11. n

    Data from: Missing data estimation in morphometrics: how much is too much?

    • narcis.nl
    • data.niaid.nih.gov
    • +2more
    Updated Dec 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clavel, Julien; Merceron, Gildas; Escarguel, Gilles (2013). Data from: Missing data estimation in morphometrics: how much is too much? [Dataset]. http://doi.org/10.5061/dryad.f0b50
    Explore at:
    Dataset updated
    Dec 5, 2013
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Clavel, Julien; Merceron, Gildas; Escarguel, Gilles
    Description

    Fossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.

  12. f

    Description of the dataset used in this study.

    • figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Description of the dataset used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  13. f

    Results of the ML models using PCA imputer.

    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Results of the ML models using PCA imputer. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  14. Z

    Multi-Label Datasets with Missing Values

    • data.niaid.nih.gov
    Updated Mar 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ádamo L. de Santana (2023). Multi-Label Datasets with Missing Values [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7748932
    Explore at:
    Dataset updated
    Mar 19, 2023
    Dataset provided by
    Antonio F. L. Jacob Jr.
    Fabrício A. do Carmo
    Ádamo L. de Santana
    Fábio M. F. Lobato
    Ewaldo Santana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Consisting of six multi-label datasets from the UCI Machine Learning repository.

    Each dataset contains missing values which have been artificially added at the following rates: 5, 10, 15, 20, 25, and 30%. The “amputation” was performed using the “Missing Completely at Random” mechanism.

    File names are represented as follows:

       amp_DB_MR.arff
    

    where:

       DB = original dataset;
    
    
       MR = missing rate.
    

    For more details, please read:

    IEEE Access article (in review process)

  15. J

    MAXIMUM LIKELIHOOD ESTIMATION OF FACTOR MODELS ON DATASETS WITH ARBITRARY...

    • journaldata.zbw.eu
    • jda-test.zbw.eu
    txt
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marta Banbura; Michele Modugno; Marta Banbura; Michele Modugno (2022). MAXIMUM LIKELIHOOD ESTIMATION OF FACTOR MODELS ON DATASETS WITH ARBITRARY PATTERN OF MISSING DATA (replication data) [Dataset]. http://doi.org/10.15456/jae.2022321.0712228351
    Explore at:
    txt(94822), txt(2114), txt(6719)Available download formats
    Dataset updated
    Dec 7, 2022
    Dataset provided by
    ZBW - Leibniz Informationszentrum Wirtschaft
    Authors
    Marta Banbura; Michele Modugno; Marta Banbura; Michele Modugno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this paper we modify the expectation maximization algorithm in order to estimate the parameters of the dynamic factor model on a dataset with an arbitrary pattern of missing data. We also extend the model to the case with a serially correlated idiosyncratic component. The framework allows us to handle efficiently and in an automatic manner sets of indicators characterized by different publication delays, frequencies and sample lengths. This can be relevant, for example, for young economies for which many indicators have been compiled only recently. We evaluate the methodology in a Monte Carlo experiment and we apply it to nowcasting of the euro area gross domestic product.

  16. h

    entrance-exam-dataset

    • huggingface.co
    Updated Jan 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datavorous (2025). entrance-exam-dataset [Dataset]. https://huggingface.co/datasets/datavorous/entrance-exam-dataset
    Explore at:
    Dataset updated
    Jan 1, 2025
    Authors
    datavorous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TO DO Checklist:

    Clean Data Remove duplicates Handle missing values Standardize data formats

  17. e

    ComBat HarmonizR enables the integrated analysis of independently generated...

    • ebi.ac.uk
    • omicsdi.org
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannah Voß (2022). ComBat HarmonizR enables the integrated analysis of independently generated proteomic datasets through data harmonization with appropriate handling of missing values [Dataset]. https://www.ebi.ac.uk/pride/archive/projects/PXD027467
    Explore at:
    Dataset updated
    May 23, 2022
    Authors
    Hannah Voß
    Variables measured
    Proteomics
    Description

