Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Facebook
TwitterThis dataset includes all the data and R code needed to reproduce the analyses in a forthcoming manuscript:Copes, W. E., Q. D. Read, and B. J. Smith. Environmental influences on drying rate of spray applied disinfestants from horticultural production services. PhytoFrontiers, DOI pending.Study description: Instructions for disinfestants typically specify a dose and a contact time to kill plant pathogens on production surfaces. A problem occurs when disinfestants are applied to large production areas where the evaporation rate is affected by weather conditions. The common contact time recommendation of 10 min may not be achieved under hot, sunny conditions that promote fast drying. This study is an investigation into how the evaporation rates of six commercial disinfestants vary when applied to six types of substrate materials under cool to hot and cloudy to sunny weather conditions. Initially, disinfestants with low surface tension spread out to provide 100% coverage and disinfestants with high surface tension beaded up to provide about 60% coverage when applied to hard smooth surfaces. Disinfestants applied to porous materials were quickly absorbed into the body of the material, such as wood and concrete. Even though disinfestants evaporated faster under hot sunny conditions than under cool cloudy conditions, coverage was reduced considerably in the first 2.5 min under most weather conditions and reduced to less than or equal to 50% coverage by 5 min. Dataset contents: This dataset includes R code to import the data and fit Bayesian statistical models using the model fitting software CmdStan, interfaced with R using the packages brms and cmdstanr. The models (one for 2022 and one for 2023) compare how quickly different spray-applied disinfestants dry, depending on what chemical was sprayed, what surface material it was sprayed onto, and what the weather conditions were at the time. Next, the statistical models are used to generate predictions and compare mean drying rates between the disinfestants, surface materials, and weather conditions. Finally, tables and figures are created. These files are included:Drying2022.csv: drying rate data for the 2022 experimental runWeather2022.csv: weather data for the 2022 experimental runDrying2023.csv: drying rate data for the 2023 experimental runWeather2023.csv: weather data for the 2023 experimental rundisinfestant_drying_analysis.Rmd: RMarkdown notebook with all data processing, analysis, and table creation codedisinfestant_drying_analysis.html: rendered output of notebookMS_figures.R: additional R code to create figures formatted for journal requirementsfit2022_discretetime_weather_solar.rds: fitted brms model object for 2022. This will allow users to reproduce the model prediction results without having to refit the model, which was originally fit on a high-performance computing clusterfit2023_discretetime_weather_solar.rds: fitted brms model object for 2023data_dictionary.xlsx: descriptions of each column in the CSV data files
Facebook
TwitterThis module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.
Facebook
TwitterTo make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.
You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:
df<-read.csv('uber.csv')
df_black<-subset(uber_df, uber_df$name == 'Black')
write.csv(df_black, "nameofthefileyouwanttosaveas.csv")
getwd()
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies.
Methods
This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies"
Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005
For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub.
The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub.
The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results.
Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program.
To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper.
Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd.
Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# Annotated 12 lead ECG dataset Contain 827 ECG tracings from different patients, annotated by several cardiologists, residents and medical students. It is used as test set on the paper: "Automatic Diagnosis of the Short-Duration12-Lead ECG using a Deep Neural Network". It contain annotations about 6 different ECGs abnormalities: - 1st degree AV block (1dAVb); - right bundle branch block (RBBB); - left bundle branch block (LBBB); - sinus bradycardia (SB); - atrial fibrillation (AF); and, - sinus tachycardia (ST). ## Folder content: - `ecg_tracings.hdf5`: HDF5 file containing a single dataset named `tracings`. This dataset is a `(827, 4096, 12)` tensor. The first dimension correspond to the 827 different exams from different patients; the second dimension correspond to the 4096 signal samples; the third dimension to the 12 different leads of the ECG exam. The signals are sampled at 400 Hz. Some signals originally