This repository contains two datasets used in the study exploring the impact of Generative AI, specifically ChatGPT, on the public sector workforce in the United States. The datasets provide detailed information on the core tasks of public sector occupations and their estimated performance metrics, including potential for automation and augmentation by ChatGPT. These estimations are generated by OpenAI’s GPT-4 model (GPT-4-1106-preview) through OpenAI API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains the results of developing alternative text for images using chatbots based on large language models. The study was carried out in April-June 2024. Microsoft Copilot, Google Gemini, and YandexGPT chatbots were used to generate 108 text descriptions for 12 images. Descriptions were generated by chatbots using keywords specified by a person. The experts then rated the resulting descriptions on a Likert scale (from 1 to 5). The data set is presented in a Microsoft Excel table on the “Data” sheet with the following fields: record number; image number; chatbot; image type (photo, logo); request date; list of keywords; number of keywords; length of keywords; time of compilation of keywords; generated descriptions; required length of descriptions; actual length of descriptions; description generation time; usefulness; reliability; completeness; accuracy; literacy. The “Images” sheet contains links to the original images. Alternative descriptions are presented in English.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundChatGPT, developed by OpenAI, is an artificial intelligence software designed to generate text-based responses. The objective of this study is to evaluate the accuracy and consistency of ChatGPT’s responses to single-choice questions pertaining to carbon monoxide poisoning. This evaluation will contribute to our understanding of the reliability of ChatGPT-generated information in the medical field.MethodsThe questions utilized in this study were selected from the "Medical Exam Assistant (Yi Kao Bang)" application and encompassed a range of topics related to carbon monoxide poisoning. A total of 44 single-choice questions were included in the study following a screening process. Each question was entered into ChatGPT ten times in Chinese, followed by a translation into English, where it was also entered ten times. The responses generated by ChatGPT were subjected to statistical analysis with the objective of assessing their accuracy and consistency in both languages. In this assessment process, the "Medical Exam Assistant (Yi Kao Bang)" reference responses were employed as benchmarks. The data analysis was conducted using the Python.ResultsIn approximately 50% of the cases, the responses generated by ChatGPT exhibited a high degree of consistency, whereas in approximately one-third of the cases, the responses exhibited unacceptable blurring of the answers. Meanwhile, the accuracy of these responses was less favorable, with an accuracy rate of 61.1% in Chinese and 57% in English. This indicates that ChatGPT could be enhanced with respect to both consistency and accuracy in responding to queries pertaining to carbon monoxide poisoning.ConclusionsIt is currently evident that the consistency and accuracy of responses generated by ChatGPT regarding carbon monoxide poisoning is inadequate. Although it offers significant insights, it should not supersede the role of healthcare professionals in making clinical decisions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data for this study were collected at the University of California – Irvine (UCI) as part of the UCI-MUST (Measuring Undergraduate Success Trajectories) Project, a larger longitudinal measurement project aimed at improving understanding of undergraduate experience, trajectories and outcomes, while supporting campus efforts to improve institutional performance and enhance educational equity (Arum et. al. 2021). The project is focused on student educational experience at a selective large, research-oriented public university on the quarter system with half of its students first-generation and 85 percent Hispanic, Asian, African-American, Pacific Islander or Native American. Since Fall 2019, the project has tracked annually new cohorts of freshmen and juniors with longitudinal surveys administered at the end of every academic quarter. Data from the Winter 2023 end of term assessment, administered in the first week of April, was pooled for four longitudinal study cohorts for this study (i.e., Fall 2019-2022 cohorts). There was an overall response rate of 42.5 percent for the Winter 2023 end of term assessment. This allowed us to consider student responses from freshmen through senior years enrolled in courses throughout the university. Students completed questionnaire items about their knowledge and use of ChatGPT in and out of the classroom during the winter 2023 academic term. In total 