    The integration of proteomic datasets, generated by non-cooperating laboratories using different LC-MS/MS setups can overcome limitations in statistically underpowered sample cohorts but has not been demonstrated to this day. In proteomics, differences in sample preservation and preparation strategies, chromatography and mass spectrometry approaches and the used quantification strategy distort protein abundance distributions in integrated datasets. The Removal of these technical batch effects requires setup-specific normalization and strategies that can deal with missing at random (MAR) and missing not at random (MNAR) type values at a time. Algorithms for batch effect removal, such as the ComBat-algorithm, commonly used for other omics types, disregard proteins with MNAR missing values and reduce the informational yield and the effect size for combined datasets significantly. Here, we present a strategy for data harmonization across different tissue preservation techniques, LC-MS/MS instrumentation setups and quantification approaches. To enable batch effect removal without the need for data reduction or error-prone imputation we developed an extension to the ComBat algorithm, ´ComBat HarmonizR, that performs data harmonization with appropriate handling of MAR and MNAR missing values by matrix dissection The ComBat HarmonizR based strategy enables the combined analysis of independently generated proteomic datasets for the first time. Furthermore, we found ComBat HarmonizR to be superior for removing batch effects between different Tandem Mass Tag (TMT)-plexes, compared to commonly used internal reference scaling (iRS). Due to the matrix dissection approach without the need of data imputation, the HarmonizR algorithm can be applied to any type of -omics data while assuring minimal data loss

  18. n

    Data from: Comparing methods for handling missing cost and outcome data in...

    • narcis.nl
    • explore.openaire.eu
    • +1more
    Updated Feb 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diop, M (via Mendeley Data) (2021). Comparing methods for handling missing cost and outcome data in clinical trial-based cost-effectiveness analysis [Dataset]. http://doi.org/10.17632/j8fmdwd4jp.3
    Explore at:
    Dataset updated
    Feb 9, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Diop, M (via Mendeley Data)
    Description

    Code for analysis of missing data

  19. h

    drug-reviews

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mouwiya S. A. Al-Qaisieh, drug-reviews [Dataset]. https://huggingface.co/datasets/Mouwiya/drug-reviews
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Mouwiya S. A. Al-Qaisieh
    License

    https://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/

    Description

    Dataset Details

      1.Dataset Loading:
    

    Initially, we load the Drug Review Dataset from the UC Irvine Machine Learning Repository. This dataset contains patient reviews of different drugs, along with the medical condition being treated and the patients' satisfaction ratings.

      2.Data Preprocessing:
    

    The dataset is preprocessed to ensure data integrity and consistency. We handle missing values and ensure that each patient ID is unique across the dataset.

      3.Text… See the full description on the dataset page: https://huggingface.co/datasets/Mouwiya/drug-reviews.
    
  20. f

    Parameter settings used in the experiments.

    • figshare.com
    xls
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Fernando Lavareda Jacob Junior; Fabricio Almeida do Carmo; Adamo Lima de Santana; Ewaldo Eder Carvalho Santana; Fabio Manoel Franca Lobato (2024). Parameter settings used in the experiments. [Dataset]. http://doi.org/10.1371/journal.pone.0297147.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Antonio Fernando Lavareda Jacob Junior; Fabricio Almeida do Carmo; Adamo Lima de Santana; Ewaldo Eder Carvalho Santana; Fabio Manoel Franca Lobato
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Missing data is a prevalent problem that requires attention, as most data analysis techniques are unable to handle it. This is particularly critical in Multi-Label Classification (MLC), where only a few studies have investigated missing data in this application domain. MLC differs from Single-Label Classification (SLC) by allowing an instance to be associated with multiple classes. Movie classification is a didactic example since it can be “drama” and “bibliography” simultaneously. One of the most usual missing data treatment methods is data imputation, which seeks plausible values to fill in the missing ones. In this scenario, we propose a novel imputation method based on a multi-objective genetic algorithm for optimizing multiple data imputations called Multiple Imputation of Multi-label Classification data with a genetic algorithm, or simply EvoImp. We applied the proposed method in multi-label learning and evaluated its performance using six synthetic databases, considering various missing values distribution scenarios. The method was compared with other state-of-the-art imputation strategies, such as K-Means Imputation (KMI) and weighted K-Nearest Neighbors Imputation (WKNNI). The results proved that the proposed method outperformed the baseline in all the scenarios by achieving the best evaluation measures considering the Exact Match, Accuracy, and Hamming Loss. The superior results were constant in different dataset domains and sizes, demonstrating the EvoImp robustness. Thus, EvoImp represents a feasible solution to missing data treatment for multi-label learning.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
Organization logo

Data from: Water-quality data imputation with a high percentage of missing values: a machine learning approach

Related Article
Explore at:
csvAvailable download formats
Dataset updated
Jun 8, 2021
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

In this dataset, we include the original and imputed values for the following variables:

  • Water temperature (Tw)

  • Dissolved oxygen (DO)

  • Electrical conductivity (EC)

  • pH

  • Turbidity (Turb)

  • Nitrite (NO2-)

  • Nitrate (NO3-)

  • Total Nitrogen (TN)

Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

Search
Clear search
Close search
Google apps
Main menu