have a duration of 10 seconds (10 * 400 = 4000 samples) and others of 7 seconds (7 * 400 = 2800 samples). In order to make them all have the same size (4096 samples) we fill them with zeros on both sizes. For instance, for a 7 seconds ECG signal with 2800 samples we include 648 samples at the beginning and 648 samples at the end, yielding 4096 samples that are them saved in the hdf5 dataset. All signal are represented as floating point numbers at the scale 1e-4V: so it should be multiplied by 1000 in order to obtain the signals in V. In python, one can read this file using the following sequence: ```python import h5py with h5py.File(args.tracings, "r") as f: x = np.array(f['tracings']) ``` - The file `attributes.csv` contain basic patient attributes: sex (M or F) and age. It contain 827 lines (plus the header). The i-th tracing in `ecg_tracings.hdf5` correspond to the i-th line. - `annotations/`: folder containing annotations csv format. Each csv file contain 827 lines (plus the header). The i-th line correspond to the i-th tracing in `ecg_tracings.hdf5` correspond to the in all csv files. The csv files all have 6 columns `1dAVb, RBBB, LBBB, SB, AF, ST` corresponding to weather the annotator have detect the abnormality in the ECG (`=1`) or not (`=0`). 1. `cardiologist[1,2].csv` contain annotations from two different cardiologist. 2. `gold_standard.csv` gold standard annotation for this test dataset. When the cardiologist 1 and cardiologist 2 agree, the common diagnosis was considered as gold standard. In cases where there was any disagreement, a third senior specialist, aware of the annotations from the other two, decided the diagnosis. 3. `dnn.csv` prediction from the deep neural network described in "Automatic Diagnosis of the Short-Duration 12-Lead ECG using a Deep Neural Network". The threshold is set in such way it maximizes the F1 score. 4. `cardiology_residents.csv` annotations from two 4th year cardiology residents (each annotated half of the dataset). 5. `emergency_residents.csv` annotations from two 3rd year emergency residents (each annotated half of the dataset). 6. `medical_students.csv` annotations from two 5th year medical students (each annotated half of the dataset).
Facebook
TwitterThis dataset is a clean CSV file with the most recent estimates of the population of the countries according to Wolrdometer. The data is taken from the following link: https://www.worldometers.info/world-population/population-by-country/
The data has been generated by websraping the aforementioned link on the 16th August 2021. Below is the code used to make CSV data in Python 3.8:
import requests
from bs4 import BeautifulSoup
import pandas as pd
url = "https://www.worldometers.info/world-population/population-by-country/"
r = requests.get(url)
soup = BeautifulSoup(r.content)
countries = soup.find_all("table")[0]
dataframe = pd.read_html(str(countries))[0]
dataframe.to_csv("countries_by_population_2021.csv", index=False)
The creation of this dataset would not be possible without a team of Worldometers, a data aggregation website.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Explanation/Overview: Corresponding dataset for the analyses and results achieved in the CS Track project in the research line on participation analyses, which is also reported in the publication "Does Volunteer Engagement Pay Off? An Analysis of User Participation in Online Citizen Science Projects", a conference paper for the conference CollabTech 2022: Collaboration Technologies and Social Computing and published as part of the Lecture Notes in Computer Science book series (LNCS,volume 13632) here. The usernames have been anonymised. Purpose: The purpose of this dataset is to provide the basis to reproduce the results reported in the associated deliverable, and in the above-mentioned publication. As such, it does not represent raw data, but rather files that already include certain analysis steps (like calculated degrees or other SNA-related measures), ready for analysis, visualisation and interpretation with R. Relatedness: The data of the different projects was derived from the forums of 7 Zooniverse projects based on similar discussion board features. The projects are: 'Galaxy Zoo', 'Gravity Spy', 'Seabirdwatch', 'Snapshot Wisconsin', 'Wildwatch Kenya', 'Galaxy Nurseries', 'Penguin Watch'. Content: In this Zenodo entry, several files can be found. The structure is as follows (files and folders and descriptions). corresponding_calculations.html Quarto-notebook to view in browser corresponding_calculations.qmd Quarto-notebook to view in RStudio assets data annotations annotations.csv List of annotations made per day for each of the analysed projects comments comments.csv Total list of comments with several data fields (i.e., comment id, text, reply_user_id) rolechanges 478_rolechanges.csv List of roles per user to determine number of role changes 1104_rolechanges.csv ... ... totalnetworkdata Edges 478_edges.csv Network data (edge set) for the given projects (without time slices) 1104_edges.csv ... ... Nodes 478_nodes.csv Network data (node set) for the given projects (without time slices) 1104_nodes.csv ... ... trajectories Network data (edge and node sets) for the given projects and all time slices (Q1 2016 - Q4 2021) 478 Edges edges_4782016_q1.csv edges_4782016_q2.csv edges_4782016_q3.csv edges_4782016_q4.csv ... Nodes nodes_4782016_q1.csv nodes_4782016_q4.csv nodes_4782016_q3.csv nodes_4782016_q2.csv ... 