1,129 students completed the questionnaire, which asked questions about: knowledge of ChatGPT (“Do you know what ChatGPT is?”); general use (“Have you used ChatGPT before?”); and instructor attitude (“What was the attitude of the instructor for [a specific course students enrolled in] regarding the use of ChatGPT?”). Of those 1,129 students, 191 had missing data for at least one variable of interest and were subsequently dropped from analysis, resulting in a final sample of 938 students. In addition, for this study we merged our survey data with administrative data from campus that encompasses details on student background, including gender, race, first-generation college-going, and international student status. Campus administrative data also provides course-level characteristics, including whether a particular class is a lower- or upper-division course as well as the academic unit on campus offering the course. In addition, we used administrative data on all students enrolled at the university to generate classroom composition measures for every individual course taken by students in our sample – specifically the proportion of underrepresented minority students in the class, the proportion of international students in the class and the proportion of female students in the class. For our student-level analysis [R1], we used binary logistic regressions to examine the association between individual characteristics and (1) individual awareness and (2) individual academic use of ChatGPT utilizing the student-level data of 938 students. Individual characteristics include gender, underrepresented minority student status, international student status, first generation college-going student status, student standing (i.e. lower or upper classmen), cumulative grade point average and field of study. Field of study was based on student major assigned to the broad categories of physical sciences (i.e. physical sciences, engineering, and information and computer science), health sciences (i.e. pharmacy, biological sciences, public health, and nursing), humanities, social sciences (i.e. business, education, and social sciences), the arts, or undeclared. We defined awareness of ChatGPT as an affirmative response to the question “Do you know what ChatGPT is?” Regarding ChatGPT use, we focused on academic use which was defined as an affirmative response of either “Yes, for academic use” or “Yes, for academic and personal use” to the question “Have you used ChatGPT before?” For our course-level analysis [R2], we constructed a measure – course-level instructor encouragement for ChatGPT use – based on student responses to the end of the term survey conducted at the completion of the Winter 2023 term. In the survey, students were asked to indicate the extent to which their instructors encouraged them to use ChatGPT in each of their enrolled courses. The response
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
🧠 Awesome ChatGPT Prompts [CSV dataset]
This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub
License
CC-0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Within a year of its launch, ChatGPT has seen a surge in popularity. While many are drawn to its effectiveness and user-friendly interface, ChatGPT also introduces moral concerns, such as the temptation to present generated text as one’s own. This led us to theorize that personality traits such as Machiavellianism and sensation-seeking may be predictive of ChatGPT usage. We launched two online questionnaires with 2,000 respondents each, in September 2023 and March 2024, respectively. In Questionnaire 1, 22% of respondents were students, and 54% were full-time employees; 32% indicated they used ChatGPT at least weekly. Analysis of our ChatGPT Acceptance Scale revealed two factors, Effectiveness and Concerns, which correlated positively and negatively, respectively, with ChatGPT use frequency. A specific aspect of Machiavellianism (manipulation tactics) was found to predict ChatGPT usage. Questionnaire 2 was a replication of Questionnaire 1, with 21% students and 54% full-time employees, of which 43% indicated using ChatGPT weekly. In Questionnaire 2, more extensive personality scales were used. We found a moderate correlation between Machiavellianism and ChatGPT usage (r = .22) and with an opportunistic attitude towards undisclosed use (r = .30), relationships that largely remained intact after controlling for gender, age, education level, and the respondents’ country. We conclude that covert use of ChatGPT is associated with darker personality traits, something that requires further attention.