An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area. This data is intended for read-only use. These data were prepared to describe Forest Service administrative area boundaries. The purpose of the data is to provide display, identification, and analysis tools for determining current boundary information for Forest Service managers, GIS Specialists, and others. The Forest Service has multiple types of boundaries represented by different feature classes (layers): Administrative, Ownership and Proclaimed. 1) ADMINISTRATIVE boundaries (e.g. AdministrativeForest and RangerDistrict feature classes) encompass National Forest System lands managed by an administrative unit. These are dynamic layers that should not be considered "legal" boundaries as they are simply intended to identify the specific organizational units that administer areas. As lands are acquired and disposed, the administrative boundaries are adjusted to expand or shrink accordingly. Please note that ranger districts are sub units of National Forests. An administrative forest boundary can contain one or more Proclaimed National Forests, National Grasslands, Purchase Units, Research and Experimental Areas, Land Utilization Projects and various "Other" Areas. If needed, OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) should be reviewed along with these datasets to determine parcels that are federally managed within the administrative boundaries. 2) OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) represent parcels that are tied to legal transactions of ownership. These are parcels of Federal land managed by the USDA Forest Service. Please note that the BasicOwnership layer is simply a dissolved version of the SurfaceOwnership layer. 3) PROCLAIMED boundaries (e.g. ProclaimedForest and ProclaimedForest_Grassland) encompass areas of National Forest System land that is set aside and reserved from public domain by executive order or proclamation. Please note that the ProclaimedForest layer contains only proclaimed forests while ProclaimedForest_Grassland layer contains both proclaimed forests and proclaimed grasslands. For boundaries that reflect current National Forest System lands managed by an administrative unit, see the ADMINISTRATIVE boundaries (AdministrativeForest and RangerDistrict feature classes). For a visual comparison of the different kinds of USFS boundary datasets maintained by the USFS, see the Forest Service Boundary Comparison map at https://usfs.maps.arcgis.com/apps/CompareAnalysis/index.html?appid=fe7b9f56217949a291356f08cfccb119. USFS boundaries are often referenced in national datasets maintained by other federal agencies. Please note that variations may be found between USFS data and other boundary datasets due to differing update frequencies. PAD-US (Protected Areas Database of the United States), maintained by the U.S. Geological Survey, is a "best available" inventory of protected areas including data provided by managing agencies and organizations including the Forest Service. For more information see https://gapanalysis.usgs.gov/padus/data/metadata/. SMA (Surface Management Agency), maintained by the Bureau of Land Management, depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. It uses data provided by the Forest Service and other agencies, combined with National Regional Offices collection efforts. For more information see https://landscape.blm.gov/geoportal/catalog/search/resource/details.page?uuid=%7B2A8B8906-7711-4AF7-9510-C6C7FD991177%7D.
An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area.
This data is intended for read-only use. These data were prepared to describe Forest Service administrative area boundaries. The purpose of the data is to provide display, identification, and analysis tools for determining current boundary information for Forest Service managers, GIS Specialists, and others.