1104 Edges ... Nodes ... ... scripts datavizfuncs.R script for the data visualisation functions, automatically executed from within corresponding_calculations.qmd import.R script for the import of data, automatically executed from within corresponding_calculations.qmd corresponding_calculations_files files for the html/qmd view in the browser/RStudio Grouping: The data is grouped according to given criteria (e.g., project_title or time). Accordingly, the respective files can be found in the data structure
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italian Dengue data
Arboviral diseases are caused by viral agents carried by arthropod insects, such as mosquitoes, ticks and phlebotomas, through their bite or sting. Currently, more than 100 viruses associated with arboviruses have been identified that are capable of causing disorders in human health. The majority of these viruses belong to families and groups such as the Togaviridae (Alphavirus), the Flaviridae (Flavivirus) and the Bunyaviridae (Bunyavirus and Phlebovirus). In Italy, arboviral infections may arise from both imported and autochthonous cases and may present with diverse clinical symptoms. Surveillance of arboviruses is coordinated by the Istituto Superiore di Sanità (ISS) and, in the case of West Nile and Usutu virus surveillance, by the Istituto Zooprofilattico dell'Abruzzo e del Molise (Izs-AM), in collaboration with the Ministry of Health, which periodically publishes Surveillance and Response Plans to ensure early detection of cases and to reduce any spread as far as possible. Epidemiological surveillance is regulated by the "National Plan for Prevention, Surveillance and Response to Arboviruses (PNA) 2020-2025".
In order to inform citizens and make the collected data available, which is only useful for communication and information purposes, the following information is made available under the CC-BY-4.0 licence
- National evolution data
- Regional data
- Summary bulletins
Repository structure
```
dengue/
│
├── */
│ ├── bulletins/
│ │ ├── Dengue_*.pdf
│ │ ├── ...
│ ├── surveillance/
│ │ ├── 2023/
│ │ │ ├── dengue-ita-*.csv
│ │ │ ├── dengue-ita-age-*.csv
│ │ │ ├── dengue-ita-location-exposure-*.csv
│ │ │ ├── dengue-ita-regions-*.csv
│ │ ├── ...
│ │ │ ├── ...
│ ├── dengue-ita-summary-cases.csv
│ ├── dengue-ita-summary-cases-regions.csv
```
Data structure
- Evoulution data about Dengue Italy (IT)
Example of data use
Direct download (CSV): https://raw.githubusercontent.com/fbranda/dengue/main/surveillance/dengue-ita-2023.csv
Python (requires `pandas`):
```python
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/fbranda/dengue/main/surveillance/dengue-ita-2023.csv")
```
R (requires `httr`):
```r
library(httr)
df <- read.csv(text=content(GET("https://raw.githubusercontent.com/fbranda/dengue/main/surveillance/dengue-ita-2023.csv")))
```
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset is the repository for the following paper submitted to Data in Brief:
Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).
The Data in Brief article contains the supplement information and is the related data paper to:
Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).
Description/abstract
The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.
Folder structure
The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:
“code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.
“MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.
“mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).
“yield_productivity” contains .csv files of yield information for all countries listed above.
“population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).
“GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.
“built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.
Code structure
1_MODIS_NDVI_hdf_file_extraction.R
This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.
2_MERGE_MODIS_tiles.R
In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").
3_CROP_MODIS_merged_tiles.R
Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
The repository provides the already clipped and merged NDVI datasets.
4_TREND_analysis_NDVI.R
Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.
5_BUILT_UP_change_raster.R
Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.
6_POPULATION_numbers_plot.R
For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.
7_YIELD_plot.R
In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.