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Objective: Our objective is to evaluate the efficacy of ChatGPT 4 in accurately and effectively delivering genetic information, building on previous findings with ChatGPT 3.5. We focus on assessing the utility, limitations, and ethical implications of using ChatGPT in medical settings. Materials and Methods: A structured questionnaire, including the Brief User Survey (BUS-15) and custom questions, was developed to assess ChatGPT 4's clinical value. An expert panel of genetic counselors and clinical geneticists independently evaluated ChatGPT 4's responses to these questions. We also involved comparative analysis with ChatGPT 3.5, utilizing descriptive statistics and using R for data analysis. Results: ChatGPT 4 demonstrated improvements over 3.5 in context recognition, relevance, and informativeness. However, performance variability and concerns about the naturalness of the output were noted. No significant difference in accuracy was found between ChatGPT 3.5 and 4.0. Notably, the efficacy of ChatGPT 4 varied significantly across different genetic conditions, with specific differences identified between responses related to BRCA1 and HFE. Discussion and Conclusion: This study highlights ChatGPT 4's potential in genomics, noting significant advancements over its predecessor. Despite these improvements, challenges remain, including the risk of outdated information and the necessity of ongoing refinement. The variability in performance across different genetic conditions underscores the need for expert oversight and continuous AI training. ChatGPT 4, while showing promise, emphasizes the importance of balancing technological innovation with ethical responsibility in healthcare information delivery. Methods Study Design This study was conducted to evaluate the performance of ChatGPT 4 (March 23rd, 2023) Model) in the context of genetic counseling and education. The evaluation involved a structured questionnaire, which included questions selected from the Brief User Survey (BUS-15) and additional custom questions designed to assess the clinical value of ChatGPT 4's responses. Questionnaire Development The questionnaire was built on Qualtrics, which comprised twelve questions: seven selected from the BUS-15 preceded by two additional questions that we designed. The initial questions focused on quality and answer relevancy: 1. The overall quality of the Chatbot’s response is: (5-point Likert: Very poor to Very Good) 2. The Chatbot delivered an answer that provided the relevant information you would include if asked the question. (5-point Likert: Strongly disagree to Strongly agree) The BUS-15 questions (7-point Likert: Strongly disagree to Strongly agree) focused on: 1. Recognition and facilitation of users’ goal and intent: Chatbot seems able to recognize the user’s intent and guide the user to its goals. 2. Relevance of information: The chatbot provides relevant and appropriate information/answer to people at each stage to make them closer to their goal. 3. Maxim of quantity: The chatbot responds in an informative way without adding too much information. 4. Resilience to failure: Chatbot seems able to find ways to respond appropriately even when it encounters situations or arguments it is not equipped to handle. 5. Understandability and politeness: The chatbot seems able to understand input and convey correct statements and answers without ambiguity and with acceptable manners. 6. Perceived conversational credibility: The chatbot responds in a credible and informative way without adding too much information. 7. Meet the neurodiverse needs: Chatbot seems able to meet needs and be used by users independently form their health conditions, well-being, age, etc. Expert Panel and Data Collection A panel of experts (two genetic counselors and two clinical geneticists) was provided with a link to the survey containing the questions. They independently evaluated the responses from ChatGPT 4 without discussing the questions or answers among themselves until after the survey submission. This approach ensured unbiased evaluation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ChatGPT has forever changed the way that many industries operate. Much of the focus of Artificial Intelligence (AI) has been on their ability to generate text. However, it is likely that their ability to generate computer codes and scripts will also have a major impact. We demonstrate the use of ChatGPT to generate Python scripts to perform hydrological analyses and highlight the opportunities, limitations and risks that AI poses in the hydrological sciences.
Here, we provide four worked examples of the use of ChatGPT to generate scripts to conduct hydrological analyses. We also provide a full list of the libraries available to the ChatGPT Advanced Data Analysis plugin (only available in the paid version). These files relate to a manuscript that is to be submitted to Hydrological Processes. The authors of the manuscript are Dylan J. Irvine, Landon J.S. Halloran and Philip Brunner.
If you find these examples useful and/or use them, we would appreciate if you could cite the associated publication in Hydrological Processes. Details to be made available upon final publication.
Comparison of Represents the average of coding benchmarks in the Artificial Analysis Intelligence Index (LiveCodeBench & SciCode) by Model
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper presents a comprehensive analysis of the scholarly footprint of ChatGPT, an AI language model, using bibliometric and scientometric methods. The study zooms in on the early outbreak phase from when ChatGPT was launched in November 2022 to early June 2023. It aims to understand the evolution of research output, citation patterns, collaborative networks, application domains, and future research directions related to ChatGPT. By retrieving data from the Scopus database, 533 relevant articles were identified for analysis. The findings reveal the prominent publication venues, influential authors, and countries contributing to ChatGPT research. Collaborative networks among researchers and institutions are visualized, highlighting patterns of co-authorship. The application domains of ChatGPT, such as customer support and content generation, are examined. Moreover, the study identifies emerging keywords and potential research areas for future exploration. The methodology employed includes data extraction, bibliometric analysis using various indicators, and visualization techniques such as Sankey diagrams. The analysis provides valuable insights into ChatGPT's early footprint in academia and offers researchers guidance for further advancements. This study stimulates discussions, collaborations, and innovations to enhance ChatGPT's capabilities and impact across domains.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset is from an Indian study which made use of ChatGPT- a natural language processing model by OpenAI to design a mental health literacy intervention for college students. Prompt engineering tactics were used to formulate prompts that acted as anchors in the conversations with the AI agent regarding mental health. An intervention lasting for 20 days was designed with sessions of 15-20 minutes on alternative days. Fifty-one students completed pre-test and post-test measures of mental health literacy, mental help-seeking attitude, stigma, mental health self-efficacy, positive and negative experiences, and flourishing in the main study, which were then analyzed using paired t-tests. The results suggest that the intervention is effective among college students as statistically significant changes were noted in mental health literacy and mental health self-efficacy scores. The study affirms the practicality, acceptance, and initial indications of AI-driven methods in advancing mental health literacy and suggests the promising prospects of innovative platforms such as ChatGPT within the field of applied positive psychology.: Data used in analysis for the intervention study
Comparison of Artificial Analysis Intelligence Index vs. Context Window (Tokens) by Model
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains one excel table (corpus_reviews.xlsx) related to 80 historical film reviews of three Weimar films: "Das Cabinet des Dr. Caligari" (1920), "Nosferatu" (1922) and "Metropolis" (1927). The table also includes metadata related to the origin of the reviews and their full text in their original languages and in English translation. Furthermore, it contains the results of a range of methods for sentiment analysis of the reviews, including manual judgments and different approaches to automated sentiment analysis. The python code used to implement these is included. We first undertake a verbose sentiment analysis of the reviews by running the same prompt over each review through the OpeanAI API (GPT_API_all_reviews.ipynb). A less successful attempt, showing the results of the same prompt using the open source HuggingChat is also included (huggingChat_API_reviews.ipynb). We then apply a lexicon-based sentiment analysis (with Python’s NLTK library and its VADER lexicon) to the result of ChatGPT’s analysis and to the reviews directly (sentiment_analysis.ipynb). We then compare the results (results_analysis.ipynb).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is version 2 of the dataset created and used to explore ChatGPT-3.5's ability to write, justify and analyse English poems. This version was created after the reviewers decision that this paper may be published, if some changes are made.
The purpose of the research was to determine if ChatGPT-3.5 would be adopted in English poetry classrooms. As none of the theoretical models were applicable, the Artificial Intelligence Adoption Prediction Model (AIAPM) was designed. Based on this model, an Artificial Intelligence Adoption Prediction tool (AIAPT) was designed to calculate an Adoption Prediction Score (APS). Then, ChatGPT-3.5's ability to write, justify and analyse poems were explored.
It was found that ChatGPT-3.5 could write, justify, and analyse poems, but it could also make errors and hallucinate convincingly. Thus, the AIAPT was used to calculate the Adoption Prediction Score. The APS was 9, thus all factors of the AIAPM could drive the adoption decision. Thus, it could be predicted that ChatGPT-3.5 would be adopted in English poetry classrooms, both for ethical and unethical purposes. Based on the results, a few pro-active strategies were suggested.
This dataset contains all data created and used during the research, including the poems which were integrated in the paper: "An Artificial Intelligence Adoption Prediction Model to determine if ChatGPT-3.5 would be adopted in English poetry classrooms" which was submitted toe Heliyon for publication.
Comparison of Artificial Analysis Intelligence Index vs. End-to-End Seconds to Output 100 Tokens by Model
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Protein Market is segmented by Source (Animal, Microbial, Plant), by End User (Animal Feed, Food and Beverages, Personal Care and Cosmetics, Supplements) and by Region (Africa, Asia-Pacific, Europe, Middle East, North America, South America). Market value in USD and market volume in tonnes are presented. Key data points observed include the market volume of end-user segments, per capita consumption, and raw material production.
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The size of the AI Recruitment Market was valued at USD 617.5 Million in 2023 and is projected to reach USD 985.10 Million by 2032, with an expected CAGR of 6.9% during the forecast period. The AI recruitment market is thus the integration of artificially intelligent technologies for recruitment, a way of enabling organizations to manage the attraction process, screening processes, and selecting the right individual. AI recruitment tools work based on machine learning, natural language processing, and predictive analytics while automating workloads such as resume screening, interview scheduling, or candidate sourcing activities. Some of the most prominent features of AI recruitment are candidate matching algorithms, chatbots for candidate engagement, and data-driven insights to optimize hiring decisions. The major employing technologies for AI recruitment include AI-driven applicant tracking systems (ATS), sentiment analysis tools, and predictive analytics platforms. The impact of AI recruitment is extreme because it immensely improves efficiency and reduces biases by accelerating the process of hiring people. Benefits through AI recruitment clearly show improvements towards enhancing candidate experience, reducing the time-to-hire, and improving hiring quality. One big growth driver is the increasing need for cost-effective, scalable solutions by organizations to handle talent acquisition and other needs to face the continually changing labor market. As businesses look to improve their recruitment outcomes, AI technologies offer competitive advantages through better decision-making and streamlined processes. Recent developments include: February 2023: - Under it’s recently established 1000 Pioneers initiative, Quantgene is inviting past entrepreneurs and startup veterans to apply for a new position. In order to create a layer of revolutionary firms, 1000 Pioneers and Pioneerland are starting with the healthcare industry., February 2023:- Employment in Many Industries Will Become Obsolete Due to ChatGPT and Future AI Bots. Unusually clever chatbot ChatGPT has been made available to the public as a free tool by a research facility supported by Microsoft.. Key drivers for this market are: . Need for managing quality assurance of software for better customer experience, . Need for cost effective software development process. Potential restraints include: . Concern over data security and privacy.
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The Digital Healthcare Market comprises a range of products, including:Tele-healthcare: Remote healthcare servicesm-Health: Mobile health applicationsHealthcare Analytics: Data analysis for healthcare decision-makingDigital Health System: Integrated digital health platforms Recent developments include: April 2023: eClinicalWorks brought ChatGPT and AI models into EHR through investing USD 100 million to Microsoft Azure cloud services. This significant investment provided eClinicalWorks with access to the most recent innovations available through Microsoft Cloud. eClinicalWorks has integrated its EHR with ChatGPT, cognitive services, and machine learning models from Azure OpenAI Service to improve its technology offerings., April 2023: Athenahealth unveiled the Athenahealth Patient Digital Engagement Index, a novel measurement tool for medical practices. The goal of the Index is to help providers evaluate and improve how they interact with and support their patients so that both can move toward a more digital, high-tech experience that will ultimately lead to better patient care.. Key drivers for this market are: RISING ADOPTION OF EHRS AND EMRS, GROWING GOVERNMENT INITIATIVES. Potential restraints include: HIGH COST OF DEPLOYMENT OF DIGITAL HEALTH SOLUTIONS, PRIVACY AND SECURITY CONCERNS. Notable trends are: Rising adoption of EHRS and EMRS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accuracy of answers and Shannon entropy when asking ChatGPT in English and Chinese.
This repository contains two datasets used in the study exploring the impact of Generative AI, specifically ChatGPT, on the public sector workforce in the United States. The datasets provide detailed information on the core tasks of public sector occupations and their estimated performance metrics, including potential for automation and augmentation by ChatGPT. These estimations are generated by OpenAI’s GPT-4 model (GPT-4-1106-preview) through OpenAI API.