The Forest Service has multiple types of boundaries represented by different feature classes (layers): Administrative, Ownership and Proclaimed. 1) ADMINISTRATIVE boundaries (e.g. AdministrativeForest and RangerDistrict feature classes) encompass National Forest System lands managed by an administrative unit. These are dynamic layers that should not be considered "legal" boundaries as they are simply intended to identify the specific organizational units that administer areas. As lands are acquired and disposed, the administrative boundaries are adjusted to expand or shrink accordingly. Please note that ranger districts are sub units of National Forests. An administrative forest boundary can contain one or more Proclaimed National Forests, National Grasslands, Purchase Units, Research and Experimental Areas, Land Utilization Projects and various "Other" Areas. If needed, OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) should be reviewed along with these datasets to determine parcels that are federally managed within the administrative boundaries. 2) OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) represent parcels that are tied to legal transactions of ownership. These are parcels of Federal land managed by the USDA Forest Service. Please note that the BasicOwnership layer is simply a dissolved version of the SurfaceOwnership layer. 3) PROCLAIMED boundaries (e.g. ProclaimedForest and ProclaimedForest_Grassland) encompass areas of National Forest System land that is set aside and reserved from public domain by executive order or proclamation. Please note that the ProclaimedForest layer contains only proclaimed forests while ProclaimedForest_Grassland layer contains both proclaimed forests and proclaimed grasslands. For boundaries that reflect current National Forest System lands managed by an administrative unit, see the ADMINISTRATIVE boundaries (AdministrativeForest and RangerDistrict feature classes). For a visual comparison of the different kinds of USFS boundary datasets maintained by the USFS, see the Forest Service Boundary Comparison map at https://usfs.maps.arcgis.com/apps/CompareAnalysis/index.html?appid=fe7b9f56217949a291356f08cfccb119. USFS boundaries are often referenced in national datasets maintained by other federal agencies. Please note that variations may be found between USFS data and other boundary datasets due to differing update frequencies. PAD-US (Protected Areas Database of the United States), maintained by the U.S. Geological Survey, is a "best available" inventory of protected areas including data provided by managing agencies and organizations including the Forest Service. For more information see https://gapanalysis.usgs.gov/padus/data/metadata/. SMA (Surface Management Agency), maintained by the Bureau of Land Management, depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. It uses data provided by the Forest Service and other agencies, combined with National Regional Offices collection efforts. For more information see https://landscape.blm.gov/geoportal/catalog/search/resource/details.page?uuid=%7B2A8B8906-7711-4AF7-9510-C6C7FD991177%7D.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
This digital, geographically referenced data set was developed to identify the county boundaries of the Des Moines 9 County Regional GIS community.This feature class is one many feature classes developed for and maintained by the Des Moines Area Regional GIS for the purpose of performing internal and external functions of the local government it covers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accuracy assessment is one of the most important components of both applied and research-oriented remote sensing projects. For mapped classes that have sharp and easily identified boundaries, a broad array of accuracy assessment methods has been developed. However, accuracy assessment is in many cases complicated by classes that have fuzzy, indeterminate, or gradational boundaries, a condition which is common in real landscapes; for example, the boundaries of wetlands, many soil map units, and tree crowns. In such circumstances, the conventional approach of treating all reference pixels as equally important, whether located on the map close to the boundary of a class, or in the class center, can lead to misleading results. We therefore propose an accuracy assessment approach that relies on center-weighting map segment area to calculate a variety of common classification metrics including overall accuracy, class user’s and producer’s accuracy, precision, recall, specificity, and the F1 score. This method offers an augmentation of traditional assessment methods, can be used for both binary and multiclass assessment, allows for the calculation of count- and area-based measures, and permits the user to define the impact of distance from map segment edges based on a distance weighting exponent and a saturation threshold distance, after which the weighting ceases to grow. The method is demonstrated using synthetic and real examples, highlighting its use when the accuracy of maps with inherently uncertain class boundaries is evaluated.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Petersburg National Battlefield to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Petersburg National Battlefield map was assigned to one of twenty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained from Petersburg National Battlefield in May 2006. Spatial data depicting the locations of earthworks was obtained from the park and used to identify polygons of the cultural map classes Open Earthworks and Forested Earthworks. One map class used to attribute polygons combines two similar associations that, in some circumstances, are difficult to distinguish in the field. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment. Twenty map classes were used in the vegetation map for Petersburg National Battlefield. Map classes are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) VILLAGES = Vermont villages 2) TOWNS = Vermont towns 3) COUNTIES = Vermont counties 4) RPCS = Vermont's Regional Planning Commissions 5) LEPC = Local Emergency Planning Committee boundaries 6) VTBND = Vermont's state boundary The master BNDHASH layer is managed as ESRI geodatabase feature dataset by VCGI. The dataset stores villages, towns, counties, and RPC boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/rpc boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the location of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line featue with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County
This feature class represents the Basins (6-digit Hydrologic Units) that overlap the Chihuahuan Desert REA Analysis Extent (CHD_Boundary_Poly).
The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD) #8220;Standard#8221; (http:pubs.usgs.govtm11a3). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.
Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 4.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (PAD-US 4.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download from the PAD-US Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster analysis files are also available for combination with other raster data (PAD-US 4.0 Raster Analysis). The PAD-US Combined Fee, Designation, Easement feature class in the Full Inventory Database, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class, was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.
Description:
The Road Lane Instance Segmentation dataset consists of a collection of images captured from vehicle dashcams, providing detailed segmentation labels for various types of road lane markings. This dataset is specifically designed to support the development of advanced driver assistance systems (ADAS), autonomous driving research, and lane detection algorithms. It provides high-quality, annotated data for training machine learning models capable of accurately recognizing and distinguishing between different types of lane markings on diverse road surfaces.
Dataset Composition:
Each image in the dataset contains comprehensive instance segmentation labels for different road lane markings, allowing precise identification of lane boundaries and other road-related lines. The annotations are pixel-perfect, ensuring high accuracy for tasks like semantic segmentation, lane boundary detection, and instance-level classification.
Download Dataset
Classes:
The dataset categorizes road lane markings into the following classes:
Divider Line: Solid lines used to separate traffic moving in opposite directions, typically found in the center of the road.
Dotted Line: Broken lines used for lane division or indicating areas where lane changes are permitted.
Double Line: A pair of solid lines, often indicating areas where overtaking is prohibited.
Random Line: Miscellaneous markings such as temporary construction lines, which may not follow standard lane marking patterns.
Road Sign Line: Specialized markings indicating directions, such as turn arrows or crosswalks.
Solid Line: Continuous lines used to define the edge of a lane or boundary where lane changes are not allowed.
Data Annotations:
Instance Segmentation: Each lane marking is segmented with a unique instance mask, allowing algorithms to distinguish between individual lanes and classify them accordingly.
Bounding Boxes: In addition to instance segmentation masks, the dataset also provides bounding box annotations for lane markings.
Lane Curvature and Width: Some annotations include additional metadata relate to the curvature and width of lanes, useful for training models on highways, city streets, and rural roads.
Applications:
This dataset is suitable for a wide range of computer vision tasks, including:
Autonomous Driving: The dataset is ideal for developing systems capable of lane detection and navigation in autonomous vehicles, enabling safe lane-keeping and transition maneuvers.
Advanced Driver Assistance Systems (ADAS): Useful for real-time lane detection and warning systems in smart vehicles.
Road Condition Monitoring: Can be use by transportation authorities to identify worn-out or missing lane markings that need maintenance.
Traffic Management Systems: Enables smart city infrastructure by integrating road lane data for efficient traffic flow management.
Dataset Features:
Diverse Road Conditions: The images cover a wide variety of road conditions, including urban, suburban, and highway environments, with varying lighting conditions (day/night) and weather situations (rain, snow, fog).
Resolution and Quality: All images are high-resolution, ensuring clear visualization of lane details, even in complex or challenging scenes.
Scalable and Customizable: The dataset is expandable with additional road classes and can be customize according to specific user requirements or research goals.
Platform Compatibility: The dataset can be seamlessly integrate into machine learning platforms like TensorFlow, PyTorch, and others, with annotations provide in commonly use formats such as COCO and Pascal VOC.
This dataset is sourced from Kaggle.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is designed to address a specific object detection task featuring 32 distinct classes. Each class represents a unique type of object that can be identified and annotated in the provided images. The goal is to annotate these objects accurately with bounding boxes, taking into consideration their unique visual characteristics and the instructions for each class.
The objects in class 11 are characterized by [distinctive visual features]. They have [describe shape, texture, or any notable characteristics].
This class includes [description of Class 12 objects and their distinctive visual features].
Objects in this class [description of Class 13 objects, including shapes, typical sizes, or distinguishing patterns].
(Continue with other classes using the same format...)
This class is characterized by [description of Class 48 objects, with emphasis on unique features like texture, shape, and size].
To finalize these instructions, review the provided images for visual aids and specific features to identify and delineate each class. Adjust the detailed instructions sections accordingly to reflect specific visual features observed in the dataset.
Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Natural Resources Department of the Atlanta Regional Commission. The dataset contains polygonal hydrographic features including lakes, ponds, reservoirs, swamps, and marshes. Original data were captured from the NHDWaterbody geospatial data layer included in the High Resolution National Hydrography Dataset Plus (NHDPlus HR). Features in the NHDWaterbody geospatial layer that intersected the Georgia State boundary were selected and spatially joined to Georgia county boundaries and the WBDHU8 geospatial data layer found in the U.S. Geological Survey's Watershed Boundary Dataset. Layers were spatially joined using the Largest Overlap matching method. The spatial join was removed upon calculating values for the COUNTY_FIPS, COUNTY_NAME, HUC8_ID, and HUC8_SUBBASIN attributes. The CLASS attribute was created to identify Lakes equal to or larger than 10 acres as Major and less than 0.5 acres as Minor. Data in the HYDRO_CAT and RESERVOIR_TYPE attributes were sourced from values encoded in the Feature Code (FCode) field of the NHDWaterbody geospatial data layer.Attributes:FEATURE = Type of hydrologic featureCLASS = Class used to identify major and minor waterbodiesGNIS_ID = A permanent, unique number assigned by the Geographic Names Information System (GNIS) to a geographic feature name for the sole purpose of uniquely identifying that name application as a record in any information system database, dataset, file, or documentGNIS_NAME = The Geographic Names Information System (GNIS) assigned proper name, specific term, or expression by which a particular geographic entity is known.HUC8_ID = 8-digit hydrologic unit code used to identify subbasins in the hydrologic unit systemHUC8_SUBBASIN = Subbasin name of the 8-digit hydrologic unit code in the hydrologic unit systemCOUNTY_FIPS = County Federal Information Processing System (FIPS) codeCOUNTY_NAME = County nameHYDRO_CAT = Hydrographic feature categoryRESERVOIR_TYPE = Type of reservoirACRES = Area of the feature in acresELEVATION = The vertical distance from a given datumGlobalID = A type of UUID (Universal Unique Identifier) in which values are automatically assigned by the geodatabase when a row is createdlast_edited_user = User to last edit featurelast_edited_date = Date feature was last editedShape = Feature geometryShape_Length = Length of the feature, which may differ from the field measured length due to differences in calculation. Units are map units.Shape_Area = Area of feature in map units squaredSource: U.S. Geological Survey, National Geospatial ProgramDate: 2023
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Natural Resources Department of the Atlanta Regional Commission. The dataset contains polygonal hydrographic features including lakes, ponds, reservoirs, swamps, and marshes in the Metropolitan North Georgia Water Planning District.Original data were captured from the NHDWaterbody geospatial data layer included in the High Resolution National Hydrography Dataset Plus (NHDPlus HR). Features in the NHDWaterbody geospatial layer that intersected the Georgia State boundary were selected and spatially joined to Georgia county boundaries and the WBDHU8 geospatial data layer found in the U.S. Geological Survey's Watershed Boundary Dataset. Layers were spatially joined using the Largest Overlap matching method. The spatial join was removed upon calculating values for the COUNTY_FIPS, COUNTY_NAME, HUC8_ID, and HUC8_SUBBASIN attributes. The CLASS attribute was created to identify Lakes equal to or larger than 10 acres as Major and less than 0.5 acres as Minor. Data in the HYDRO_CAT and RESERVOIR_TYPE attributes were sourced from values encoded in the Feature Code (FCode) field of the NHDWaterbody geospatial data layer.Attributes:FEATURE = Type of hydrologic featureCLASS = Class used to identify major and minor waterbodiesGNIS_ID = A permanent, unique number assigned by the Geographic Names Information System (GNIS) to a geographic feature name for the sole purpose of uniquely identifying that name application as a record in any information system database, dataset, file, or documentGNIS_NAME = The Geographic Names Information System (GNIS) assigned proper name, specific term, or expression by which a particular geographic entity is known.HUC8_ID = 8-digit hydrologic unit code used to identify subbasins in the hydrologic unit systemHUC8_SUBBASIN = Subbasin name of the 8-digit hydrologic unit code in the hydrologic unit systemCOUNTY_FIPS = County Federal Information Processing System (FIPS) codeCOUNTY_NAME = County nameHYDRO_CAT = Hydrographic feature categoryRESERVOIR_TYPE = Type of reservoirACRES = Area of the feature in acresELEVATION = The vertical distance from a given datumGlobalID = A type of UUID (Universal Unique Identifier) in which values are automatically assigned by the geodatabase when a row is createdlast_edited_user = User to last edit featurelast_edited_date = Date feature was last editedShape = Feature geometryShape_Length = Length of the feature, which may differ from the field measured length due to differences in calculation. Units are map units.Shape_Area = Area of feature in map units squaredSource: U.S. Geological Survey, National Geospatial ProgramDate: 2023
description: This polyline feature class represents the arc features that will define the boundaries of the BLM Land Use Planning Area (LUPA) in-progress polygons. Their attributes serve to store feature level metadata information for the polygon boundaries, as well as document the origin and characteristics of each arc.This state dataset may have published a dataset that is more current than the National dataset; there may be geometry variations between the state and national dataset which may have different results.The national dataset is updated following the data standard schedule.; abstract: This polyline feature class represents the arc features that will define the boundaries of the BLM Land Use Planning Area (LUPA) in-progress polygons. Their attributes serve to store feature level metadata information for the polygon boundaries, as well as document the origin and characteristics of each arc.This state dataset may have published a dataset that is more current than the National dataset; there may be geometry variations between the state and national dataset which may have different results.The national dataset is updated following the data standard schedule.
This data release contains the analytical results and the evaluated source data files of a geospatial analysis for identifying areas in Alaska that may have potential for sediment-hosted Pb-Zn (lead-zinc) deposits. The spatial analysis is based on queries of statewide source datasets Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. The results in geodatabase format are in SedPbZn_Results_gdb.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The data is described by FGDC metadata. An mxd file, layer file, and cartographic feature classes are provided for display of the results in ArcMap. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_gdb_README.txt (description of the files in this download package) are included. 2. The results in shapefile format are in SedPbZn_Results_shape.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The results are also provided as a CSV file. The data is described by FGDC metadata. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_shape_README.txt (description of the files in this download package) are included. 3. The source data in geodatabase format are in SedPbZn_SourceData_gdb.zip. Data layers include AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are two python scripts 1) to score the ARDF records based on the presence of certain keywords, and 2) to evaluate the ARDF, AGDB3, and lithology layers for the potential for sediment-hosted Pb-Zn deposits within subwatershed polygons. Users may modify the scripts to design their own analyses. Files sedPbZn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_gdb_README.txt (description of the files in this download package) are included. 4. The source data in shapefile and CSV format are in SedPbZn_SourceData_shape.zip. Data layers include ARDF and lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. The ARDF keyword tables available in the geodatabase package are presented here as CSV files. All data files are described with the FGDC metadata. Files sedPb_Zn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_shapefile_README.txt (description of the files in this download package) are included. 5. Appendices 2, 3 and 4, which are cited by the larger work OFR2020-1147. Files are presented in XLSX and CSV formats.
Segmentation models perform a pixel-wise classification by classifying the pixels into different classes. The classified pixels correspond to different objects or regions in the image. These models have a wide variety of use cases across multiple domains. When used with satellite and aerial imagery, these models can help to identify features such as building footprints, roads, water bodies, crop fields, etc.Generally, every segmentation model needs to be trained from scratch using a dataset labeled with the objects of interest. This can be an arduous and time-consuming task. Meta's Segment Anything Model (SAM) is aimed at creating a foundational model that can be used to segment (as the name suggests) anything using zero-shot learning and generalize across domains without additional training. SAM is trained on the Segment Anything 1-Billion mask dataset (SA-1B) which comprises a diverse set of 11 million images and over 1 billion masks. This makes the model highly robust in identifying object boundaries and differentiating between various objects across domains, even though it might have never seen them before. Use this model to extract masks of various objects in any image.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS. Fine-tuning the modelThis model can be fine-tuned using SamLoRA architecture in ArcGIS. Follow the guide and refer to this sample notebook to fine-tune this model.Input8-bit, 3-band imagery.OutputFeature class containing masks of various objects in the image.Applicable geographiesThe model is expected to work globally.Model architectureThis model is based on the open-source Segment Anything Model (SAM) by Meta.Training dataThis model has been trained on the Segment Anything 1-Billion mask dataset (SA-1B) which comprises a diverse set of 11 million images and over 1 billion masks.Sample resultsHere are a few results from the model.
The Sheeprocks (UT) was revised to resync with the UT habitat change as reflected in the Oct 2017 habitat data, creating the most up-to-date version of this dataset. Data submitted by Wyoming in February 2018 and by Montana and Oregon in May 2016 were used to update earlier versions of this feature class. The biologically significant unit (BSU) is a geographical/spatial area within Greater Sage-Grouse habitat that contains relevant and important habitats which is used as the basis for comparative calculations to support evaluation of changes to habitat. This BSU unit, or subset of this unit is used in the calculation of the anthropogenic disturbance threshold and in the adaptive management habitat trigger. BSU feature classes were submitted by individual states/EISs and consolidated by the Wildlife Spatial Analysis Lab. They are sometimes referred to as core areas/core habitat areas in the explanations below, which were consolidated from metadata submitted with BSU feature classes. These data provide a biological tool for planning in the event of human development in sage-grouse habitats. The intended use of all data in the BLM's GIS library is to support diverse activities including planning, management, maintenance, research, and interpretation. While the BSU defines the geographic extent and scale of these two measures, how they are calculated differs based on the specific measures to reflect appropriate assessment and evaluation as supported by scientific literature.There are 10 BSUs for the Idaho and Southwestern Montana GRSG EIS sub-region. For the Idaho and Southwestern Montana Greater Sage-Grouse Plan Amendment FEIS the biologically significant unit is defined as: a geographical/spatial area within greater sage-grouse habitat that contains relevant and important habitats which is used as the basis for comparative calculations to support evaluation of changes to habitat. Idaho: BSUs include all of the Idaho Fish and Game modeled nesting and delineated winter habitat, based on 2011 inventories within Priority and/or Important Habitat Management Area (Alternative G) within a Conservation Area. There are eight BSUs for Idaho identified by Conservation Area and Habitat Management Area: Idaho Desert Conservation Area - Priority, Idaho Desert Conservation Area - Important, Idaho Mountain Valleys Conservation Area - Priority, Idaho Mountain Valleys Conservation Area - Important, Idaho Southern Conservation Area - Priority, Idaho Southern Conservation Area - Important, Idaho West Owyhee Conservation Area - Priority, and Idaho West Owyhee Conservation Area - Important. Raft River : Utah portion of the Sawtooth National Forest, 1 BSU. All of this areas was defined as Priority habitat in Alternative G. Raft River - Priority. Montana: All of the Priority Habitat Management Area. 1 BSU. SW Montana Conservation Area - Priority. Montana BSUs were revised in May 2016 by the MT State Office. They are grouped together and named by the Population in which they are located: Northern Montana, Powder River Basin, Wyoming Basin, and Yellowstone Watershed. North and South Dakota BSUs have been grouped together also. California and Nevada's BSUs were developed by Nevada Department of Wildlife's Greater Sage-Grouse Wildlife Staff Specialist and Sagebrush Ecosystem Technical Team Representative in January 2015. Nevada's Biologically Significant Units (BSUs) were delineated by merging associated PMUs to provide a broader scale management option that reflects sage grouse populations at a higher scale. PMU boundarys were then modified to incorporate Core Management Areas (August 2014; Coates et al. 2014) for management purposes. (Does not include Bi-State DPS.) Within Colorado, a Greater Sage-Grouse GIS data set identifying Preliminary Priority Habitat (PPH) and Preliminary General Habitat (PGH) was developed by Colorado Parks and Wildlife. This data is a combination of mapped grouse occupied range, production areas, and modeled habitat (summer, winter, and breeding). PPH is defined as areas of high probability of use (summer or winter, or breeding models) within a 4 mile buffer around leks that have been active within the last 10 years. Isolated areas with low activity were designated as general habitat. PGH is defined as Greater sage-grouse Occupied Range outside of PPH. Datasets used to create PPH and PGH: Summer, winter, and breeding habitat models. Rice, M. B., T. D. Apa, B. L. Walker, M. L. Phillips, J. H. Gammonly, B. Petch, and K. Eichhoff. 2012. Analysis of regional species distribution models based on combined radio-telemetry datasets from multiple small-scale studies. Journal of Applied Ecology in review. Production Areas are defined as 4 mile buffers around leks which have been active within the last 10 years (leks active between 2002-2011). Occupied range was created by mapping efforts of the Colorado Division of Wildlife (now Colorado Parks and Wildlife –CPW) biologists and district officers during the spring of 2004, and further refined in early 2012. Occupied Habitat is defined as areas of suitable habitat known to be used by sage-grouse within the last 10 years from the date of mapping. Areas of suitable habitat contiguous with areas of known use, which do not have effective barriers to sage-grouse movement from known use areas, are mapped as occupied habitat unless specific information exists that documents the lack of sage-grouse use. Mapped from any combination of telemetry locations, sightings of sage grouse or sage grouse sign, local biological expertise, GIS analysis, or other data sources. This information was derived from field personnel. A variety of data capture techniques were used including the SmartBoard Interactive Whiteboard using stand-up, real-time digitizing atvarious scales (Cowardin, M., M. Flenner. March 2003. Maximizing Mapping Resources. GeoWorld 16(3):32-35). Update August 2012: This dataset was modified by the Bureau of Land Management as requested by CPW GIS Specialist, Karin Eichhoff. Eichhoff requested that this dataset, along with the GrSG managment zones (population range zones) dataset, be snapped to county boundaries along the UT-CO border and WY-CO border. The county boundaries dataset was provided by Karin Eichhoff. In addition, a few minor topology errors were corrected where PPH and PGH were overlapping. Update October 10, 2012: NHD water bodies greater than 100 acres were removed from GrSG habitat, as requested by Jim Cagney, BLM CO Northwest District Manager. 6 water bodies in total were removed (Hog Lake, South Delaney, Williams Fork Reservoir, North Delaney, Wolford Mountain Reservoir (2 polygons)). There were two “SwampMarsh” polygons that resulted when selecting polygons greater than 100 acres; these polygons were not included. Only polygons with the attribute “LakePond” were removed from GrSG habitat. Colorado Greater Sage Grouse managment zones based on CDOW GrSG_PopRangeZones20120609.shp. Modified and renumbered by BLM 06/09/2012. The zones were modified again by the BLM in August 2012. The BLM discovered areas where PPH and PGH were not included within the zones. Several discrepancies between the zones and PPH and PGH dataset were discovered, and were corrected by the BLM. Zones 18-21 are linkages added as zones by the BLM. In addition to these changes, the zones were adjusted along the UT-CO boundary and WY-CO boundary to be coincident with the county boundaries dataset. This was requested by Karin Eichhoff, GIS Specialist at the CPW. She provided the county boundaries dataset to the BLM. Greater sage grouse GIS data set identifying occupied, potential and vacant/unknown habitats in Colorado. The data set was created by mapping efforts of the Colorado Division of Wildlife biologist and district officers during the spring of 2004, and further refined in the winter of 2005. Occupied Habitat: Areas of suitable habitat known to be used by sage-grouse within the last 10 years from the date of mapping. Areas of suitable habitat contiguous with areas of known use, which do not have effective barriers to sage-grouse movement from known use areas, are mapped as occupied habitat unless specific information exists that documents the lack of sage-grouse use. Mapped from any combination of telemetry locations, sightings of sage grouse or sage grouse sign, local biological expertise, GIS analysis, or other data sources. Vacant or Unknown Habitat: Suitable habitat for sage-grouse that is separated (not contiguous) from occupied habitats that either: 1) Has not been adequately inventoried, or 2) Has not had documentation of grouse presence in the past 10 years Potentially Suitable Habitat: Unoccupied habitats that could be suitable for occupation of sage-grouse if practical restoration were applied. Soils or other historic information (photos, maps, reports, etc.) indicate sagebrush communities occupied these areas. As examples, these sites could include areas overtaken by pinyon-juniper invasions or converted rangelandsUpdate October 10, 2012: NHD water bodies greater than 100 acres were removed from GrSG habitat and management zones, as requested by Jim Cagney, BLM CO Northwest District Manager. 6 water bodies in total were removed (Hog Lake, South Delaney, Williams Fork Reservoir, North Delaney, Wolford Mountain Reservoir (2 polygons)). There were two “SwampMarsh” polygons that resulted when selecting polygons greater than 100 acres; these polygons were not included. Only polygons with the attribute “LakePond” were removed from GrSG habitat. Oregon submitted updated BSU boundaries in May 2016 and again in October 2016, which were incorporated into this latest version. In Oregon, the Core Area maps and data were developed as one component of the Conservation Strategy for sage-grouse. Specifically, these data provide a tool in planning and identifying appropriate mitigation in the event of human development in sage-grouse habitats. These maps will assist in making
An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area. This data is intended for read-only use. These data were prepared to describe Forest Service administrative area boundaries. The purpose of the data is to provide display, identification, and analysis tools for determining current boundary information for Forest Service managers, GIS Specialists, and others. The Forest Service has multiple types of boundaries represented by different feature classes (layers): Administrative, Ownership and Proclaimed. 1) ADMINISTRATIVE boundaries (e.g. AdministrativeForest and RangerDistrict feature classes) encompass National Forest System lands managed by an administrative unit. These are dynamic layers that should not be considered "legal" boundaries as they are simply intended to identify the specific organizational units that administer areas. As lands are acquired and disposed, the administrative boundaries are adjusted to expand or shrink accordingly. Please note that ranger districts are sub units of National Forests. An administrative forest boundary can contain one or more Proclaimed National Forests, National Grasslands, Purchase Units, Research and Experimental Areas, Land Utilization Projects and various "Other" Areas. If needed, OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) should be reviewed along with these datasets to determine parcels that are federally managed within the administrative boundaries. 2) OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) represent parcels that are tied to legal transactions of ownership. These are parcels of Federal land managed by the USDA Forest Service. Please note that the BasicOwnership layer is simply a dissolved version of the SurfaceOwnership layer. 3) PROCLAIMED boundaries (e.g. ProclaimedForest and ProclaimedForest_Grassland) encompass areas of National Forest System land that is set aside and reserved from public domain by executive order or proclamation. Please note that the ProclaimedForest layer contains only proclaimed forests while ProclaimedForest_Grassland layer contains both proclaimed forests and proclaimed grasslands. For boundaries that reflect current National Forest System lands managed by an administrative unit, see the ADMINISTRATIVE boundaries (AdministrativeForest and RangerDistrict feature classes). For a visual comparison of the different kinds of USFS boundary datasets maintained by the USFS, see the Forest Service Boundary Comparison map at https://usfs.maps.arcgis.com/apps/CompareAnalysis/index.html?appid=fe7b9f56217949a291356f08cfccb119. USFS boundaries are often referenced in national datasets maintained by other federal agencies. Please note that variations may be found between USFS data and other boundary datasets due to differing update frequencies. PAD-US (Protected Areas Database of the United States), maintained by the U.S. Geological Survey, is a "best available" inventory of protected areas including data provided by managing agencies and organizations including the Forest Service. For more information see https://gapanalysis.usgs.gov/padus/data/metadata/. SMA (Surface Management Agency), maintained by the Bureau of Land Management, depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. It uses data provided by the Forest Service and other agencies, combined with National Regional Offices collection efforts. For more information see https://landscape.blm.gov/geoportal/catalog/search/resource/details.page?uuid=%7B2A8B8906-7711-4AF7-9510-C6C7FD991177%7D.