8_GLDAS_read_extract_trend
The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This dataset provides a detailed list of flights from Bengaluru to Delhi extracted from MakeMyTrip via Crawl Feeds. It includes essential flight information for the period between 8th December 2021 and 10th March 2022, making it ideal for analyzing travel trends, airline performance, and pricing patterns during this time frame.
For a more extensive analysis of travel trends and to gain deeper insights into the travel industry, explore our Travel & Tourism Data offerings. Our comprehensive datasets can help you anticipate customer needs, optimize operations, and provide personalized experiences to stay ahead in the competitive travel market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
• aidsSystemData-DIB.xlsx contains the first combination of the USDA ERS data into a single tabular format. It also contains the formulas for the calculation of derived data. • aidsSystemData3.csv is the .xlsx file converted to .csv for import into R. • aidsvdataInbrief.R contains all code used to estimate and calculate elasticities. The following packages must be installed for the script: 'tidyverse', 'lubridate', 'micEconAids', and 'broom'. • Results.xlsx contains all results. Tabs are labeled as “results_” lags between price and quantity, and “h” or “m” to indicate Hicksian or Marshallian. • all.Rdata contains all results and intermediate objects.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials
Background
This dataset contains data from monotonic and cyclic loading experiments on structural metallic materials. The materials are primarily structural steels and one iron-based shape memory alloy is also included. Summary files are included that provide an overview of the database and data from the individual experiments is also included.
The files included in the database are outlined below and the format of the files is briefly described. Additional information regarding the formatting can be found through the post-processing library (https://github.com/ahartloper/rlmtp/tree/master/protocols).
Usage
Included Files
File Format: Downsampled Data
These are the "LP_
These data files can be easily loaded using the pandas library in Python through:
import pandas
data = pandas.read_csv(data_file, index_col=0)
The data is formatted so it can be used directly in RESSPyLab (https://github.com/AlbanoCastroSousa/RESSPyLab). Note that the column names "e_true" and "Sigma_true" were kept for backwards compatibility reasons with RESSPyLab.
File Format: Unreduced Data
These are the "LP_
The data can be loaded and used similarly to the downsampled data.
File Format: Overall_Summary
The overall summary file provides data on all the test specimens in the database. The columns include:
File Format: Summarized_Mechanical_Props_Campaign
Meant to be loaded in Python as a pandas DataFrame with multi-indexing, e.g.,
tab1 = pd.read_csv('Summarized_Mechanical_Props_Campaign_' + date + version + '.csv',
index_col=[0, 1, 2, 3], skipinitialspace=True, header=[0, 1],
keep_default_na=False, na_values='')
Caveats
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
FosSahul 2.0 database and R code accompanying manuscript "FosSahul 2.0, an updated database for the Late Quaternary fossil records of Sahul" submitted to Scientific Data. Excel files: FosSahul2.0.csv: FosSahul database collating non-human vertebrate megafauna fossil records for the Sahul region. Note that location data have been rounded to one degree decimal and might not reflect the exact location of the fossil record. For more information on precise locations, contact the authors.FosSahul2.0_metadata.xlsx: Column description and further detail on the FosSahul 2.0 database.CalibratedC14Dates_FosSahul.csv: Calibrated radiocarbon dates for FosSahul 2.0. Needed for the calculation of the biodiversity index.TimeBins.csv: Time bins needed for the calculation of the biodiversity index. R-scripts: FosSahul_Rating.R: Quality-rating algorithm for the FosSahul database.FosSahul_Data import.R: Data import script necessary for the calculation of the biodiversity index.FosSahul_Biodiversity_index_calculation.R: Code for the calculation of the biodiversity index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example code list definition in csv format.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. Felton
Date: 10/29/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.
#Code information
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a role:
"01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).
"02_functions.R": This script contains custom functions. Load this using the
`source()` function in the 01_start.R script.
"03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
`source()` function in the 01_start.R script.
"04_figures_tables.R": This is the main workhouse for figure/table production and
supporting analyses. This script generates the key figures and summary statistics
used in the study that then get saved in the manuscript_figures folder. Note that all
maps were produced using Python code found in the "supporting_code"" folder.
"supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.
"supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Perfectly Accurate, Synthetic dataset featuring a virtual railway EnVironment for Multi-View Stereopsis (RailEnV-PASMVS) is presented, consisting of 40 scenes and 79,800 renderings together with ground truth depth maps, extrinsic and intrinsic camera parameters and binary segmentation masks of all the track components and surrounding environment. Every scene is rendered from a set of 3 cameras, each positioned relative to the track for optimal 3D reconstruction of the rail profile. The set of cameras is translated across the 100-meter length of tangent (straight) track to yield a total of 1,995 camera views. Photorealistic lighting of each of the 40 scenes is achieved with the implementation of high-definition, high dynamic range (HDR) environmental textures. Additional variation is introduced in the form of camera focal lengths, random noise for the camera location and rotation parameters and shader modifications of the rail profile. Representative track geometry data is used to generate random and unique vertical alignment data for the rail profile for every scene. This primary, synthetic dataset is augmented by a smaller image collection consisting of 320 manually annotated photographs for improved segmentation performance. The specular rail profile represents the most challenging component for MVS reconstruction algorithms, pipelines and neural network architectures, increasing the ambiguity and complexity of the data distribution. RailEnV-PASMVS represents an application specific dataset for railway engineering, against the backdrop of existing datasets available in the field of computer vision, providing the precision required for novel research applications in the field of transportation engineering.
File descriptions
Steps to reproduce
The open source Blender software suite (https://www.blender.org/) was used to generate the dataset, with the entire pipeline developed using the exposed Python API interface. The camera trajectory is kept fixed for all 40 scenes, except for small perturbations introduced in the form of random noise to increase the camera variation. The camera intrinsic information was initially exported as a single CSV file (scene.csv) for every scene, from which the camera information files were generated; this includes the focal length (focalLengthmm), image sensor dimensions (pixelDimensionX, pixelDimensionY), position, coordinate vector (vectC) and rotation vector (vectR). The STL model files, as provided in this data repository, were exported directly from Blender, such that the geometry/scenes can be reproduced. The data processing below is written for a Python implementation, transforming the information from Blender's coordinate system into universal rotation (R_world2cv) and translation (T_world2cv) matrices.
import numpy as np
from scipy.spatial.transform import Rotation as R
#The intrinsic matrix K is constructed using the following formulation:
focalLengthPixel = focalLengthmm x pixelDimensionX / sensorWidthmm
K = [[focalLengthPixel, 0, dimX/2],
[0, focalPixel, dimY/2],
[0, 0, 1]]
#The rotation vector as provided by Blender was first transformed to a rotation matrix:
r = R.from_euler('xyz', vectR, degrees=True)
matR = r.as_matrix()
#Transpose the rotation matrix, to find matrix from the WORLD to BLENDER coordinate system:
R_world2bcam = np.transpose(matR)
#The matrix describing the transformation from BLENDER to CV/STANDARD coordinates is:
R_bcam2cv = np.array([[1, 0, 0],
[0, -1, 0],
[0, 0, -1]])
#Thus the representation from WORLD to CV/STANDARD coordinates is:
R_world2cv = R_bcam2cv.dot(R_world2bcam)
#The camera coordinate vector requires a similar transformation moving from BLENDER to WORLD coordinates:
T_world2bcam = -1 * R_world2bcam.dot(vectC)
T_world2cv = R_bcam2cv.dot(T_world2bcam)
The resulting R_world2cv and T_world2cv matrices are written to the camera information file using exactly the same format as that of BlendedMVS developed by Dr. Yao. The original rotation and translation information can be found by following the process in reverse. Note that additional steps were required to convert from Blender's unique coordinate system to that of OpenCV; this ensures universal compatibility in the way that the camera intrinsic and extrinsic information is provided.
Equivalent GPS information is provided (gps.csv), whereby the local coordinate frame is transformed into equivalent GPS information, centered around the Engineering 4.0 campus, University of Pretoria, South Africa. This information is embedded within the JPG files as EXIF data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data files and Python and R scripts are provided for Case Study 1 of the openENTRANCE project. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are full battery electric vehicles (EV), storage heater (SH), water heater with storage capabilitites (WH), air conditiong (AC), heat circulation pump (CP), air-to-air heat pump (HP), refrigeration (includes refrigerators (RF) and freezers (FR)), dish washer (DW), washing machine (WM), and tumble drier (TD). The data for the study uses represenative hours to describe load expectations and constraints for each residential device - hourly granularity from 2020 to 2050 for a representative day for each month (i.e. 24 hours for an average day in each month). The aggregated final results are in Full_potential.V9.csv and acheivable_NUTS2_summary.csv. The file metaData.Full_Potential.csv is provided to guide users on the nomenclature in Full_potential.V9.csv and the disaggregated data sets.The disaggregated loads can be found in d_ACV8.csv, d_CPV6.csv, d_DWV6.csv, d_EVV7.csv, d_FRV5.csv, d_HPV4.csv, d_RFV5.csv, d_SHV7.csv, d_TDV6.csv, d_WHV7.csv, d_WMV6.csv while the disaggregated maximum capacities p_ACV8.csv, p_CPV6.csv, p_DWV6.csv, p_EVV7.csv, p_FRV5.csv, p_HPV4.csv, p_RFV5.csv, p_SHV7.csv, p_TDV6.csv, p_WHV7.csv, p_WMV6.csv. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for the residential devices using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050). These summaries have allready adjusted the disaggregated loads with direct load participation rates from participation_rates_country.csv. A detailed overview of the data files are provided below. Where possible, a brief description, input data, and script use to generate the data is provided. If questions arise, first refer to the publication. If something still needs clarification, send an email to ryano18@vt.edu. Description of data provided Achievable_NUTS2_summary.csv Description Average hourly achievable direct load potentials for each NUTS2 region and device for 2020, 2022, 2030,2040, 2050 Data input Full_potential.V9.csv participation_rates_country.csv P_inc_SH.csv P_inc_WH.csv P_inc_HP.csv P_inc_DW.csv P_inc_WM.csv P_inc_TD.csv Script NUTS2_acheivable.R COP_.1deg_11-21_V1.csv Description NUTS2 average coefficient of performance estimates from 2011-2021 daily temperature Data tg_ens_mean_0.1deg_reg_2011-2021_v24.0e.nc NUTS_RG_01M_2021_3857.shp nhhV2.csv Script COP_from_E-OBS.R Country dd projections.csv Description Assumptions for annual change in CDD and HDD Spinoni, J., Vogt, J. V., Barbosa, P., Dosio, A., McCormick, N., Bigano, A., & Füssel, H. M. (2018). Changes of heating and cooling degree‐days in Europe from 1981 to 2100. International Journal of Climatology, 38, e191-e208. Expectations for future HDD and CDD used the long-run averages and country level expected changes in the rcp45 scenario EV NUTS projectionsV5.csv Description NUTS2 level EV projections 2018-2050 Data input EV projectionsV5_ave.csv Country level EV projections NUTS 2 regional share of national vehicle fleet Eurostat - Vehicle Nuts.xlsx Script EVprojections_NUTS_V5.py EV_NVF_EV_path.xlsx Description Country level – EV share of new passenger vehicle fleet From: Mathieu, L., & Poliscanova, J. (2020). Mission (almost) accomplished. Carmakers’ Race to Meet the, 21. EV_parameters.xlsx Description Parameters used to calculate future loads from EVs Wunit_EV – represents annual kWh per EV evLIFE_150kkm number of years represents usable life if EV only lasted 150 thousand km. Hence, 150,000/average km traveled per year with respect to country (this variable is dropped and not used for estimation). Average age/#years assuming 150k life – represents Number of years Average between evLIFE_150kkm and average age of vehicle with respect to the country full_potentialV9.csv Description Final data that shows hourly demand (Maximum Reduction) and (Maximum Dispatch for each device, region, and year. This data has not been adjusted with participation_rates_country.csv Maximum dispatch is equal to max capacity – hourly demand with respect to the device, region, year, and hour. Script Full_potentialV9.py gils projection assumptions.xlsx Description Data from: Gils, H. C. (2015). Balancing of intermittent renewable power generation by demand response and thermal energy storage. A linear extrapolation was used to determine values for every year and country 2020-2050. AC – Air Conditioning, SH – Storage Heater, WH – Water heater with storage capability, CP – heat circulation pump, TD – Tumble Drier, WM – Washing
Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `